University of Connecticut

GRADUATE CATALOG
2010 - 2011
CONTENTS

Academic Calendar ...3
Board of Trustees and Officers of Administration ..4
Admission ..5
Advisory System ..7
Fees and Expenses ..8
Assistantships, Fellowships, and Other Aid .. 12
University Programs and Services ..21
Registration ..24
Standards and Degree Requirements ...26
 Graduate Certificate Programs .. 27
 Master’s Degree Programs ... 28
 The Doctor of Musical Arts Degree .. 29
 The Doctor of Philosophy Degree ... 31
 Conferral of Degrees ..34
Fields of Study .. 35
 Health Center Programs ... 37
 Graduate Certificate Programs ... 37
 Interdisciplinary Programs .. 38
Programs and Course Offerings ..39
Graduate Faculty ... 216
Research Professors and Research Scientists ..230
Adjunct Faculty in the Graduate School ...231
Emeritus Faculty and Staff ...232
Appendix: Academic Integrity and Complaint Resolution ...237
 Academic Integrity in Graduate Education and Research ...237
 Graduate School Complaint Resolution Procedure ..239
Index ...241

UNIVERSITY ACCREDITATION

The University of Connecticut is accredited by the New England Association of Schools and Colleges.

AFFIRMATIVE ACTION POLICY

The University of Connecticut policy prohibits discrimination in education, employment, and in the provision of services on account of race, ethnicity, religion, sex, age, marital status, national origin, ancestry, sexual orientation, disabled veteran status, physical or mental disability, mental retardation, and other specifically covered mental disabilities.
The summer calendar and detailed information concerning the Summer Sessions may be obtained from the Registrar's Office. For course offerings, registration procedures, fees, and deadlines, please consult http://www.summersession.uconn.edu/summer.

The conferral date for Summer 2010 degrees is August 24, 2010 (Tuesday). The last day for degree candidates to submit thesis and dissertation final copies and related paper work to the Graduate School for August conferral is Friday, September 3, 2010.

FALL SEMESTER 2010

Mon. Aug. 30 Fall semester classes begin
Mon. Sept. 6 Labor Day (no classes)
Mon. Sept. 13 Last day to complete course registration without penalty fee(s)
Mon. Sept. 13 Last day to drop a course without "W" (Withdrawal)
Mon. Nov. 1 Last day for graduate students to drop a course without major advisor’s written recommendation and Graduate School permission
Mon. Nov. 1 Course registration via the Student Administration System closes
Sun. Nov. 21 Thanksgiving recess begins
Sat. Nov. 27 Thanksgiving recess ends
Fri. Dec. 10 Last day of Fall semester classes
Mon. Dec. 13 Final examinations begin
Sat. Dec. 18 Final examinations end
Wed. Dec. 29 Last day for degree candidates to submit thesis and dissertation final copies and related paper work to the Graduate School for December conferral

SPRING SEMESTER 2011

Tues. Jan. 18 Spring semester classes begin
Mon. Jan. 31 Last day to complete course registration without penalty fee(s)
Mon. Jan. 31 Last day to drop a course without "W" (Withdrawal)
Mon. Jan. 31 Student Administration System course registration system closes
Sun. March 6 Spring recess begins
Sat. March 12 Spring recess ends
Sun. March 28 Last day for graduate students to drop a course without major advisor’s written recommendation and Graduate School permission
Fri. April 29 Last day of Spring semester classes
Mon. May 2 Final examinations begin
Sat. May 7 Final examinations end
Sat. May 7 Graduate Commencement Ceremony 2010
Tues. May 17 Last day for degree candidates to submit thesis and dissertation final copies and related paper work to the Graduate School for May conferral

Faculty members should construct course syllabi with awareness of religious holidays.

http://www.registrar.uconn.edu
BOARD OF TRUSTEES*

The Honorable Dannel P. Malloy, Governor of the State of Connecticut
President ex officio
The Honorable George A. Coleman, Commissioner of Education
Member ex officio
The Honorable Steven . K. Reviczky, Commissioner of Agriculture
Member ex officio
The Honorable Ronald F. Angelo, Jr., Acting Commissioner of Economic and Community Development
Member ex officio

Appointed by the Governor
Louise M. Bailey, Secretary
Michael A. Bozzuto
Gerard N. Burrow, M.D.
Peter Drotch
Lenworth M. Jacobs, M.D.
Rebecca Lobo
Michael J. Martinez
Lawrence D. McHugh, Chair
Denis J. Nayden
Thomas D. Ritter
Wayne J. Shepperd
Richard Treibick

Elected by the Alumni
Francis X. Archambault, Ph.D.
Andrea Dennis-LaVigne, D.V.M.

Elected by the Students
Corey M. Schmidt
Richard Scianna

OFFICERS OF ADMINISTRATION#

Philip E. Austin, Ph.D., Interim President of the University
Peter J. Nicholls, Ph.D., Provost and Executive Vice President for Academic Affairs
Cato T. Laurencin, M.D., Ph.D., Executive Vice President for Health Affairs
Suman Singh, Ph.D., Vice President for Research
Lee A. Aggison, Jr., Ph.D., Interim Vice Provost for Graduate Education

THE GRADUATE SCHOOL

Lee A. Aggison, Jr., Ph.D., Interim Vice Provost for Graduate Education and Interim Dean of the Graduate School
Carolyn A. Lin, Ph.D., Associate Dean of the Graduate School
Barbara E. Kream, Ph.D., Associate Dean of the Graduate School – Health Center
Thomas B. Peters, Ph.D., Program Director
Anne Lanzit, B.S., Program Administrator
Melanie Dolat, M.S., Program Specialist
Terra A. Blakeslee, B.A., Administrative Services Specialist II
Ann Wilhelm, M.B.A., M.S., Database Manger
Lisa Pane, M.A., Systems Administrator
Ryan Sayers, B.F.A., Webmaster

GRADUATE FACULTY COUNCIL

The Graduate Faculty Council is the legislative body of the Graduate School. It establishes academic policy for graduate education, except for those areas reserved to the Board of Trustees, to the University Senate, or to the faculties of other colleges and schools. The 60 members, representing specific content areas derived from constituent Fields of Study, are elected to serve three-year terms. The membership includes two voting student members chosen by the Graduate Student Senate. The President, the Provost, the Vice President for Research and Dean of the Graduate School, and certain other administrative officers of the Graduate School are nonvoting ex officio members. The Council, representing the Graduate Faculty at large, exercises legislative authority in such areas as admissions criteria, curricular and degree requirements, new course approval, academic program review, and the like.

The Executive Committee

The Executive Committee has both executive and advisory responsibilities to the Graduate Faculty Council and to the Vice President for Research and Dean of the Graduate School. Its membership is drawn from the Graduate Faculty Council and from the Graduate Faculty at large. The Dean serves as chair. The Executive Committee is the steering committee for the Graduate Faculty Council. It advises the vice provost on matters of policy and regulatory interpretation, approves plans of study and dissertation prospectuses, and considers on the basis of academic merit proposals to modify or to create fields of study and areas of concentration. Members include:

William Abikoff, Ph.D., Professor of Mathematics
Mark Aindow, Ph.D., Professor of Chemical, Materials, and Biomolecular Engineering
Arlene D. Albert, Ph.D., Professor of Molecular and Cell Biology
Janet Barnes-Farrell, Ph.D., Professor of Psychology
Monica M. Bock, M.F.A., M.A., Associate Professor of Art and Art History
J. Garry Clifford, Ph.D., Professor of Political Science
Sylvain De Guise, D.M.V., Ph.D., Associate Professor of Pathobiology
Sandra J. Hewett, Ph.D., Professor of Neuroscience
Shayla C. Nummally, Ph.D., Assistant Professor of Political Science
Lee A. Aggison, Jr., Ph.D., Interim Vice Provost for Graduate Education and Interim Dean of the Graduate School (ex officio), Chair
Carolyn A. Lin, Ph.D., Associate Dean of the Graduate School (ex officio)
Barbara E. Kream, Ph.D., Associate Dean of the Graduate School – Health Center (ex officio)
Thomas B. Peters, Ph.D., Program Director (ex officio), Secretary

Student Responsibility

In accepting admission, the student assumes responsibility for knowing and complying with the regulations and procedures set forth in this Catalog and subsequent ones, as appropriate.

Exceptions to Policy

The approval of an exception to Graduate School policy is publicized to all interested parties. Persons who perceive that an approved exception to Graduate School policy has created a conflict of interest or has affected them adversely should make their concerns known to the Dean of the Graduate School.

* As of December 2008

As of March 2009
ADMISSION

To study for a graduate degree, a student must be admitted by the Dean of the Graduate School. No course work taken before the date of admission to the Graduate School may be included on a plan of study for a graduate degree unless specific approval has been granted by the Dean of the Graduate School.

Many departments or programs require or recommend that test scores be submitted for the Graduate Record Examinations and/or the Miller Analogies Test. Letters of recommendation, usually three, preferably from members of the academic profession, are required by all departments.

Meeting the minimum requirements does not guarantee admission. Applicants must show promise of superior achievement and must have specific preparation for the course of study they wish to undertake. If their records indicate deficiencies, they may be refused admission or required either to take background courses without graduate credit or to demonstrate by examination that they have acquired the requisite knowledge or skills for graduate study. In addition, since each graduate program has a limited number of places, the successful applicant must have a record competitive with those of other applicants in the same field.

Regular and Provisional Status

Application procedures and required credentials for admission to Regular status are specified above. Occasionally students who hold the baccalaureate but do not qualify fully for admission to Regular status may give evidence of ability in their chosen field sufficiently convincing to warrant their provisional admission to a master's degree program only. (Applicants are not admitted provisionally to a doctoral program.) If a Provisional student's initial twelve credits of completed course work (excluding 1000's-level courses) meets the minimum scholastic requirement of the Graduate School, he or she is accorded Regular status. Otherwise, he or she is subject to dismissal. In situations where special consideration is warranted, and only upon the specific request of the major advisor, the dean may approve changing a student to Regular status if at least nine credits of advanced course work have been completed with superior grades. Regular, not Provisional, status is required for degree conferral.

Language-Conditional Status.

International graduate applicants whose English language proficiency does not meet the minimum standard to qualify for Regular admission (a computer-based score of 213 or greater, or a written test score of at least 550, on the Test of English as a Foreign Language, or an overall band score of 6.5 on the IELTS (International English Language Testing System) may be admitted at the master's level as Language-Conditional Students. Those admitted on F-1 visas must be fully academically admissible as a Regular student (see above).

Admission to the D.P.T. Program

The Department of Physical Therapy in the Neag School of Education offers study leading to the degree of Doctor of Physical Therapy. In addition to the standard requirements of the Graduate School, applicants must have the required prerequisite courses which include cellular biology, comparative anatomy and physiology (8 credits), general chemistry (8 credits), general psychology, pre-calculus or calculus, statistics, and general physics (8 credits). Recommended courses include biology of human health and disease, organic chemistry with lab, human development, human genetics, biochemistry, fundamentals of nutrition, nutrition for exercise and sport, developmental psychology, physiological psychology, abnormal psychology, and pathology.

Sixth-Year Diploma in Professional Education

This post-master's diploma program is offered by the School of Education. It is not administered by the Graduate School. Inquiries regarding the Sixth-Year Diploma in Professional Education should be addressed to the Office of the Dean, School of Education, 249 Glenbrook Road, Unit 2064-C, Room 227, Storrs, Connecticut 06269-2064.

Admission to the D.M.A. Program

Applicants are expected to demonstrate outstanding musical ability and to have a superior record of previous performance and scholarship. A completed master's degree is required for admission. Holding a master's degree from this or from any other institution, however, does not render the applicant automatically admissible to the D.M.A. program. Areas of Concentration offered are Conducting and Performance (specifically cello, piano, trumpet, violin, viola, and voice). A personal audition is required as part of the application process. Inquiries should be addressed to: Director of Graduate Studies, Department of Music, 876 Coventry Road, Unit 1012, Storrs, Connecticut 06269-1012.

Admission to Ph.D. Programs

Applicants to Ph.D. programs are expected to demonstrate outstanding ability and to show on the record of previous scholarship and experience that they are likely to do superior creative work in their respective fields. Holding a master's degree from this or any other institution does not render the applicant automatically admissible to a doctoral program. Certain master's programs, on the other hand, are open only to applicants likely to qualify for doctoral study. In general, doctoral applicants must meet all admission requirements for the master's degree as regular graduate students and must present evidence that they are capable of doing independent work of distinction.

Visiting Students

Individuals who otherwise would qualify for admission with Regular status but who do not seek a degree from this University may be permitted to take courses for an unspecified time if their work here meets Graduate School standards. Special students may be working toward an advanced degree at another institution, in which case they are presumed to be fully qualified to pursue degree work at this University. Others may wish to take courses as Special students for personal enrichment.
Graduate Certificate Programs

An earned baccalaureate degree (or its equivalent) is required for admission. Each certificate program sets specific admissions criteria, including minimum grade point average and standardized test scores (including the Test of English as a Foreign Language, if required). Detailed information concerning admissions criteria and procedures can be obtained from the coordinator of the specific graduate certificate program or from the Graduate Admissions Office.

Other Non-Degree Categories

Individuals with appropriate preparation who have not been admitted to any of the admissions categories described above may take courses as non-degree students. All non-degree students are presumed to be taking courses for reasons other than earning a certificate, sixth-year diploma in professional education, or a graduate degree at this institution. Should they later be admitted to a graduate degree program at this University, usually not more than six credits will be acceptable toward the master’s degree. In any event, such credits accepted toward graduate degree must be of B (not B-) quality or higher. For further information, contact the College of Continuing Studies, One Bishop Circle, Unit 4056, Storrs, Connecticut 06269-4056.

Application Processing Fee*

A non-refundable fee of $55 for electronic submission or $75 for paper submission must accompany the application. It may not be applied toward other charges. This fee must accompany every application submitted except for a doctoral degree program to follow immediately a master's degree program in the same field at this University, or for re-application requested by the Dean. (Fees are subject to change without notice.)

Application Deadlines

Students are advised to file the application for admission several months in advance of the first semester of course work. Because many programs are filled far in advance of application deadlines, prospective students are encouraged to submit their applications for admission as early as possible. Applicants should check with appropriate academic departments concerning deadlines. All credentials, including official transcripts covering all undergraduate and graduate work taken up to the time of application, as well as the non-refundable processing fee, must also have been received by deadline dates.

International Applicants

Students who are not United States citizens or permanent resident aliens must meet additional requirements before their admission is finalized. They must present documentary evidence of their ability to meet all expenses for at least the first year of study and an acceptable plan for financing the remainder of their program. Students whose native language is not English must show evidence of proficiency in the English language by having earned either a computer-based score of at least 213 or a written score of at least 550 on the TOEFL (Test of English as a Foreign Language), or an overall band score of 6.5 on the IELTS (International English Language Testing System). Some departments require the Test of Spoken English (TSE) or the Test of Written English (TWE). All graduate students who will be serving as teaching assistants will be required to present evidence of competence in spoken English. This may take the form of a score of 50 or higher on the Test of Spoken English if the student’s native language is not English and if the student does not hold a degree from an anglophone college or university. Further information is available from the Graduate Admissions Office.

Application Forms and Instructions

With the exception of the programs listed below, application materials may be obtained by writing to the Graduate School, 438 Whitney Road Extension, Unit 1006, Storrs, Connecticut 06269-1006. The application may also be completed and filed electronically from the Graduate School’s Web site at <http://www.grad.uconn.edu>.

Inquiries regarding the Master of Business Administration should be addressed to the director of that program, School of Business, 2100 Hillside Road, Suite 238, Unit 1041-MBA, Storrs, Connecticut 06269-1041. Inquiries regarding graduate degree programs located at the University of Connecticut Health Center should be addressed to: University of Connecticut Health Center, Graduate Student Affairs Office, Room MC 3906, Farmington, Connecticut 06030. Inquiries regarding the Master of Social Work, should be directed to the School of Social Work, University of Connecticut, 1798 Asylum Avenue, West Hartford, Connecticut 06117-2698. Inquiries regarding study in Law should be directed to the School of Law, 55 Elizabeth Street, Hartford, Connecticut 06105-2296.

Supplementary and Departmental Transcripts

If a student is admitted before completing a baccalaureate or graduate degree or additional non-degree course work which is in progress at the time of application, admission is conditional on the completion of the degree or course work and the submission to the Graduate School by the end of the first semester of study of a satisfactory supplemental official transcript. A duplicate set of official transcripts of all work taken prior to the commencement of work in the Graduate School should be sent to the student’s major advisor. Until all transcripts have been received, the plan of study will not be approved. All transcripts submitted, including test scores, become the property of the Graduate School and are not returnable.
ADVISORY SYSTEM

Degree programs are planned by the advisory committee after consultation with the student. There is considerable flexibility in meeting special needs insofar as these are consistent with the regulations of the Graduate School. A degree program may entail course work in more than one field of study, but each program must include a coherent emphasis within one existing field of study and area of concentration, if applicable.

A major advisor must be appointed at the appropriate level by the Dean of the Graduate School, by authorization of the President of the University, to advise in a particular field of study or area of concentration. In applying for admission, an applicant may indicate a preference for a particular major advisor. If at the time of admission an applicant expresses no preference, or if the preferred advisor is unable to accept, another may be appointed. Since consistency of direction is important, a durable relationship between the student and advisor should be formed as early as possible. Occasionally, it may be desirable or appropriate for a student's degree program to be directed by co-major advisors (not more than two). Each co-major advisor must hold an appropriate appointment to the graduate faculty in the student's field of study and area of concentration (if applicable).

If a change of major advisor becomes necessary for any reason, the student must file a special form, bearing the signatures of the former advisor and the new advisor, with the Graduate School. The signature of the former major advisor is requested for informational purposes only. It does not, in any way, signify permission or consent on the part of the former major advisor.

If a major advisor decides that it is not possible to continue as a student's major advisor and wishes to resign, the Graduate School must be notified in writing as soon as possible. The student is then provided with a reasonable opportunity to arrange for a new major advisor. If a new major advisor is not identified within six weeks of the resignation of the former major advisor, the student's graduate degree program status is terminated. A student whose status has been terminated may request a hearing before the program status is terminated. A student whose status has been terminated may request a hearing before the program status is terminated. A student whose status has been terminated may request a hearing before the program status is terminated. A student whose status has been terminated may request a hearing before the program status is terminated.

The advisory committee of a master's degree program student is formed after consultation between the student and the major advisor and shall include at least two associate advisors with suitable academic or scientific credentials. The major advisor and at least one associate advisor shall be members of the graduate faculty appointed to advise doctoral students in the student's field of study and area of concentration, if applicable. In addition to the three or more members chosen in the usual way, another member, ordinarily a member of the graduate faculty outside the student's field of study but in a related field, may be appointed by the Dean of the Graduate School. If the committee consists of three members, committee decisions must be unanimous.

If the committee consists of four or more members, committee decisions are considered adopted if there be no more than one negative vote, although the major advisor must always vote in the affirmative. Committee decisions involving the outcome of the General Examination, approval of the dissertation proposal, oral defense of the dissertation, or approval of the dissertation itself, however, must be unanimous in any event.

A member of the University of Connecticut Graduate Faculty who has retired from active service may be considered for appointment as Major Advisor for a newly-admitted master's or doctoral student. Application is made to the Executive Committee of the Graduate Faculty Council and requires submission of a curriculum vita and letters of support as well as the endorsement of the appropriate department or program head. The retired faculty member must present substantial evidence of ongoing research and scholarly activity in the field. Separate application is required for each newly-admitted student for whom a retired faculty member wishes to serve as Major Advisor. Such appointments are made by the Dean with the advice of the Executive Committee.

A current graduate student may not serve as a member of another graduate student's advisory committee.

If deemed appropriate by a graduate student's major advisor, the major advisor may request that a suitably qualified external associate advisor be appointed to the student's advisory committee by writing to the Graduate School. The request should be accompanied by a curriculum vita for the individual being recommended for appointment. Such appointments are made on the basis of advanced training and significant experience in the field of study. An appointment as external associate advisor is limited to an individual student's advisory committee and does not imply in any way membership on the Graduate Faculty of the University. Ordinarily, not more than one external associate advisor is appointed to any master's or doctoral student's advisory committee. The major advisor and at least one associate advisor on any doctoral student's advisory committee must be members of the University of Connecticut Graduate Faculty.

The major advisor is responsible for coordinating the supervisory work of the advisory committee. Therefore, when the major advisor is to be on leave or is not in residence, it is the major advisor's responsibility to appoint an acting major advisor. The acting major advisor must be a member of the Graduate Faculty or be fully eligible for such an appointment. The acting major advisor will assume all duties and responsibilities of the major advisor for the duration of the appointment. The major advisor will inform the Graduate School of the appointment and provide any information that may be required concerning the credentials of the acting major advisor.

Students' advisory committees are responsible directly to the Dean of the Graduate School. For advisory committees of doctoral students, it is required that the written consent be obtained from the Graduate School before any changes are made in the membership of an advisory committee which has been duly established.
Fees and Expenses

The schedule of fees contained in this section is expected to prevail during the 2010-2011 academic year, but the Board of Trustees and the Board of Governors for Higher Education reserve the right, at any time, to authorize changes in fees and to establish new fees applicable to all currently enrolled students.

All fees are collected by the Office of the University Bursar in the Wilbur Cross Building. Fees pertaining to off-campus programs in social work and business administration are payable at those locations.

Fee bills, covering the semester’s charges, are computed by and are payable to the Office of the University Bursar no later than the tenth day of the semester (see “Graduate School Calendar”). Failure to make payment on time will result in cancellation of registration and any residence hall assignment. A graduate student may apply for a limited deferment of the payment date for a semester fee bill at the Deferment Office in the Wilbur Cross Building. Partial payment of fees is not accepted by the Bursar. A receipt for payment or evidence of an approved deferment is necessary to complete registration.

Financial Responsibility

Graduate students are permitted to register, to modify their course registrations without penalty, and to pay their fee bills or obtain deferments through the tenth day of the semester. Graduate students become liable for payment of tuition and other required course-related fees, however, beginning with the first day of classes of the semester or session whether or not they have attended any classes or have paid their fee bills as of that date.

Failure to receive a bill does not relieve a student of responsibility for payment of fees by the specified due date. A student who fails to make timely payment of an outstanding balance may be barred from all privileges normally accorded to a student in good standing. These include but are not limited to: advance registration (which if already completed will be subject to cancellation), registration, class attendance, advisement, dormitory room (for which any assignment will be cancelled), dining hall, library, infirmary, certification-of-status, and academic transcript privileges. Additionally, any pending University of Connecticut employment authorization may not receive approval or may be subject to cancellation. If there is a question concerning a bill, it is the student’s responsibility to contact directly the Office of the University Bursar for clarification and resolution.

If a graduate student does not meet his or her financial obligations to the University by the tenth day of a given semester or by the expiration date of an approved deferment, cancellation of the student’s registration and student privileges will result.

Application Processing Fee

A non-refundable fee of $55 for electronic submission or $75 for paper submission must accompany an application to the Graduate School. It may not be applied toward other charges. This fee must accompany every application submitted except for a doctoral degree program to follow immediately on a completed master’s degree program in the same field at this University, or for re-application requested by the Dean.

In-State and Out-Of-State Status

Each student must file an affidavit of residence with the application for admission to the Graduate School. A form for this purpose is provided as part of the application packet. On the basis of this information, each entering student is classified as either a Connecticut student or an out-of-state student. Failure to file the form will result in classification as out-of-state.

Questions concerning the classification of graduate students as resident (in-state) or non-resident (out-of-state) are resolved by the Graduate School. In the event that a student believes that he or she has been incorrectly classified, a request for a review, along with supporting documentary evidence, should be directed to the Graduate School.

Residents of other New England states enrolled in certain graduate degree programs may be eligible for special tuition rates through the New England Board of Higher Education Regional Student Program.

Bursar’s Office Website

Graduate students should refer to the Bursar’s Office Website at graduate students at http://www.bursar.uconn.edu/grad.html for current fee information, procedures, and policies pertaining to graduate students and graduate programs. Explanations of many of the fees, procedures, and policies found there are provided below.

Tuition

All graduate students – except in Summer Sessions programs and certain graduate programs conducted at centers away from Storrs – are subject to a tuition charge in addition to the other fees charged Connecticut, New England Regional Student Program, and out-of-state students.

Students who are classified as Connecticut residents pay tuition of $5,986 per semester if registering for nine or more credits. Students who are classified as out-of-state students pay tuition of $12,942 per semester for nine or more credits. Newly-entering students eligible for the New England Regional Student Program pay tuition at the rate of 175% of in-state tuition while continuing students eligible for the Regional Student Program who entered at the rate of 150% of in-state tuition pay that rate.

Tuition is pro-rated for students registering for fewer than nine credits per semester.

Tuition (but not the associated fees) is waived for graduate assistants. If an assistantship begins or terminates during the course of a semester, tuition will be prorated on a weekly schedule – charged for that portion of the semester when the assistantship is not in force, and waived when it is in force. This can result in either a partial tuition assessment (if the student is registered throughout the semester for tuition-bearing course work) or a partial refund (if tuition has been paid).

Additionally, tuition (but not the associated fees) is waived for certain groups of individuals. One of these groups includes any dependent child of a person whom the U.S. armed forces has declared either to be missing in action or to have been a prisoner of war while serving in the armed forces after January 1, 1960, provided that person was a resident of Connecticut at the time of entering the service of the armed forces of the United States or was a resident of Connecticut while so serving.

A second group includes any veteran having served in time of war, as defined in subsection (a) of section 27-103, or who served in either a combat or combat support role in the invasion of Grenada (from October 25, 1983 to December 15, 1983), the invasion of Panama (from December 20, 1989 to January 31, 1990), the peace-keeping mission in Lebanon (from September 29, 1982 to March 30, 1984), or Operation Earnest Will (escort of Kuwaiti oil tankers) (from February 1, 1987 to July 23, 1987), and is a resident of Connecticut at the time of acceptance for admission or readmission to the University. Eligible individuals should contact the Office of Student Financial Aid Services in the Wilbur Cross Building, Room 25, phone (860) 486-2819, for an application for the tuition waiver. Additional information on the Veterans Administration Educational Assistance and Training Waiver is located in the Financial Aid section of this Catalog.

The third group of individuals includes any person sixty-two years of age or older who has
been admitted into a degree-granting program or who wishes to take courses on a space available basis as a non-degree student. If any person who receives a tuition waiver in accordance with the provisions of this subsection also receives educational reimbursement from an employer, the waiver is reduced by the amount of the educational reimbursement.

General University Fee

The General University Fee is assessed each semester on the basis of the student’s course load status (part-time, half-time, or full-time) as determined by Graduate School policies. Students who are part-time are charged $204, while students who are half-time are charged $408, and full-time students are charged $612 per semester. Students paying this fee at any level have access to the Student Health Service.

Graduate Matriculation Fee

Each degree-seeking student under the jurisdiction of the Graduate School pays a Graduate Matriculation Fee of $42 per semester. This fee is payable regardless of the credit load or the campus of registration, and applies to students registering for Continuing Registration or other zero-credit courses as well. Graduate students who enter graduate school with more than six credits of advanced course work and apply it to their degree requirements are responsible for payment of the Graduate Matriculation Fee for those semester(s) in which the excess non-degree work was taken, unless the fee is waived by the Dean of the Graduate School.

Infrastructure Maintenance Fee

All full-time registered students are subject to an Infrastructure Maintenance Fee of $213 each semester, used to defray the operating and maintenance costs related to new capital projects funded by the UConn 2000 and UConn 21st Century initiatives. This fee is prorated for half-time and part-time students, as presented in the accompanying chart.

Graduate Activity Fee

A non-refundable fee of $13 per semester is charged all students taking courses at the Storrs campus. The proceeds from this fee are used by the Graduate Student Senate for its programs for graduate student welfare and recreation.

Student Transit Fee

Graduate students on the Storrs campus are charged a Transit Fee of $35 per semester. This fee supports the campus shuttle bus service.

Student Union Building Fee

Students pay a nonrefundable fee of $13 each semester to support the ongoing expansion and renovation of the Student Union.

Non-Credit Continuing Registration

Students not registering with the University for credit-bearing course work or other curricular offering in a given semester are required to maintain enrollment.

Semester Tuition and Fee Schedule for Graduate Students

<table>
<thead>
<tr>
<th>Course Credits</th>
<th>Tuition #</th>
<th>Fees</th>
<th>Totals #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In-State</td>
<td>Out-of-State</td>
<td>General University</td>
</tr>
<tr>
<td>Part-time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 *</td>
<td>$0</td>
<td>$0</td>
<td>$204</td>
</tr>
<tr>
<td>1</td>
<td>554</td>
<td>1,438</td>
<td>204</td>
</tr>
<tr>
<td>2</td>
<td>1,108</td>
<td>2,876</td>
<td>204</td>
</tr>
<tr>
<td>3</td>
<td>1,662</td>
<td>4,314</td>
<td>204</td>
</tr>
<tr>
<td>4</td>
<td>2,216</td>
<td>5,752</td>
<td>204</td>
</tr>
<tr>
<td>Half-time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2,770</td>
<td>7,190</td>
<td>408</td>
</tr>
<tr>
<td>6</td>
<td>3,324</td>
<td>8,628</td>
<td>408</td>
</tr>
<tr>
<td>7</td>
<td>3,878</td>
<td>10,066</td>
<td>408</td>
</tr>
<tr>
<td>8</td>
<td>4,432</td>
<td>11,504</td>
<td>408</td>
</tr>
<tr>
<td>Full-time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 or more</td>
<td>4,986</td>
<td>12,942</td>
<td>612</td>
</tr>
</tbody>
</table>

Newly-entering NEBHE Regional Student Program students pay tuition at the rate of 175% of in-state tuition. Continuing NEBHE Regional Student Program students who entered at the rate of 150% of in-state tuition pay that rate.

* Graduate non-credit registration only.

Important Notes:

1. Tuition (but not fees) for Graduate Assistants is waived, if the appointment is at the level of 50%-time (i.e., 10 hours per week) or greater.
2. All Graduate Assistants must pay the associated fees at the full-time rate and must register for a minimum of six credits of course work.
3. Students registered only for non-credit Continuing Registration (i.e., GRAD 5998, 5999, 6998, or 6999) or other zero-credit course pay the General University Fee at the part-time rate of $204/semester in addition to the Infrastructure Maintenance, the Graduate Matriculation, and the Student Union Building Fees.
4. Different course fees apply to the degree programs identified individually on the following page.
5. Other applicable fees and required deposits are added to student fee bills as appropriate.

Fees are subject to change at any time without notice.

2010-2011
a continuing registration in the Graduate School by registering for one of the Graduate School’s zero-credit Continuing Registration courses. These courses include GRAD 5998 for non-thesis master’s degree students, GRAD 5999 for thesis master’s degree students, GRAD 6998 for doctoral students not yet engaged in dissertation research or writing, and GRAD 6999 for doctoral students currently engaged in dissertation research or writing (see “Continuous Registration” under Registration). Students who register for the zero-credit Continuing Registration courses are considered to be part-time students. They pay the Graduate Matriculation Fee as well as the General University Fee and other fees at the part-time level, but they are ineligible for need-based or merit-based financial aid.

If a graduate student does not complete payment for his or her Continuing Registration course to the Office of the University Bursar by the first day of the semester, the registration is cancelled and a reinstatement fee of $65 may be assessed when the student is reactivated.

Deposit Account

A deposit of $50 must be maintained by every registered student. This deposit, less deductions for breakage, fines, medicines charged at the pharmacy of the Infirmary, and any other outstanding charges, will be refunded after the student leaves the University, either through graduation or other action.

Cooperative Bookstore Account

A one-time, refundable Cooperative Bookstore payment of $25 is required of all students, with the exception of Health Center students at Farmington, M.B.A. students at Hartford or Stamford, students registered solely for Summer Sessions, non-degree students, and students engaged exclusively in non-credit extension work. When students terminate their association with the University, the $25 Cooperative Bookstore Account will be refunded.

Off-Campus M.B.A. and M.S. in Accounting Course Fees

Students registering through the graduate programs offered by the School of Business at locations away from Storrs do not pay a tuition fee, but do pay a per-credit fee, with no maximum for the semester. Information concerning this fee is available from the program directors at each of the locations.

Stamford Educational Administration Graduate Program Fees

Students enrolled in graduate programs in Educational Administration at the Stamford Campus should obtain information concerning fees from the Bursar’s web site: <http://www.bursar.uconn.edu/html/grad.html>.

Master of Engineering Program Fees

Students enrolled in the M.Eng. program should obtain information concerning required fees from the director of the program.

Doctor of Physical Therapy Program Fees

Students enrolled in the D.P.T. program should obtain information concerning required fees from the director of the program.

Residence Hall Fee and Room Deposit

In 2010-2011, the basic fee charged students living in a residence hall is $3,401 per semester. Several on-campus options exist. Information about these options is available at <http://www.reslife.uconn.edu/>.

A room deposit of $140 is required to reserve a room in a graduate residence hall for the fall semester. The room deposit will be applied toward the room fee or the room cancellation charge only. Failure to remit this payment will result in cancellation of the room assignment.

Newly entering students applying for a room must pay the $140 room deposit within fifteen days of the date stamped at the top of the room application form enclosed with the notification of admission.

Board Fee

Graduate students living in a graduate residence hall may purchase meals on a cash basis at many on-campus locations at or at the guest rate in a University dining hall, or may choose to subscribe to a board plan in a University dining hall. The fee for the basic plan is $2,504 per semester.

Failure to pay the board fee as billed does not relieve the student of the financial obligation. If a student gives notice of cancellation to the Department of Residential Life, the student will be held responsible for payment of the board fee as indicated under “Refunds and Cancellations of Charges.”

Late Registration/Payment Fee

An accumulating penalty fee is charged students registering for credit courses through the University Registrar at the Storrs campus, the regional campus at Avery Point, and at the Health Center in Farmington who fail to complete initial course registration and to pay all due fees on or before the tenth day of classes of any semester (additions to and deletions from a student’s initial registration and payment of the resulting adjusted fee bill can occur freely through the end of the tenth business day of the semester).

This fee is $6 for each weekday (excluding Saturdays, Sundays, and legal State holidays) occurring after the tenth day of the semester that registration and payment have not been completed. Students granted a limited deferment by the Deferment Office (in the Wilbur Cross Building) are charged the late fee if they fail to meet any of the terms of the deferment. For these students, the fee begins to accumulate on the first business day following a deferment date. Students whose semester bills are only for Continuing Registration courses (GRAD 5998, 5999, 6998, or 6999) are not eligible for a deferment. This fee will accumulate to a maximum of $60, at which point the student’s registration may be cancelled. To become reinstated, the student must apply for reinstatement and pay a reinstatement fee of $65. The registration process has not been completed unless the student has either received a fee bill receipt from the Bursar or has been granted a limited deferment of the payment date of the semester fee bill by the Deferment Office.

Reinstatement Fee

Graduate School regulations require registration in each semester by all graduate degree program students. Students at the Storrs campus, at the Avery Point regional campus, the M.B.A. programs in Hartford and Stamford, or at the Health Center in Farmington who fail to complete initial course registration by the end of the tenth day of classes of any semester may be dropped from active status and to pay all due fees on or before the tenth day of classes of any semester (additions to and deletions from a student’s initial registration and payment of the resulting adjusted fee bill can occur freely through the end of the tenth business day of the semester). The reinstatement fee is added to a student’s bill along with any late registration/payment fee that has accrued.

A student who has an unpaid reinstatement fee is not allowed to register, have an official transcript
issued by the Registrar’s Office, obtain a deferment of any fee payment date, retain a key to a room in the Graduate Center, or use the services of the Babbidge Library. A student with an unpaid reinstatement fee is not considered to be in good standing by the Graduate School.

Applied Music Fee

Information concerning non-refundable fees for applied music instruction can be obtained from the Department of Music.

Summer Sessions Fees

The bulletin published by the Center for Continuing Studies, One Bishop Circle, Unit 4056, Storrs, Connecticut 06269-4056, should be consulted for information on these fees and payment.

Extension Fees

The bulletin published each semester by the Center for Continuing Studies, One Bishop Circle, Unit 4056, Storrs, Connecticut 06269-4056, should be consulted regarding fees and payment. Refunds and Cancellations of Charges

In order to be eligible for a refund or cancellation of charges, a student must officially drop all courses currently being taken.

The University grants a full refund of fees to any student dismissed for academic deficiency or other cause, provided that the dismissal takes place prior to the start of classes. In certain other instances, including illness, full refunds or cancellations of charges may be made at the discretion of the Dean of the Graduate School, provided that the interruption or termination of the student’s program takes place prior to the start of classes.

A student inducted into military service will receive a prorated refund or cancellation of charges based on his or her date of separation. The student in this situation must furnish the Office of the University Bursar with a copy of the orders to active duty, showing this to be the reason for leaving the University.

Refunds or cancellations of charges are available on the following schedule for students whose programs are interrupted or terminated prior to or during a regular academic semester. When notice is received prior to the first day of classes of a semester, full refund (less nonrefundable fees) will be made if the fees have been paid in full. Thereafter, refunds or cancellations of refundable charges will be made according to the following schedule:

- a) 1st week* 90%
- b) 2nd week* 60%
- c) 3rd and 4th week* 50%
- d) 5th week through 8th week* 25%

For graduate degree-seeking students who paid fees to the Center for Continuing Studies, refunds are governed by the above schedule.

Summary of Nonrefundable and Refundable Fees

Nonrefundable fees:
- Application Processing
- Late Registration/ Payment
- Reinstatement
- Room Deposit
- Student Union Building

Refundable fees:
- Tuition
- General University
- Graduate Activities
- Graduate Matriculation
- Infrastructure Maintenance
- Applied Music
- Audit
- Deposit Account balance
- Cooperative Bookstore Account balance
- Board
- Residence Hall
- Transit

Student Identification Card

Each newly entering student is furnished with personal identification card which is revalidated each semester upon full payment of applicable fee. Should the student’s card become lost or destroyed, a replacement fee of $15 is charged.

Students Attending Under Public Laws

Students attending the University for the first time under the auspices of the Veterans Administration must have a Certificate of Eligibility, which must be presented at the Office of Student Affairs prior to registration.

Completion Fees

The Graduate School requires submission of two copies of a master’s thesis or doctoral dissertation which become the property of the Homer Babbidge Library. Binding of these two copies is arranged by the Library. There is no charge to the student for the binding of the two final copies of a thesis or dissertation.

All doctoral dissertations are sent to ProQuest for microfilming. This is a requirement of the Graduate School. The student is required to pay ProQuest’s charge for the service, which at press time was $65 for traditional publishing or $160 for open access publishing (subject to change without notice). The master’s thesis is not microfilmed.

There is an additional and separate charge ($55 at press time; subject to change without notice) for the optional copyright of a doctoral dissertation.

Student Parking Fee

A parking fee is assessed to each student who has permission to park in University parking areas during the two semesters of the academic year. The fee is $43 per semester for commuting students and $55 per semester for students residing on-campus. (See “Parking of Student Cars”). The fee for graduate assistants is $44 per semester. In all cases, the parking fee is paid directly to Parking Services.

Bad Checks

A $25 fee is charged on any check returned by the bank for any reason.

Mandatory Student Health Insurance

All full-time students must have adequate insurance coverage for accidents and illnesses. Students who currently are covered by personal or family health insurance must present evidence of such coverage to the Student Health Service by filling out a waiver card. Students who fail to provide proof of coverage via submission of a waiver card will be enrolled automatically in the University sponsored plan and will be charged a premium on their student fee bills.

Full-time students should inform the Student Health Service whenever a change occurs in their health insurance coverage, including any termination of health insurance benefits provided to graduate assistants.

All non-immigrant international students will be required, at the time of registration, to show evidence of adequate insurance coverage for basic medical, major medical, and repatriation expenses. This requirement is a condition of admission and registration. International students should consult the Division of International Affairs, Department of International Services and Programs, regarding compliance with this requirement and assistance in enrolling in an approved insurance program, if necessary.

Study Abroad Supplemental Health Insur-
ASSISTANTSHIPS,
FELLOWSHIPS,
AND OTHER AID

The University of Connecticut has agreed to abide by the following resolution of the Council of Graduate Schools:

Acceptance of an offer of financial support (such as a graduate scholarship, fellowship, traineeship, or assistantship) for the next academic year by a prospective or enrolled graduate student completes an agreement that both student and graduate school expect to honor. In that context, the conditions affecting such offers and their acceptance must be defined carefully and understood by all parties.

Students are under no obligation to respond to offers of financial support prior to April 15; earlier deadlines for acceptance of such offers violate the intent of this Resolution. In those instances in which a student accepts an offer before April 15, and subsequently desires to withdraw that acceptance, the student may submit in writing a resignation of the appointment at any time through April 15. However, an acceptance given or left in force after April 15 commits the student not to accept another offer without first obtaining a written release from the institution to which a commitment has been made. Similarly, an offer by an institution after April 15 is conditional on presentation by the student of the written release from any previously accepted offer. It is further agreed by the institutions and organizations subscribing to the above Resolution that a copy of this Resolution should accompany every scholarship, fellowship, traineeship, and assistantship offer.

Support for graduate students engaged in full-time degree study at the University comes from a wide variety of sources. More than 1,500 graduate students hold graduate assistantships for teaching or research, and more than 1,000 fellowships and traineeships are available to properly qualified students. Any employment within the University is subject to terms of the funding source and to approval by the Dean.

All students holding fellowships awarded by the University are expected to maintain their enrollment in the program to which the fellowship applies. Transfer from one program to another or withdrawal from the University terminates the fellowship.

tance
Students choosing to study abroad through the University’s Office of Study Abroad may also be assessed an international health insurance premium that will cover them for the time period that they are abroad. This insurance is in addition to any other health insurance coverage that a student may have, including the university sponsored health insurance plan. Please call 486-5022 for further information or visit this website: <www.studyabroad.uconn.edu>.
Additional information regarding need-based financial aid for graduate students is available from the Office of Student Financial Aid Services at <http://financialaid.uconn.edu/index.php/Gradprocess>.

The following list of assistantships, fellowships, and other forms of aid includes only the major sources of support available to students at this University. Other sources may be available upon further inquiry.

Graduate Assistantships

Graduate School degree-seeking students and students in the program leading to the Sixth Year Diploma in Professional Education, who meet the criteria listed below, are eligible. Appointments ordinarily are made for the nine-month period, August 23 through May 22, but may be of shorter duration for a variety of reasons. Recipients usually serve the University as teaching assistants, readers, or laboratory and research assistants. They may take fewer than the usual number of courses per year because of this added workload.

To be appointed, to retain an appointment, or to be reappointed, a student must have been accorded Regular (not Provisional) status, must have been maintaining a cumulative average of at least B (3.00) in any course work taken, must be eligible to register (i.e., must not have more than three viable grades of Incomplete on his or her academic record), must be enrolled in a graduate degree program scheduled to extend through the entire period of the appointment or reappointment, and must be a full-time student, counting course work and/or its equivalent together with assistantship duties (see “Course Loads”), throughout the period.

The holder of a full assistantship devotes one-half of available time to studies and one-half (approximately 20 hours per week) to assistantship duties, while the holder of a half assistantship ordinarily devotes three-quarters of available time to studies and one-quarter (approximately 10 hours per week) to assistantship duties. Assistantships are not available for less than 10 hours per week.

Ordinarily, a graduate student is not permitted to earn more in a given academic year than the applicable maximum stipend rate indicated below. With the written recommendation of the student’s advisory committee and the consent of the Dean of the Graduate School, however, approval may be granted for a student’s earnings from University sources to exceed the maximum stipend rate by a limited and specified amount.

Since graduate assistants divide their full-time efforts between their studies and their assistantship responsibilities, ordinarily they may not hold concurrent employment outside the University. Stipend rates for graduate assistants are graduated in terms of progress toward the advanced degree and experience. Ordinarily, a graduate assistant may not exclude any part of the stipend from U.S. taxable federal gross income. The rates for nine months in effect at press time follow:

I. $19,383 for graduate assistants with at least the baccalaureate.

II. $20,396 for experienced graduate assistants in a doctoral program with at least the master’s degree or its equivalent in the field of graduate study. Equivalency consists of twenty-four credits of appropriate course work beyond the baccalaureate completed at the University of Connecticut, together with admission to a doctoral program.

III. $22,676 for students with experience as graduate assistants who have at least the master’s degree or its equivalent and who have passed the doctoral general examination.

Tuition (but not the General University Fee, the Graduate Matriculation Fee, or other fees) is waived for Graduate Assistants. (See “Tuition,” for possible proration.) If an assistantship begins or terminates during the course of a semester, tuition will be prorated on a weekly schedule—charged for that portion of the semester when the assistantship is not in force, waived when it is in force. This often results in an adjustment of the tuition charges, including partial assessment (if the student is registered throughout the semester for course work for which tuition is charged) or a partial refund (if tuition has been paid).

A graduate assistant is eligible for health insurance. Graduate assistants should be aware that it is necessary to complete the proper forms to activate the health insurance. The health insurance does not take effect automatically.

In exceptional cases a graduate assistant may be appointed on a twelve-month basis, with the stipend being increased proportionately. There are, however, no additional benefits or waiver of tuition in the summer months.

When students become eligible for the Level II or Level III stipend rate, it is the responsibility of their department to request such an increase promptly, by filing a new employment authorization effective the first day of the biweekly payroll period following the date on which the student completes master’s degree requirements (or satisfies master’s degree equivalency) or the date on which the student passes the doctoral General Examination in its entirety. Students are responsible for ascertaining that any required documentation—such as a report of a master’s final or doctoral general examination, a transcript, or a report of a pertinent Incomplete grade made up— is promptly filed with the Graduate School and that their current stipend conforms with their eligibility.Tuition Assistance

Program for Out-of-State Master’s Degree Students

This program provides tuition assistance for selected students, who are classified as out-of-state for tuition purposes, in terminal master’s degree tracks. A limited number of tuition grants are awarded each year on a competitive basis to out-of-state master’s students. These grants permit the selected students, in effect, to pay tuition at the in-state rate. The selection criteria for these grants include: full-time matriculation in a master’s degree program that ordinarily does not lead to the doctorate, absence of graduate assistantship support (which carries with it a tuition waiver), out-of-state residency status, evidence of academic excellence (based on grade point averages, test scores, etc.), and U.S. citizen or permanent resident status. Each student chosen for participation in this program is eligible for a maximum of four semesters of support. This program is administered by the Graduate School. Students are nominated by faculty members in terminal-track master’s degree programs.

University Predoctoral Fellowships

These are awarded by the Graduate School on the recommendation of the graduate faculty in the degree program concerned. Students who intend to earn the D.M.A. or Ph.D. and who have demonstrated capability for completing a doctoral program may apply to their academic departments for such fellowships at any stage of their graduate career. Award amounts range from small amounts to full fellowships and/or tuition equivalency. Fellowship awards do not include the requirement of teaching, research, or any other service duties and are not considered to be employment. Predoctoral Fellows must be Regular (not Provisional), full-time students, regardless of the amount of the fellowship. Recipients must present evidence of such registration and payment or deferral of appropriate fees upon receipt of fellowship checks. The Dean of the Graduate School may cancel or reduce an individual award if the student fails to maintain satisfactory academic and financial standing.

Doctoral Dissertation Fellowships

Funding may be available during the academic year to support the Doctoral Dissertation Fellowship program, which is designed to assist advanced D.M.A. Ph.D. students to complete their dissertations. Minimum eligibility requirements include having passed the doctoral general examination, having a fully approved dissertation proposal on file with the Graduate School, and not exceeding certain annual income limits. The amount of the fellowship is $2,000, and the fellowships are “one-time only”
awards. Awards are made via announced competitions having specific application deadlines. The number
of fellowships and the frequency of competitions are limited and contingent upon the availability of funding.
Inquiries may be directed to Thomas Peters, Program Director, Unit 1006, Whetten Graduate Center, room
208, Storrs, Connecticut 06269-1152; telephone (860) 486-0977; e-mail <thomas.b.peters@uconn.edu>.

Doctoral Dissertation Extraordinary Expense Award

D.M.A. and Ph.D. students who have passed the general examination and whose dissertation proposal
has been fully and officially approved may apply for up to $500 for certain non-routine expenses
directly related to data collection and analysis for the dissertation. Application may be made at any
time. Awards are contingent upon the availability of funding. Inquiries may be directed to Thomas Peters,
Program Director, Unit 1006, Whetten Graduate Center, room 208, Storrs, Connecticut 06269-1006;
telephone (860) 486-0977; e-mail <thomas.b.peters@uconn.edu>.

Summer Fellowships for Doctoral and Pre-
Doctoral Students

Students pursuing the D.M.A. or Ph.D. degree are eligible, upon nomination by department heads, for up to $1,500
during the summer for the general examination or dissertation research. Information is available from
department and program heads in March of each year.

Part-time Employment

Federal Work-Study (FWS) is a federally funded financial aid work program for students with a
demonstrated financial need, as determined by information submitted on the FAFSA. Unlike other forms of aid, a Federal Work-Study award is not applied to a student’s fee bill. Students receive bi-weekly
paychecks for hours worked.
The Student Labor Program is a work program open to all University of Connecticut students and
designed to supplement regular staff with students seeking part-time employment.
The Office of Student Financial Aid Services advertises available positions on their website: <www.
studentjobs.uconn.edu>. Students are prompted to select the category their job choice(s) and are provided
with a list of supervisors seeking candidates for those jobs. Students then arrange interviews with
prospective employers to discuss the details of the job.

Federal Loan Programs

Federal Stafford Loans (FSLs) are offered to students attending the University at least half-time. Subsidized
FSLs are based on financial need; the interest on these loans is subsidized by the federal government. If a student
does not qualify for a subsidized FSL, he or she may borrow an unsubsidized FSL. The student is responsible
for the interest which accrues on the loan, and has the option to either pay the interest while in school or defer
payment of the interest until repayment begins, six months following graduation.

Annual loan limits for eligible graduate students are:
$8,500 in Subsidized FSL and $10,000 in Unsubsidized FSL per academic year. After July 1, 2007, the unsubsidized
loan limit for graduate students was increased to $12,000. The maximum aggregate FSL (Subsidized and
Unsubsidized) amount a graduate student may hold is $138,500.

An excellent, detailed source of information regarding federal aid programs and the financial aid process is

An excellent, detailed source of information regarding federal aid programs and the financial aid process is

Graduate Student Senate Short-Term Loan Fund

This fund is administered by the Graduate Student Senate (GSS), and is generated by graduate student
activities fees. It provides loans of up to $500 to assist graduate students in dealing with financial
emergencies. Loans are issued for 60-day periods and are interest free. Borrowers are urged to repay
these loans on time so that other students in need can be accommodated. Applications are available
in the Graduate Student Senate Office, Room 318, Whetten Graduate Center and online at the GSS Web
site <http://www.grad.uconn.edu/~wwwgss>.

International Students

Before their admission is complete and a student visa can be issued, non-immigrant international
students must present documentary evidence of their ability to meet all expenses for at least the first
year of study, together with an acceptable plan for financing the remainder of their program. Interna-
tional applicants are not eligible for need-based financial aid.

Grants providing tuition and the general University fee are available to a small number of international
students who are sponsored by certain organizations (e.g., ATLAS and LASPAU) recognized by the
Graduate School as being devoted to the promotion of advanced education programs and with which
the University has a standing agreement.

Veterans Administration Educational Assistance
& Tuition Waiver Program

The Office of Student Financial Aid Services provides information concerning benefits under the various educational assistance programs pro-
vided by the Veterans Administration. Students who attend the University and receive educational assistance under the following chapters
must contact the Office of Student Financial Aid Services prior to the beginning of each semester:
Chapter 31 (Vocational Rehabilitation Training Act for Disabled Veterans); Chapter 32 (Post-Viet-
nam Veterans Educational Assistance); Chapter 35 (Dependents Educational Assistance Act; child-
en, wives, and widows of totally disabled and deceased veterans - service connected deaths);
Chapter 1606 (Montgomery G.I. Bill – Selected Reserve); Chapter 30 (Montgomery G.I. Bill – Active Duty). Veterans must notify the University every semester of their registration for certification of enrollment. Any changes in veteran status (credit load, withdrawal, etc.) must also be reported promptly to the University.

Additionally, veterans may qualify for a tuition waiver under the State of Connecticut tuition waiver program. Veterans must provide a form
DD214 (separation of service) and must be recognized as a resident of Connecticut at the time of admission or re-admission to the University. Please see the tuition waiver criteria in the “Fees and Expenses” section of the catalog.

Veterans seeking tuition waiver applications or assistance should contact the Office of Student Financial Aid Services, 233 Glenbrook Rd., U-4116,
Wilbur Cross Building room 102, Storrs, Connecticut 06269-4116 or call (860) 486-2442
Named Graduate School Fellowships

The Graduate School offers two fellowships, in cooperation with participating academic depart-
ments, which are available to eligible students. These fellowships are supported jointly by Special Graduate Student Fellowship funds from the
Graduate School and a 50% Graduate Assistantship from the department with which the recipi-
ent is affiliated. Only one student holds each fellowship at any given time, renewable annually,
and the fellowship may not be held by the same person for more than two years. Candidates for
these fellowships may be recommended to the Dean of the Graduate School by any graduate fac-
ulty member. These recommendations must be endorsed by the appropriate department head.

1) The Prudence Crandall Graduate School Fel-
lowship honors Miss Crandall’s contributions to the education of African-American youth in
nineteenth century America.

2) The Rafael Cordero Graduate School Fellowship
honors Maestro Cordero’s contributions to educa-
tion in nineteenth century Puerto Rico.
Multicultural Scholars Program

The Graduate School and the Provost’s Office have established a fund for the promotion of diversity within graduate education. This program functions to promote the recruitment and retention of diverse populations of graduate students by matching the funding support provided by schools, departments, or fields of study. Students are nominated by the graduate program to which they are applying. There is no application form. Eligibility for support is based on the student’s academic qualifications, U.S. citizen or permanent resident status, and the demonstrated need for increased cultural diversity within the field of study.

Outstanding Scholars Program

The Graduate School and participating academic departments and programs offer a number of fellowships for new outstanding graduate students pursuing study at (or through) the doctoral level. Each award includes a stipend of $9,500 for the academic year plus $2,000 for summer support, provided by The Graduate School, and a half graduate assistantship for each of the fall and spring semesters, which is provided by the department or program. The award is renewable for two additional years (a total period of three years). There is no application form. Each doctoral field of study should recommend as early in the recruiting year as possible applicants who intend to commence graduate study in the following fall semester.

The Thomas G. Giolas Fellowship Fund

The Thomas G. Giolas Fellowship Fund was established as a permanent endowment fund held by the University of Connecticut Foundation in honor of father and husband, Thomas G. Giolas, Dean Emeritus of the Graduate School. This fund will provide scholarship support for an incoming or continuing graduate student enrolled full-time at the University of Connecticut’s Graduate School. The award shall be given annually to a student who demonstrates high academic achievement in their field of study. The scholarship(s) may be renewed annually to the recipient(s) provided satisfactory academic progress is achieved.

Awards are available in the areas of study listed alphabetically below. Availability and terms of the following awards are subject to change at any time without notice.

Aid for Graduate Students in Specific Disciplines or Areas

Awards are available in the areas of study listed alphabetically below. Availability and terms of the following awards are subject to change at any time without notice.

Agricultural and Resource Economics

Several graduate research assistantships in food marketing, resource economics, and international agricultural development are available. Application is made to the Department of Agricultural and Resource Economics, Unit 4021, Storrs, Connecticut 06269-4021.

Allied Health

The Frederick G. Adams Scholarship was established by the faculty of the Department of Allied Health Sciences to honor their first Dean, Frederick G. Adams, D.D.S., with continuing support from his family and friends as a memorial. Awards in varying amounts are made to undergraduate and graduate students enrolled in the School of Allied Health who have emergency needs which can be met in no other way. Application is made to the College of Agriculture and Natural Resources at <www.myagnr.uconn.edu>.

The Dr. James P. Cornish Scholarship was established by the Cornish family in memory of the late Dr. Cornish. The $500 scholarship is awarded annually to a graduate student in the Department of Allied Health Sciences who demonstrates leadership potential, warmth and humor, creativity and innovation, commitment to lifelong learning and service, and dedication to the values of multiculturalism and diversity. Application is made to the College of Agriculture and Natural Resources at <www.myagnr.uconn.edu>.

Animal Science

Graduate research assistantships from various sources, including federal grants as well as business and industry, are available. Applications are processed through the Graduate School. Requests for financial aid upon admission are considered during the review of applications. Ordinarily, students are nominated for support by their major advisors. Assistantships and scholarships are awarded competitively on the basis of academic and scholarly achievement as well as the potential for future academic and professional accomplishments.

Art
(See “Fine Arts.”)

Biomedical Sciences

Graduate assistantships for qualified incoming and current students are available. Recipients must be full-time students and work with faculty advisors at the Health Center. Awards include assistantship stipend, waiver of tuition, and health insurance (additional funds are available for travel to scientific conferences). Current students apply to the Graduate Programs Committee at the Health Center. Incoming students are recommended for this award by the Biomedical Admissions Committee. Students applying for admission and assistantship consideration to commence study in the following fall semester should apply by December 15.

Business Administration

The T. K. Lindsay Scholarship is an annual award established by the Connecticut Bank and Trust Company in honor of Professor Tamlin K. Lindsay to be given to an outstanding undergraduate or graduate student in the School of Business. Criteria for selection include high scholastic achievement, professional promise, participation in University activities, and financial need. Candidates are chosen by a Scholarship Committee chaired by the dean of the School of Business.

Chemistry

The Charles E. Waring Memorial Scholarship is awarded each year to an outstanding graduate student in chemistry. The recipient is selected from among those students who have completed two or three semesters of graduate study and who have qualified for admission to the Ph.D. program. This $250 award is given on the basis of progress in course work and research. There is no application.

Civil Engineering

The Narasimha Rao Adidam Memorial Scholarship was established by Dr. and Mrs. Adidam S. R. Sai of Kanpur, India in memory of their son, Naren. The award is presented annually to a full-time graduate student in Civil Engineering who is pursuing studies related to structures/applied mechanics. Preference is given to students with financial need who best exhibit the qualities of personal integrity and intelligence, the research aptitude, the academic performance and the understanding of multicultural values as personified by Narasimha Rao Adidam. Nominations are solicited from faculty members by the Civil Engineering Awards Committee in March.

The Edson B. Gerks Award recognizes an undergraduate or graduate student interested in Transportation Engineering who shows outstanding promise. The award is administered through the Department of Civil and Environmental Engineering.

The New England University Transportation Center Fellowship for Transportation Studies offers a stipend of up to $5,000 per semester (in addition to a 50%-time graduate assistantship) for full-time graduate study in Civil Engineering with emphasis in one or more of the following areas: transportation management, policy, or operations. Expressions of interest should be forwarded to Unit 2037, Storrs, Connecticut 06269-2037 as soon as possible after admission to graduate study.

Communication Sciences

The Department of Communication Sciences has a number of stipends available to qualified graduate students enrolling in the Master’s program in Communication. In addition, aid is available to students enrolling in the Ph.D. programs in Communication Processes and Marketing Communication and in Speech, Language, and Hearing.

Computer Applications and Research

The Taylor L. Booth Engineering Center for Advanced Technology (BECAT) provides a limited number of graduate assistantships. The major responsibilities for these positions are: assisting the technical staff in setting up and maintaining networked research laboratories and supercomputing facilities with PCs and workstations; providing support for technical seminars and short courses on available facilities and software systems; and assisting users with system usage and software problems. Application is made to the BECAT, Unit 2031, Storrs, Connecticut 06269-2031.
is made on the basis of demonstrated talent, contributions to departmental productions, and professional promise.

The Valerie M. Schor Memorial Scholarship is in memory of Professor Schor, who taught Dramatic Arts from 1970-1993. Awarded annually to undergraduate or graduate students majoring in acting.

The Special Dramatic Arts Award for Excellence is given to an undergraduate or graduate student in Dramatic Arts on the basis of outstanding academic and artistic accomplishment.

The United Bank and Trust Company Scholarship is awarded on the recommendation of the faculty of the department to a talented student in either the design/technical or performance areas.

The George B. Wallis III Award is presented at the end of the theatre season to a student judged by the faculty of the department to be the best actor or actress, with emphasis on talent and dramatic ability.

Ecology and Evolutionary Biology

The Ronald Bamford Fund provides a small research grant in the area of botany to be awarded to graduate students in the Department of Ecology and Evolutionary Biology for visits to collections, field work, supplies, or other expenses directly related to research. Application is made to the Department Head, Ecology and Evolutionary Biology, Unit 3043, Storrs, Connecticut 06269-3043.

Several endowed funds provide small research grants in various research areas that are awarded to graduate students in the Department of Ecology and Evolutionary Biology for travel to scientific meetings, visits to collections, field work, supplies, or other expenses directly related to research. The endowed funds and research areas are: Henry N. Andrews Fund (botany), Alfred Hunyadi Fund (forestry), Jerald Manter Fund (ornithology), Lawrence R. Penner Fund (parasitology and invertebrate zoology), James A. Slater Fund (entomology), Francis R. Trainor Fund (aquatic ecology), and the Ralph M. Wetzel Fund (vertebrate biology). Application is made to the Department Head, Ecology and Evolutionary Biology, Unit 3043, Storrs, Connecticut 06269-3043. Deadlines are variable but often have been February 15.

Economics

The Audrey P. Beck scholarship is shared between Economics and Political Science. A stipend of $500 (or more, depending on endowment return) is awarded to a student with an interest in a career in public policy. Criteria for the award include career potential, academic achievement, character, breadth of interests, and need.

The W. Harrison Carter Award is given each fall to a graduate student judged to be the best teaching assistant in the Department of Economics. The award was established in memory of W. Harrison Carter, Professor of Economics from 1931 to 1966 and former Dean of the College of Liberal Arts and Sciences.

The Abraham Ribicoff Graduate Fellowship for the Study of Economic Policy is awarded to an outstanding graduate student in Economics. The student must be a Connecticut resident with a strong academic record and must have a primary interest in the application of economic analysis to the formulation and implementation of state and national economic policies. Students are nominated by members of the faculty.

The Albert E. Waugh Scholarship in Economics provides an annual award to a graduate student interested in pursuing a career in teaching economics. This award was established in memory of a former professor of economics, Dean and Provost at the University from 1924 to 1965.

Education

The Neag School of Education has numerous scholarships available. Information regarding these scholarships can be found on the Internet at the following website: <www.education.uconn.edu/students/scholarships>.

Engineering

The AI Geib Graduate Fellowship is a supplemental fellowship to encourage top entering graduate students to conduct research on an environmental, sustained development topic. Preference is given to University of Connecticut graduates and to Connecticut residents. One or two awards may be given each year. Nominations are made through department heads and graduate field of study coordinators to the Dean of Engineering. The deadline for nominations is mid-February.

The Harold Torgersen Fellowship provides financial assistance to a graduate student in the engineering fields. Preference is given to B.S. graduates of the University of Connecticut. Nominations are made to the Dean of Engineering by the appropriate Engineering Department Head.

English

The Aetna Graduate Creative Nonfiction Prize provides one or more cash awards from the Aetna Foundation for an outstanding nonfiction essay.

The Aetna Graduate Critical Essay Prize is a $400 award from the Aetna Foundation. Second, third, and honorable mentions may be awarded. Any essay or dissertation chapter which has not yet been accepted for publication is eligible.

The Wallace Stevens Award for Poetry is offered in the spring semester. There are three prize awards. Undergraduate and graduate students are eligible. The award involves a brochure publication and a public reading.

Finance

The Stephen D. Messner/School of Business Administration Scholarship and Fund provide support for undergraduate and graduate students in the areas of real estate and finance. Application is made either through the Real Estate Center or the Head of the Finance Department. There is no application deadline.

The Hartford Society of Financial Analysts’ Scholarship is awarded under the auspices of the
University of Connecticut Foundation. One or more scholarships of $200 to $500 are awarded each Spring semester to outstanding students enrolled in the master's degree program in the School of Business Administration. This scholarship is made available by the Hartford Society of Financial Analysts. Application is made to The Department of Finance, Unit 1041F, Storrs, Connecticut 06269-1041. The application deadline is March 1.

Fine Arts

The Dean Jerome M. Birdman Scholarship is awarded annually to an undergraduate or graduate student in each of the departments of the School of Fine Arts. Criteria include academic distinction and professional promise. Awards are made by the dean of the school in consultation with department heads.

The William Brand Scholarship is awarded to an undergraduate or graduate student in the School of Fine Arts. The scholarship committee selects recipients based on past academic achievement and demonstration of potential for future academic and professional accomplishments. The scholarship is presented alternately to a student from each department.

The Jan Keiley Scottron Scholarship is awarded to an undergraduate or graduate student in the School of Fine Arts. The Scholarship Committee selects recipients who meet the following criteria: (1) senior student or graduate student standing with a major in puppetry or musical stage (e.g., opera), (2) demonstrated financial need, and (3) demonstrated academic achievement.

The Rhoda Shivers Memorial Award in the Arts is awarded to an undergraduate or graduate student in the School of Fine Arts. The Scholarship Committee selects recipients based on past academic achievement, demonstration of potential for future academic and professional accomplishments, and on financial need. The scholarship is presented alternately to a student from each department (Art, Dramatic Arts, and Music).

Geography

Graduate teaching and research assistantship awards for qualified incoming and current students are available. Recipients must be full-time students and work with faculty advisors. Awards include assistantship stipend, tuition waiver, and health insurance options. Incoming and current full-time students who request graduate assistantships are considered for this award based on their academic standing and interest in geographic education.

A departmental fund provides small grants to graduate students in the Department of Geography for presentations at scholarly meetings. Students in good academic standing who are participating in a scholarly meeting may apply to the Department Head for funding.

Geological Sciences

The Andrew J. Nawalk Memorial Award is given to a continuing graduate student demonstrating independent scholarship in geology, marine geology, or physical oceanography. Selection of the recipient is coordinated by the Department of Geological Sciences and the Department of Marine Sciences. The award was established by family and friends of the former professor of geology at the Marine Sciences Institute.

Health Care Management

The Programs in Health Care Management and Insurance Studies offers a number of scholarships on an annual basis to qualified M.B.A. students concentrating in healthcare management and insurance studies. Graduate assistantships also are offered, contingent upon the availability of funding.

Please check with the Health Care Management Program at <healthcare@business.uconn.edu> or call (860) 486-4122 to obtain additional information.

History

The James M. Bozutto Fellowship has been established in association with the Emiliana Pasca Noether Chair in Modern Italian History. It is named in memory of Mr. Bozutto, whose family generously contributed to the Chair’s endowment. The Fellowship is awarded to a graduate student of exceptional promise to undertake advanced study leading to the Ph.D. with an emphasis in Italian political, social, economic or cultural history since 1750 or with an emphasis in comparative European history in the same period that bears substantially on Italy (including emigration). Recipients of this fellowship shall be selected by the Admissions and Financial Aid Committee of the Department of History in conjunction with the holder of the Noether Chair.

The department annually awards the James L. and Shirley A. Draper Dissertation Fellowship in Early American History to an outstanding qualified Ph.D. student. The fellowship allows for a full-year of dissertation research in the student’s fourth year of study provided the student has passed the Ph.D. General Examination. The recipient is selected by the Department of History Admissions and Financial Aid Committee in conjunction with the holder of the James L. and Shirley A. Draper Chair in American History.

The Michael Dunphy Award is given annually to a graduate student with a strong interest in American government, society, history, or culture. Outstanding intellectual ability and financial need must be demonstrated. The History Department shares this award with Sociology and Political Science. The Department of History will name the winner in 2010, 2013, etc. Students are nominated by faculty members.

The Harry J. Marks Fellowship is awarded to a superior graduate student and, when appropriate, with priority given to one with a special interest in European social and intellectual history and who is returning to pursue an advanced degree while, or after, working as a high school teacher. The fellowship is named in honor of a late colleague who was esteemed for his teaching and intellectual vitality. Recipients of this fellowship shall be selected by the Department of History Prize Committee.

The Albert E. and Wilda E. Van Dusen Scholarship has been established through the generous gift of the late Professor Van Dusen and his wife, Wilda. An annual scholarship is awarded to a graduate student in history who has completed at least nine credits of work, has demonstrated financial need, and ranks in the top one-quarter of graduate students in history. The selection of the recipient is made by the Department of History Prize Committee.

Also awarded annually are the James L. and Shirley A. Draper Summer Fellowship in Early American History, the Hugh M. Hamill Graduate Fellowship in Latin American History, the Thomas G. Paterson Graduate Fellowship in the History of U.S. Foreign Relations, and the Bruce M. and Sondra Astor Stave Prize in Recent American History to an outstanding graduate student in each of the four areas. Recipients are selected by the Department of History Admissions and Financial Aid Committee or its Prize Committee.

Home Economics Education

The Merrilyn Niederwerfer 58 Cummings Award in Home Economics Graduate Education is granted to a graduate student in home economics education who is dedicated to a career in extension, secondary, or university education and who has shown promise and leadership in these fields. The $400 award is made available by the Frank Niederwerfer Family Fund.
For more information contact Dr. Mary Anne Doyle, Unit 2033, 249 Glenbrook Road, Storrs, Connecticut 06269-2033.

Judaic Studies

Students interested in obtaining further scholarship information should contact the Center for Judaic Studies and Contemporary Jewish Life, Unit 1205, (860) 486-2271.

Students interested in obtaining further scholarship information should contact the Center for Judaic Studies and Contemporary Jewish Life, Unit 1205, (860) 486-2271.

The Harold J. Arkava Scholarship is named in honor of Harold J. Arkava. Awarded to student(s) in the Center for Judaic Studies and Contemporary Jewish Life, with preference given to those students studying the Holocaust. Priority is given to graduate students but undergraduates may apply. Number of awards and amounts to vary.

The Cohen and Henes Scholarship was established by Stephen I. Cohen, Class of 1965, and Robert L. Cohen, Class of 1967, in honor of their late grandparents, Isadore and Dora Cohen, and Samuel and Rebecca Henes of Waterbury, who came to the United States from Czarist Russia in the 1890’s and who valued highly the qualities represented by this scholarship. Awarded to one or more students with an academic concentration in Judaic Studies on the basis of scholarship, financial need, high moral and ethical character, demonstrated commitment to community service. Number of awards and amounts to vary.

The Winkler Israel Study Award is awarded to a student attending a college or a university in Israel in a program administered by the Study Abroad Office. Number of awards and amounts to vary.

Latin American and Caribbean Studies

The Center for Latin American and Caribbean Studies has a limited number of graduate assistantships and predoctoral fellowships to award to qualified master’s students planning to enter doctoral programs. The Nathan L. Whetten Fellowship (which carries a small stipend) is awarded to the most outstanding doctoral student in any discipline with a concentration in Latin American Studies.

The Center also awards the Robert G. Mead, Jr. Fellowship to the best first-year M.A. student specializing in Latin America.

All fellowships are awarded on the basis of merit. Deadline for application is February 1st. Financial aid decisions are made only in the spring.

Application forms and further information are available from the Center for Latin American and Caribbean Studies, 2006 Hillside Road, Unit 1161, Storrs, Connecticut 06269-1161; telephone (860) 486-4964; Web <www.clas.uconn.edu>.

Marine Science

The S.Y. Feng Marine Sciences Student Activities Fund provides small research grants that are awarded to graduate students in the Department of Marine Sciences for travel to scientific meetings, field work, supplies and other expenses directly related to research. The Fund was established by family and friends of the founding Head of Marine Sciences. Selection of recipients is made throughout the year by a committee of faculty members in the department.

The S.Y. Feng Memorial Scholarship Fund provides financial support for graduate students in the field of Oceanography. Awards to support coursework associated with the student’s degree program are made throughout the year; recipients are selected by a committee of department of faculty members.

The William A. Lund, Jr. Fellowship provides support to graduate students enrolled full-time or part-time in the Department of Marine Sciences. Selection of recipients is made throughout the year by a committee of faculty members in marine sciences. Priority consideration is given to students demonstrating potential to submit work for publication.

The Northeast Utilities Marine Sciences Fund provides support for development of programs to encourage participation and retention of women and under-represented groups in environmental marine sciences. The Northeast Utilities Predoctoral Scholarship in Marine Sciences provides a Graduate Research Assistantship and summer stipend for one year to incoming or enrolled eligible students in Marine Sciences. One award is made each academic year, with the recipient to be selected by a committee of department faculty members.

The Marine Sciences Research & Outreach Fund provides support for graduate student research activities utilizing the R/V Lowell Weicker, a 36-foot research vessel in the department’s fleet. Recipients are selected based on short proposals reviewed by a committee of department faculty members.

(See also “Andrew J. Navalkar Memorial Award” under Geological Sciences.)

Mathematics

A certain proportion of graduate students receive financial support as teaching assistants. International applicants must have matriculated from an English-speaking university or have taken the IELTS with a score of at least 6.5 or have taken the TOEFL with a score of at least 600 to be eligible for financial aid for the first year of graduate study. In addition, there are some computer support and math Q Center tutoring positions available. Supplemental fellowships are available to qualified applicants. Summer teaching opportunities are sometimes available, and advanced students are given research fellowships for one summer.

Under an agreement with Aetna and Hartford Life Insurance Companies, actuarial graduate students are eligible for internships that emphasize both practical experience and more theoretical research.

The Louis J. DeLuca Award was established in memory of the former Associate Dean of the College of Liberal Arts and Sciences and Professor of Mathematics, who was a recipient of the University of Connecticut Alumni Association’s Award for Excellence in Teaching. The fellowship is awarded each year to an outstanding graduate teaching assistant on the basis of teaching performance and academic achievement.

Medieval Studies

The Fred Cazel Fellowship is an annual award open to graduate students in Medieval Studies, especially those whose primary field is history.

Music

(See also “Fine Arts.”) The Victor Borge Scholarships are awarded in varying amounts to deserving School of Fine Arts students.

The Annie and Wilma Elias Memorial Scholarship was established through the generosity of Julius Elias in memory of his wife Wilma and his mother Annie. The scholarship is awarded annually to students who have been accepted into a program of study leading to a degree in music. Recipients are chosen based on past academic achievement and demonstration of future academic and professional accomplishments.

Financial need may be a criterion but is not a determining factor. Two or more scholarships of a minimum of $500 are available.

The Herbert A. France Music Scholarship is awarded under the auspices of the University of Connecticut Foundation to a junior, senior, or graduate student whose primary interest is conducting. This fund was established by a gift from Mrs. Olive France.

The Alice Murray Heilig Graduate Assistantship in Piano is offered. To be eligible for this assistantship, candidates must meet the following criteria: (1) full-time enrollment in the M.M., M.A., D.M.A. or Ph.D. program in the Department, (2) demonstrated promise as a pianist, and (3) demonstrated academic excellence. Recipients are selected by the Head of the Department in consultation with the Department’s faculty.

The Charles, Alice (Murray), and Cheryl A. Heilig Scholarship is awarded annually. Priority is given to undergraduates, but the scholarship may be awarded to a graduate student who meets the standards set by the Scholarship Committee of the Department of Music.
The Minnie Helen Hicks Scholarship is awarded annually to one or more students in Music. Preference is given to residents of Connecticut. The basis for selection includes financial need and musical ability.

The Mae K. Kaplitz Memorial Scholarship Fund was established by Paul Kaplitz in memory of his wife, Mae K. Kaplitz. Awarded annually to students with financial need who are majoring in vocal performance and are outstanding contributors to University choral organizations.

The Musical Club of Hartford, Inc. – Evelyn Bonar Storrs Piano Scholarship is awarded to a talented graduate student of outstanding commitment pursuing study in piano. Student financial need is considered. If no graduate student meets these criteria, the scholarship may be awarded to an undergraduate.

The Walter H. and Rowena R. Tinker Scholarship was established in memory of Walter and Rowena Tinker, devotees of opera and other vocal music. The award is made to a sophomore, junior, senior, or graduate voice student for outstanding progress.

The Alexander-Hewitt Trust, Vera Jean Berg, Edward Evans, Eugene List/Carroll Glenn, Zara Nelsova, John Poellein, Nadja Salerno-Sonnenberg, Henryk Szeryng, J. Louis von der Mehden, and the Friends of Music Scholarships also are offered. Priority is given to undergraduate students, but graduate students who meet the standards established by the Department of Music Scholarship Committee also are eligible.

Students should contact the Department of Music, Unit 1012, Storrs, Connecticut 06269-1012 for information and application forms.

Natural Resources
Several graduate research assistantships, graduate teaching assistantships, Bishop Carder Scholarships, and scholarships related to natural resources and the environment generally are available. For additional information concerning the graduate program, visit the website: <www.cnr.uconn.edu/nrme/>.

Neurosciences
The Neurosciences Area of Concentration Fellowships up to $2,000 are awarded periodically to students (selected from those currently enrolled in the Neurosciences area of concentration) who have demonstrated the potential for excellence in research. Application is made to Chair, Neurosciences Committee, Unit 4156, Storrs, Connecticut 06269-4156.

Nursing
In the spring semester, students may apply for funding from several scholarship funds and the Advanced Education Nurse Traineeship Grant.

The Ralph and Ruby Gilman Scholarship honors the Gilman’s 50 years of service to the Mansfield and university communities. Dr. Gilman was hired in 1931 as the University’s first full-time physician. Mrs. Gilman helped to establish the Public Health Nursing Association. Undergraduate and graduate students in Nursing are eligible. The scholarship is to be used for tuition and fees.

Newly established funds that can support graduate students include the School of Nursing Endowment Fund for Excellence, and the Mary and Katherine Connelly Nursing Scholarship.

Professional Nurse Traineeships are available for qualified full-time graduate students in Nursing. Based on the availability of funds, traineeships cover student tuition and fees. Interested students should request application materials and information concerning deadlines from the School of Nursing Academic Advising Services, Unit 2026, Storrs, Connecticut 06269-2026 or at <http://www.nursing.uconn.edu/>.

Graduate assistantships in research and/or teaching also are available to full-time students. Graduate assistantships cover tuition and include a bi-weekly stipend and benefits.

Nutritional Science
The Janina M. Czajkowski Community Nutrition Scholarship is awarded each year to a graduate student in nutritional sciences. The recipient receives a certificate and a monetary award. The award is based on academic excellence in community nutrition, potential for scholarly achievement, and need. The scholarship was established by the friends of Dr. Janina M. Czajkowski Esselen, a Professor Emerita, who established the department’s community nutrition program. The scholarship is awarded by the faculty of the department. There is no application.

The Elna E. Daniels Loan Fund makes available short-term, non-interest-bearing, small loans to graduate students in nutritional science.

Application is made to the Department of the Department, Department of Nutritional Sciences, Unit 4017, Storrs, Connecticut 06269-4017.

The Kirvin Knox and Hamilton D. Eaton Scholarships are awarded each year to graduate students in nutritional science. The student receives a certificate and a monetary award. The award is based on research accomplishment and potential for scholarly achievement in an area of nutritional science for students in the final phase of completing the degree program. The scholarship is awarded by the nutritional sciences faculty. No application is made.

Pharmaceutical Science
The American Foundation for Pharmaceutical Education (AFPE) Fellowships are annual awards of approximately $6,000-$10,000 for students currently enrolled in graduate study leading to the Ph.D. degree in pharmaceutical science. Application is made to the American Foundation for Pharmaceutical Education, One Church Street, Suite 202, Rockville, Maryland 20850.

The Boehringer Ingelheim Fellowship in Pharmaceutical Sciences supports advanced graduate students in the areas of medicinal and natural products chemistry, pharmaceutics, or pharmacology (but not toxicology). The recipient must be in at least the third year of graduate study in the department. Application is made to the Pharmaceutical Sciences Graduate Affairs Committee early in the Spring semester. The fellowship is for one year and may be renewed for one additional year.

Boehringer Ingelheim Pharmaceuticals, Inc. makes available a graduate fellowship in toxicology. Application is made to the director of the toxicology program in the School of Pharmacy.

The Gerald J. Jackson Memorial Fellowship in pharmaceuticals is awarded to a deserving graduate student who holds an undergraduate degree in Pharmacy. Application is made to the Graduate Affairs Committee in the School of Pharmacy.

The Richardson-Vicks/A. Francis Summa Memorial Award supports research activity in the School of Pharmacy. Application is made to the Graduate Affairs Committee in the School of Pharmacy.

Physical Therapy
The Leslie Finney Laughlin Scholarship provides support for students in Physical Therapy.

Physics

Physically all graduate students accepted into the Ph.D. program, and many accepted into the M.S. program, receive financial support in the form of teaching and research assistantships and fellowships. Special scholarship and fellowship support is available for exceptionally qualified graduate students. The Physics Department has substantial external support for research programs, and funded programs generally provide research assistantships (most with supplementary summer support). Ph.D. students who perform satisfactorily and make good progress receive financial support until they complete requirements for the Ph.D. degree.

The Physics Department annually awards the Marshall J. Walker Outstanding Teaching Assistant Award to the graduate student judged to be the most effective teaching assistant. Outstanding Scholar Awards also are available for very exceptional applicants to the Ph.D. program.

Further information about the Physics Department’s academic and research programs is available at the Physics Department website at www. phys.uconn.edu and from a brochure that can be found on the website or requested by mail or e-mail at gradphysics@uconn.edu.

Plant Science
Sources of support for graduate students in all areas of concentration include: (1) Graduate research assistantships, from various sources including government and industry. (2) Teaching assistantships. (3) C. R. Burr Memorial Scholarships. (4) Bishop-Carder Scholarships. (Eligibility for these is restricted to graduate students who are residents of Connecticut.) There is no application for any of these awards. Requests for financial aid on admission are considered during the review of applications. Students are nominated for scholarships generally by the major advisor. Assistantships and scholarships are awarded upon the recommendation of the faculty of the department, on the basis of academic and scholarly achievement, and the potential for future academic and professional accomplishments.
Political Science

The Fund for Legal Studies Fellowship is awarded annually to a graduate student in Political Science who specializes in public law. The recipient is selected by the Department of Political Science.

The George F. Cole Dissertation Fellowship in Public Law is awarded to a graduate student pursuing a dissertation in Public Law.

The Michael Dunphy Award is given annually to a graduate student with a strong interest in American government, society, history, or culture. Outstanding intellectual ability and financial need must be demonstrated. The Political Science Department shares this award with History and Sociology. The Department of Political Science will name the winner in 2008, 2011, etc. Students are nominated by faculty members.

The Ilpyong Kim Fellowship is awarded annually to a graduate student in political science who is conducting dissertation research related to Asia. The recipient is selected by the Department of Political Science.

The Norman Kogan Fellowship in Western European Politics is given annually to a graduate student in political science who specializes in the study of Western European politics.

The Everett Ladd Fellowship in American Politics is awarded annually to the graduate student with the highest scholastic standing who intends to pursue American Politics as a doctoral area of study.

The Governor Abraham Ribicoff Fellowship in American Politics is awarded annually to a graduate student in political science who specializes in the study of American politics. Preference is given to residents of Connecticut.

Polymer Science

Financial aid is usually offered to those students who are admitted for a Ph.D. Nearly all PhD students receive full financial support. Financial aid may come from one or more of the following sources: graduate assistantships, teaching assistantships, and University Pre-doctoral Fellowships. Truly outstanding applicants may also be considered for Outstanding Scholars Program Awards. In addition, the Polymer Program offers several special fellowships for exceptional students. These include: the Stephanie H. Shaw Scholarship, the Andrew Gar- ton Scholarship, and the James P. Bell Scholarship. All scholarship awards are made upon the recommenda- tion of the Polymer faculty. For further information, please contact <polymer@ims.uconn.edu>.

Psychology

The Farber Fellowships, established by a bequest from Emeritus Professor Maurice Farber, provide up to five “Farber Fellowships” each year, awarded to entering or continuing graduate students who are doing, or show the promise of doing, applied research in psychology. Farber Fellowships, when combined with a 10 hr TA, are expected to provide an award of $25,000 per year for up to five years of graduate work in the Department of Psychology.

The Isabelle Lberman Scholarship Fund, established by friends and colleagues of the late Professor of educational psychology, provides an annual award given to a graduate student for outstanding research in the psychology of language.

Scharf Fellowships, established by Carolina Herfkins and the estate of Emeritus Professor Conrad Schwarz, are intended to support graduate students working in the Department’s Psychological Services Clinic. Schwarz Fellowships provide an award of $10,000 per year.

Public Administration

The Karl A. Bosworth Award and the Morton J. Tenzer, the Albert Ilg, the Catherine E. Pardee, and the Phi Alpha Alpha Fellowships are awarded to students in the Master of Public Administration Program. Recipients are selected by the M.P.A. Program. For more information, contact the MPA Program Office at (860) 570-9343.

Public Health

A small number of awards are available for qualified full-time students that provide a stipend of up to $25,000 per year (with the possibility of renewal for a second year), a tuition waiver, and health insurance.

Real Estate

Information concerning each of the scholarships listed below is available from: The Center for Real Estate and Urban Economic Studies ("Real Estate Center"), School of Business, Room 401, 2100 Hillside Road, Unit 1041RE, Storrs, Connecticut 06269-1041. Scholarship applications are taken at the beginning of the fall and spring semesters. All scholarships are administered through the Real Estate Center.

Byrl N. Boyce Valuation Scholarship is given to a students interested in pursuing careers in real estate valuation and who have demonstrated potential for future academic and professional accomplishments.

The William N. Kinnard, Jr./CREUES Alumni Scholarship is awarded to students having a strong interest in careers in real estate. Criteria include past academic achievements and demonstrated potential for future academic and professional accomplishments.

The Stephen D. Messner/School of Business Administration Scholarship and Fund provides support for graduate students interested in real estate and finance.

Society of Industrial and Office Realtors/Samuel F. Pierson Scholarship offers a number of awards given to students interested in careers in real estate, preferably sales.

Social Work

The Albert Brown, Jr. Scholarship Fund provides a major award in the form of a graduate assistantship to one or more students in the School of Social Work who undertake a field placement at the University Health Service on the Storrs campus. Field placement is determined by committee. Further information is available from the Director of the Student Mental Health Service at the Storrs campus, (860) 486-4705.

Sociology

The Michael Dunphy Award is given annually to a graduate student with a strong interest in American government, society, history, or culture. Outstanding intellectual ability and financial need must be demonstrated. The Sociology Department shares this award with History and Political Science. The Department of Sociology will name the winner in 2009, 2012, etc. Students are nominated by the Sociology Graduate Admissions and Financial Aid Committee.

The Ronald L. Taylor Award of $100 is given annually for the best graduate student paper in Sociology. Students are notified by course instructors to apply. The award is available during the spring semester.

Statistics

Graduate student support is available in the form of teaching assistantships, research assistantships, lectureships, and graduate fellowships. Advanced students can apply for summer teaching and research support. Internships with Connecticut firms can often be arranged for graduate students who have completed one year of study. In all cases, application is to the department’s director of graduate studies.

Additional Sources of External Support

The Office for Sponsored Programs, located in the Whetten Graduate Center, subscribes to InfoEd, a leading online funding database, offering over 50,000 potential funding opportunities from Federal government, private foundations, and corporate giving programs. This database is accessible through the OSP home page (www.osp.uconn.edu) and can be searched from any University computer. Students are encouraged to become familiar with these resources, which can be accessed to locate external sources of support for doctoral dissertation research, as well as general graduate student support.

Students can also consult the Peterson’s Grants for Graduate Study, a compilation of federal and nonfederal resources available at the Babbidge Library. For further information, contact the Office for Sponsored Programs, Unit 1133, Storrs, CT 06269-1133 or <osp@uconn.edu>.
Requests for Official University of Connecticut Transcripts

Students at Storrs and the regional campuses can request official transcripts of their academic records by writing to the University of Connecticut, Office of the Registrar, Unit 4077-T, Storrs, Connecticut 06269-4077. Requests can also be transmitted by FAX to the Registrar at (860) 486-0062. All requests should include full name, date of birth, UConn ID (PeopleSoft empl ID) if known, dates of attendance, complete and accurate addresses of transcript recipients (including ZIP codes), as well as the requester's mailing and e-mail addresses and telephone number in the event that there is a problem with the request. Requests must be signed even if they are faxed or sent via e-mail. Students also may request official transcripts through the Student Administration System.

Request forms can be completed at the Registrar’s Office in the Wilbur Cross Building on the Storrs campus. These forms are also available at the regional campus registrars’ offices for mailing or faxing to the University Registrar at Storrs or on the Registrar's Website.

Students can request that their transcripts be sent to themselves. Note, however, that such transcripts are stamped “issued to student in a sealed envelope” and the envelope bears a similar stamp and a facsimile signature. Students are cautioned that some recipients will not accept transcripts that have not been sent directly to them.

Transcripts are sent out by U.S. Postal Service first class mail, Priority Mail, or Express Mail. For Priority, Express Mail, UPS, Federal Express, or DHL, the request must be accompanied by a pre-paid and pre-addressed company-specific envelope. Any and all arrangement must be made by the requestor.

There are other restrictions to this service. Official transcripts may be withheld by appropriate University officials if some financial or other obligation to the University remains unmet. Since official transcripts are issued on security bank paper they cannot be sent by FAX. Requests are processed in the order in which they are received in one to five business days. The University cannot honor telephone or e-mail requests for transcripts.

There is no service fee for official transcripts.

Students can obtain an unofficial transcript via a computer that has internet access by logging on to the Student Administration System using the unique USED ID and password or by presenting a photo I.D. in person at the Registrar’s Office at Storrs or at any of the regional campuses; however, students should call the regional campus registrar in advance to make arrangements for transcript pickup.

Housing

In order to reserve graduate housing for the academic year 2010-2011, applicants must submit the Application for Housing Assignment for New Graduate Students with a non-refundable $140 room deposit payment within 15 days of receipt of the application. The final deadline for accepting all applications is June 15, 2011. Information is included in the graduate school admissions packet. Housing will be assigned on a priority basis within the limits of available space.

Graduate students have two options for on-campus housing at the University of Connecticut. These options include a building in Hilltop Apartments and Northwood Apartments.

Hilltop Apartments.

Hilltop Apartments is an apartment community built for graduate and undergraduate students. Every apartment is fully furnished, carpeted, and has air conditioning. A complete kitchen and amenities such as a full-size bed, washer and dryer, microwave, and dishwasher are standard. All utilities plus cable, local phone, and internet access are included in a competitively-priced housing package.

Northwood Apartments (Single Applicants or Family Housing).

Northwood Apartments is a community that houses graduate students and students with families. Every apartment is fully furnished and has access to laundry facilities in the complex. All utilities plus cable and internet access are included. Air conditioning is not available in this complex. Single graduate students or students with families can live in designated two-bedroom apartments.

Application Deadline.

Early application for a room is advisable since housing assignments fill quickly for the fall semester and applications are due within 15 days of receipt. The final deadline for accepting fall applications is June 15, 2011. The housing contract is binding for both the fall and spring semesters. Students should be aware that only extreme situations will warrant a contract release during the academic year so students should plan accordingly.

New students that are not familiar with the Storrs area should realize that Storrs is located in a rural area. There is limited public transportation. Students coming to Storrs from a considerable distance are well advised to seek housing on campus, at least for the first year of residence.

For students that would like to investigate off-campus options, they are advised to seek and secure accommodations for off-campus housing prior to their arrival to campus. Off-campus housing within walking distance is limited due to the rural location of the campus.

Students may access the UConn Department of Residential Life site at <http://www.reslife.uconn.edu> for additional information, and off-campus students services at <http://www.offcampus.uconn.edu>.
may opt to be covered for accidents and illnesses through a personal insurance policy, a parental insurance policy, or a group policy sponsored by the University. Supplemental Student Health Insurance for accident and sickness is available from a private student medical insurance program. Full-time students who fail to provide proof of health insurance by filing an on-line insurance waiver through the PeopleSoft Student Administration System may be charged and automatically enrolled in the university sponsored plan. Insurance information and enrollment for the student insurance program is available at the Department of Health Services. Further information is available at <www.shs.uconn.edu>.

Center for Students with Disabilities

A complete Statement of the University's Policies and Procedures Regarding Students with Disabilities can be accessed at this website: <www.csd.uconn.edu>.

Through the integration of teaching, research and service, it is the mission of the University of Connecticut to provide an outstanding educational experience for each student. The mission of the Center for Students with Disabilities (CSD) is to enhance this experience for students with disabilities. Our goal is to ensure a comprehensively accessible university experience where individuals with disabilities have the same access to programs, opportunities, and activities as all others. The Center is also committed to promoting access and awareness as a resource to all members of the community. While complying with the letter of the law, the CSD also embraces its spirit by providing services to all students with permanent or temporary disabilities to ensure that all University programs and activities are accessible.

Services offered include:

• Pre-admission counseling and new student orientation
• Academic accommodations and counseling
• Assistive technology training
• Residential accommodations and counseling
• Financial aid counseling
• Personal Assistant referral and training
• Transportation and parking services
• Referral and liaison services to other agencies such as the Commission on the Deaf and Hearing Impaired, Board of Education Services for the Blind, and Recordings for the Blind and Dyslexic
• Information and referral source to all University and community programs and services.

For more information, contact Donna M. Korb, Director, CSD, Wilbur Cross Building, Room 204, Unit 4174, Storrs, Connecticut 06269-4174; Voice (860) 486-2020, TDD (860) 486-2077, FAX (860) 486-4412.

Career Services

The needs of graduate students as soon-to-be professionals are unique. The Department of Career Services provides a variety of resources to help graduate students (masters and doctoral) achieve professional career goals. Listed below is an overview of the resources provided for graduate students.

Career Consultation - Professional career consultants are available to discuss your unique plans for the future. During the fall and spring academic semesters, no appointment is required; come to our office during scheduled Walk-in Hours. Visit our website or call the office for available times. During breaks, please call our office to schedule an appointment.

Resume/CV Assistance - If you need assistance getting started, would like to see examples, or want a professional to review your document, please call our office to schedule an appointment.

Career Resource Library - This collection in the Department of Career Services houses many publications and other media of interest to graduate students. Occupational information; graduate school guides; tips for doctoral students; job postings and other career-related information are available.

Practice Interviews - If you seek employment in industry, you can participate in a Mock Interview. These sessions are recorded and a DVD is provided to each participant to take home and view. For more information visit our web site. These interviews are not provided for those seeking academic/faculty positions.

Ph.D. and the Job Search DVD - A free DVD is available for Ph.D. candidates. This resource contains information about writing a CV, the Job Search, and Interviewing. Faculty and Industry professionals provide insight for Ph.D. students regarding these topics. A great resource for the Academic or Industry job search.

Workshops/Presentations - Each semester, Career Services offers workshops on various career-related topics. Check the web site or stop in to the office for a listing of events.

Annual Career Fair - During the fall semester, a career fair takes place on campus bringing over 100 employers. This is a great opportunity to make contact with companies and organizations seeking to hire UConn graduates. Check the web site for exact date and location.

Career Services is located in room 217 of the Center for Undergraduate Education at 368 Fairfield Road (across from Babbidge Library). Please visit <www.career.uconn.edu> or call 486-3013 for additional information.

Graduate Student Senate

The Graduate Student Senate (GSS) was founded in 1966 for the purpose of enriching the lives of graduate students and acting on behalf of their needs and interests. Composed of students who represent all graduate fields of study, the Senate serves as the liaison between graduate students and the university administration and non-university organizations.

The Senate is recognized as one of the five deliberative bodies on campus (the others are the University’s Board of Trustees, the University Senate, the Graduate Faculty Council, and the Undergraduate Student Government). The Senate has voting representatives on some of these bodies as well as other university standing committees.

The Senate engages in student advocacy, service, academic, and social activities. Areas of student advocacy in recent years have included:

• cost-of-living adjustment for graduate assistant stipends;
• an earlier issuance of initial graduate assistant paychecks;
• increased graduate student residential options;
• fostering and supporting cooperation between the town and the University, including membership and active participation in the Mansfield Downtown Partnership; and
• the adoption of new guidelines concerning duration and level of support for graduate assistants.

Examples of recent service involvements include:

• the Senate short-term emergency loans for graduate students;
• annual publication of the Graduate Student Handbook and Newsletter;
• grants to departments and groups planning programs which contribute to the academic and professional development of graduate students;
• the dissemination of information to graduate students concerning university initiatives and policy changes;
• the Graduate Resource Fair, an annual orientation and resources fair for new graduate students; and
• representation on University-wide committees such as the Vice Chancellor’s Leadership Subcommittee, University Senate, the Graduate Faculty Council, and the Chancellor’s Library Advisory Committee.

Recent academic and social activities have included:

• co-sponsorship of the 2004 Northeast Ecology and Evolution Conference;
• lunches with key university administrators
• sponsorship and co-sponsorship of departmental lecture series; and
• social events such as weekly coffee nights, theme dinners, trivia tournaments and seasonal gatherings.

Programs and activities such as those listed above are funded largely by the graduate student Activity Fee with additional program support provided by the Graduate School. The Senate encourages all graduate students to participate in campus as well as university and student governance activities. Additional information concerning Senate programs and meetings is available from the Senate office, room 213 in the Student Union [phone (860) 486-3907, e-mail <gss@huskymail.uconn.edu>, Web <http://www.gss.uconn.edu>].
Parking and Transportation

Parking on campus is in high demand and it is suggested that students who can avoid bringing a vehicle to campus should do so. The number of parking spaces available makes it impossible to give all students permission to register motor vehicles at the University. It is therefore necessary to establish guidelines for the allotment of motor vehicle permits. Those guidelines are as follows:

- All Graduate Assistants are eligible for a parking permit.
- Commuter students may purchase parking, regardless of semester standing.
- Resident students living on campus must have successfully completed 54 or more credits to be eligible for parking.

Student permits are issued in August for the entire academic year. Registration cards are mailed to eligible students in June for the upcoming year. A completed registration card and payment are to be returned to the Parking Services Office (PSO). Permits are also sold at the PSO throughout the year. To purchase a permit at the PSO, an eligible student must bring a photo driver’s license and the motor vehicle registration for the vehicle being registered. The vehicle must be registered to the student or to a member of his or her immediate family. Students may not register vehicles belonging to other students.

Further information about parking on the Storrs campus can be obtained by calling Parking Services at (860) 486-4930, by visiting the website at <http://www.park.uconn.edu>, or by stopping by the Parking Services Office at 3 North Hillside Road on the Storrs Campus.

Bus Service.

The University offers an extensive shuttle bus and AVS van service on campus while classes are in session. Busses and AVS vans are also operated during break periods but at much reduced service levels. Routes, schedules, and hours of operation can be found on the Transportation website at www.park.uconn.edu. AVS vans can be scheduled for passengers with permanent and temporary disabilities by calling (860) 486-4991.

Office of International Affairs

The Office of International Affairs (OIA) and the Area Studies Programs (on Latin America and the Caribbean, Europe, India, and the Middle East) are located in the Ray Ryan Building (2006 Hillside Road).

The activities of the Office of International Affairs also include technical assistance and training projects (especially in developing countries), international exchange of faculty, coordination of research, and assistance with grant proposals.

The Center for Latin American and Caribbean Studies coordinates both undergraduate and graduate study of Latin America

International Center – Department of International Services and Programs

The Department of International Services and Programs (DISP) is responsible for the immigration advising of all international undergraduate and graduate students. In addition, this office handles all requests for the J exchange visitor program which includes J exchange students and J visiting researchers and professors. DISP is the only authorized UConn department that processes the employment of H-1B petitions and other non-immigrant employment. DISP not only provides personal advising to immigration issues but also conducts monthly programs/workshops covering a wide range of topics from orientation programs to cultural adjustment to life in the U.S. to weekly coffee hours. DISP sponsors cultural events such as the World Fest and arranges various trips throughout the semester.

DISP is located in the International Center in the Student Union, suite 307, 2110 Hillside Road and is an ideal place for international students to meet and discuss their concerns. A full-time staff is available to assist any international student or visiting scholar.

UConn American English Language Institute (UCAELI)

UCAELI, in the Center for Continuing Studies, offers a full service intensive English program for students of English as a second language. Courses are designed to prepare students for academic work and professional pursuits. Fifteen-week sessions are offered each fall and spring and eight- and four-week sessions are offered in the summer. A TOEFL preparation course is offered each session, as is the Institution TOEFL exam. An English Proficiency Certificate, accepted by Admissions Office in lieu of the TOEFL score of 550, can be issued to qualified students. The majority of students in the program study full-time (22 hours per week); however, individual courses are also open to UCONN degree-seeking students. With permission, advanced students may elect to take UCONN credit-bearing courses in combination with their UCAELI courses. Tutoring and customized courses can be arranged.

International Proposal Development/Fulbright Program Advisement

The Coordinator of International Proposal Development seeks sources for funding for proposals to enhance area studies programs and internationalize the curriculum, and assists faculty, staff, and students in developing internationally-oriented grant and contract proposals.

The Fulbright Program Advisor publicizes and recruits applicants for Fulbright Scholarships and Fellowships and Fulbright-Hays Training Grants. Applicants are assisted in preparing competitive applications. The Fulbright Program Advisor chairs the University’s Fulbright Scholarship Committee, a standing committee of the University.
Registration

Applicants admitted on the basis of an expected baccalaureate or graduate degree must have completed all requirements for that degree prior to the start of classes. University of Connecticut seniors must have completed the baccalaureate prior to the start of classes. Otherwise they must continue to register as undergraduates, even though admitted to the Graduate School and registering for graduate courses.

Occasionally, a University of Connecticut senior planning to enter the Graduate School has less than a full course load remaining to complete for graduation. Such a student may take advanced courses along with the remaining undergraduate courses and may count those advanced courses toward the graduate degree. Inclusion of up to six credits of such course work is permissible under the following conditions: (a) the work is completed with grades of B or above; (b) the student is later admitted to Regular status in the Graduate School; (c) the work is approved as part of the graduate plan of study; and (d) the student presents a written statement from the University Registrar certifying that the work was not counted toward the baccalaureate degree.

Advance registration and fee payments are accepted upon the assumption that students will remain eligible to continue, having met the scholastic standards of the Graduate School and by having complied with its regulations.

The following instructions apply to students registering for most courses conducted on the Storrs campus. Information on registering for courses offered through the Center for Continuing Studies, courses offered by the School of Social Work, or courses offered by the Master of Business Administration programs conducted at centers other than Storrs will be found in brochures published by those programs. All degree-seeking students must register for courses using one of the available methods of registration, and pay all fees at the Office of the University Bursar. All course charges (applicable tuition and fees) are due and payable by the close of business on the tenth day of the semester. Late fees and the reinstatement fee are assessed after that time. Part-time students who are not degree-seeking students must register through the Division of Continuing Studies.

Both new and continuing students should make appointments with their major advisors to determine the courses in which they plan to enroll. Instructions for registration are posted at <www.grad.uconn.edu>. Early registration will avoid confusion and increase the likelihood of obtaining the desired course(s). Ordinarily, there are two advance registration periods for the fall semester, one beginning in early April and the other beginning in mid-August. Similar periods for spring occur in late October and early January. Dates for registration are contained in the Academic Calendar. Depending upon course selections, most students should be able to register entirely over the World Wide Web. Problems encountered during registration (including enrollment in restricted courses) may be brought to the Graduate School in the Whetten Graduate Center. In all cases, registration is not complete until all tuition and fees are paid at the Office of the University Bursar or a limited deferral of payment is obtained from the Deferment Office. Graduate students are permitted to register, to modify their course registrations without penalty, and to pay their fee bills or obtain deferrals through the tenth day of the semester. Graduate students become liable for payment of tuition and other required course-related fees, however, beginning with the first day of classes of the semester or session whether or not they have attended any classes or have paid their fee bills as of that date.

Continuing Registration

Master's, doctoral, sixth year in education, and graduate certificate students must begin their programs with course work and must maintain registration continuously each semester thereafter (except summer sessions) until all requirements for the degree have been completed. Registration may be maintained either by taking course work for credit or by registering for one of the four non-credit Continuing Registration courses. These include Special Readings at the master's (GRAD 5998) or doctoral (GRAD 6998) level, Master's Thesis Preparation (GRAD 5999), and Doctoral Dissertation Preparation (GRAD 6999). Other zero-credit courses may be substituted, if appropriate. Non-credit registration requires payment of the Graduate Matriculation Fee as well as the appropriate level of the General University Fee (see "General University Fee," "Graduate Matriculation Fee," and "Continuous Registration" under "Fees and Expenses").

International students should consult with the Graduate School prior to registering for zero-credit courses. Per SEVIS guideline 8 C.F.R. 214.2 (f) (ii) (iii), students are permitted to register for zero credits for a maximum of one academic year. Continuous registration is granted on a semester-by-semester basis with the consent of the student's major advisor and the Graduate School.

Failure to maintain continuous registration during any semester results in the student's inactivation. Reinstatement is possible only after payment of all fees in arrears and the reinstatement fee. (See "Reinstatement Fee.") The consequences associated with matriculation via Continuing Registration rather than credit courses are addressed in the "Course Loads" section.

Neither enrollment for Continuing Registration nor payment for it is required for any semester, during the first ten class days of which the student completes all requirements for a degree, if it is the only degree the student is pursuing.

Any currently matriculated student taking course work at another institution, either for transfer to a University of Connecticut graduate degree program or for any other reason, must register for Continuing Registration as specified above in any affected semester.

Enrollment in Continuing Registration is not required during the summer except as follows. A degree student, if not otherwise registered for the summer, must register for Continuing Registration and pay the Graduate Matriculation Fee if the student is fulfilling in part the doctoral residence requirement during the summer. To receive most forms of summer financial aid for study or research, a student must register for either 5 credits of coursework in each of two summer sessions or one of the full-time research courses, GRAD 5960 (Full-time Master's Research) or GRAD 6960 (Full-time Doctoral Research). For summer registration, permission numbers for GRAD 5960 and 6960 are issued by the Graduate School Office.

Registration Deadlines

All graduate students registering with the University must have their initial registration in place no later than the close of business of the tenth day of classes each semester. Additions to and deletions from a student's class schedule may occur freely throughout the first ten business days of the term. Students who do not complete an initial registration by the close of business of the first day of classes are subject to a late registration fee and a reinstatement fee.

Course Loads

The number of credits and choice of courses for which a student registers is a matter to be discussed by the student and the major advisor. A student may be classified as a full-time student in one of three ways: (1) enroll in 9 or more credits of course work; (2) enroll in 6 or more credits of course work while holding a graduate assistantship (50% or greater); or (3) enroll in one of the four special purpose 3-credit courses. These courses include GRAD 5960 (Full-time Master's Research), GRAD 6960 (Full-time Doctoral Research), GRAD 5930 (Master's Level Directed Studies), and GRAD 6930 (Doctoral Level Directed Studies). The former two courses may be taken by students who have completed all requirements for the respective degree except the research component and who have no other obligations at the University (i.e., no other course work and no graduate assistantship). The latter two courses denote a full-time off-campus directed project, such as an internship, field work, or other special activity. Students in GRAD 5930 or GRAD 6930 may hold graduate assistantships if those assistantships are in direct support of their studies. Such an assistantship may not be a standard teaching assistantship.

To be classified as half-time, the student's course load must be between 5 and 8 credits/semester. A credit load of fewer than 5 credits/semester is a part-time load. These criteria apply to all registered students at the University. The currently defined Continuing Registration courses (GRAD 5998, 5999, 6998, and 6999) are zero-credit "placeholder" courses denoting part-time study and do not count toward the credit load requirement for
half-time or full-time enrollment status. Degree-seeking students who do not need to be certified by the University as holding at least half-time enrollment status may use these courses to maintain registration on a part-time basis.

Students holding graduate assistantships must register for 6 or more credits per semester. Such students are considered to be full-time students.

In addition to courses offered by each department, a student's credit load may include GRAD 5950 (Thesis Research), GRAD 6950 (Dissertation Research), and other equivalent research courses defined by the Graduate School, including seminar and other "colloquium" courses that are not part of the student's formal program. These variable credit courses carry S/U grading, with the student's major advisor as the instructor.

No full-time member of the professional staff or faculty may take for credit academic work at this institution or elsewhere which conflicts with the staff or faculty member's assigned working hours. To take courses at all, staff and faculty members must have the approval of their department head and dean. (See "Admission," for regulations affecting staff or faculty members holding tenure or rank above instructor.)

Auditing Courses

Students who do not wish to register for credit may be permitted to register as auditors under the following conditions: (1) they pay the appropriate tuition and fees for courses; (2) they obtain the consent of the instructor; (3) they audit only courses for which there are adequate classroom or laboratory facilities; and (4) in the case of students in degree programs, they obtain consent from their major advisors. All permissions and registrations for auditing courses must be filed in the Graduate School. Auditors must have the approval of their department head and dean. (See "Admission," for regulations affecting staff or faculty members holding tenure or rank above instructor.)

Dropping all Courses; Withdrawal from the Program

The general policies and procedures regarding dropping a course (above) apply to dropping all courses, whether the student wishes to remain active in the graduate degree program or to withdraw permanently from it. Permission from the Graduate School is needed for the student to remain active in the program or to leave in good standing.

If a refund is due to a student (see "Refunds and Cancellations of Charges"), the schedule-revision-request card must be signed by the appropriate Graduate School officer, regardless of the week of the semester. This signature is required so that the refund process may be initiated. No refund is possible unless all course work for credit is dropped. All course work for credit is dropped.

School. Certain exceptions to this policy exist. Students in the Sixth-Year Program must obtain permission from the Associate Dean of the School of Education. Students in part-time M.B.A. programs conducted at locations other than Storrs must obtain permission from the director of the program at their location. Students in Social Work must follow the procedures in effect at the School of Social Work.

Dropping a Course

Discontinuance of attendance or notice to an instructor or to an advisor does not constitute cancellation of course registration, and may result in a failing grade on the student's permanent record. Before terminating class attendance, the student should ensure that the course has been dropped officially. Until this has been done, the student is obligated to complete all work. No grade is recorded for courses officially dropped, but a mark of W is recorded to signify withdrawal from a course after the tenth day of the semester or the first week of a summer-session course. Cancellation of course registration does not automatically drop a course from a student's plan of study; nor does approved deletion of a course from a plan of study cause cancellation of course registration. The procedures are separate and unrelated.

During the first nine weeks of a semester or prior to the midpoint of a summer-session course, a course may be dropped by the following procedure. Students registered directly by the Graduate School at Storrs must file properly completed and signed schedule-revision request card with the Graduate School. Non-degree students registered during either semester through the Center for Continuing Studies must notify that office in writing. Students in part-time M.B.A. programs conducted at locations other than Storrs must notify the director of the program in writing. Students in Social Work must follow procedures in force at the School of Social Work.

After the first nine weeks of a semester or the midpoint of a summer-session course, students ordinarily are not allowed to drop a course. If, however, a student must drop a course because of illness or other compelling reason beyond the student's control, the student must request special permission as early as possible and well before the last day of classes. Permission to drop a course or to change from participant to auditor is granted only for good cause. All students – except those in the Sixth-Year Program, part-time M.B.A. programs conducted at locations other than Storrs, or the Social Work program – who have been enrolled in daytime or evening classes at Storrs or elsewhere, must obtain permission from the Graduate School. Permission is granted only on the major advisor's written recommendation, which must be convincing and sufficiently specific regarding reasons beyond the control of the student. The recommendation should be accompanied by properly completed and signed schedule-revision request card for the course(s) to be dropped. Students in the Sixth-Year Program must obtain permission from the Associate Dean of the School of Education. Students in part-time M.B.A. programs conducted at locations other than Storrs must obtain permission from the director of the program. Students in Social Work must follow procedures in force at the School of Social Work. Under no circumstances is a student at any location or in any program permitted to drop a course after the course has officially ended.
STANDARDS AND DEGREE REQUIREMENTS

These represent general academic standards and requirements of the Graduate School as they apply to graduate students in degree programs. Some programs have special regulations more detailed or stringent. Students should acquaint themselves with their own program's requirements as set forth in this Catalog and subsequent ones, as appropriate. Undergraduate and non-degree students taking a graduate course should consult the appropriate bulletin for regulations which apply to them.

Course Grades

Instructors are required to file with the University Registrar grades for all courses that a student takes for credit. While instructors are free to set the standard of performance they expect in their courses, a uniform scale is published to encourage general agreement on the meaning of grades.

The letter A signifies work of distinction. The letter B represents work of good quality, such as is expected of any successful graduate student. The letter C represents work below the standard expected of graduate students in their area of study. It is recognized that work of C quality in a supporting area may be of benefit to students and that they should not be discouraged by the grading system from including some supporting work in their programs. Such work shall be identified on the plan of study. Plus and minus values may be assigned to all but failing grades, are entered on the permanent record, and are computed into the student's grade point average.

A grade of D+ (or D), or D- signifies work of unsatisfactory quality. If a graduate student receives any form of a D grade, the course may not remain on the plan of study and the student's eligibility to remain in good standing. A student who has four or more viable incomplete grades is not permitted to take any regular course, undergraduate or graduate, on a Pass/Fail basis.

A mark of I (Incomplete) is assigned if a student has been doing work of acceptable quality but, for some reason satisfactory to the instructor, has not completed all of the work required to earn credit for a course by the end of the semester or session.

The letter W signifies withdrawal from a course after either the tenth day of a semester course or the first week of a summer-session course. Except in extraordinary cases where academic factors or extreme or unusual circumstances warrant it, this mark is not deleted from the permanent academic record.

If a student whose work in a course throughout the semester has been of satisfactory quality fails to take a required final examination in the course because of illness or other serious cause, the instructor is permitted to give a mark of X (Absent) and, with the permission of the Graduate School, reschedule the examination. If the student's work up to the time of the examination was not clearly of passing quality, the instructor is to enter a mark of F or U if a required final examination is missed.

The letters L, N, and Y are administrative symbols signifying that a letter grade had not been reported by the instructor when grades were processed. The letter L signifies lateness in reporting grades for an entire section of a course. The letter N signifies that no grade was reported for an individual student duly registered for a course. The letter Y signifies that no grades were due to be reported for an entire section of a course (because of the scheduling of the course) when grades were processed.

Beginning with the Fall 2004 semester, the symbol I or X is replaced by the final course grade on the permanent academic record when the student completes all required work for the course and the instructor reports the final grade to the Registrar. Prior to the Fall 2004 semester, the symbols I and X appear together with final course grades on students' permanent academic records.

The letter T indicates that course credit has been accepted in transfer from another institution.

The letter R is an administrative symbol signifying that a student is registered. Any zero-credit course (e.g., GRAD 5998, 5999, 6998, or 6999) for which a student registers appears on the permanent academic record with the letter R as the grade.

Scholastic Standards

Students are required to maintain in their course program at least a B (3.00) average, for which a grade point average will be computed on a scale where:

- A = 4.0
- A- = 3.7
- B+ = 3.3
- B = 3.0
- C+ = 2.3
- C = 2.0
- D+ = 1.3
- D = 1.0
- D- = 0.7

Maintenance of good academic standing in the Graduate School requires at all times a cumulative grade point average of 3.00 or higher in course work completed while enrolled in a graduate program. An official transcript of an individual's graduate academic career, however, includes grade point average calculations based on all course work completed during the student's graduate career (including any 1000's level courses). Credits completed elsewhere and accepted in transfer by the Graduate School do not affect the student's University of Connecticut grade point average in any way.

When a student's cumulative average falls below 3.00, the program is reviewed by the student's advisory committee to determine whether or not the student shall be permitted to continue graduate study. If the work required to change a mark of I or X is not submitted to the University Registrar within twelve months following the end of the semester or session for which the mark was recorded, or within a shorter period of time specifically designated by the instructor, no credit is allowed for the course, and the indicated I or X becomes a part of the permanent record.

Upon the recommendation of the instructor to the Graduate School, a limited extension of an incomplete may be granted. The Graduate School is not obligated to approve an extension if the instructor of the course no longer is a faculty member at the University of Connecticut.

If more than three courses have been left incomplete, the student may be required to complete those still viable before being allowed to register for additional course work. Too many permanent Incompletes on the record may be grounds for the student's termination or dismissal.

An employment authorization for a graduate assistantship appointment may not be approved for a student who has four or more viable incomplete courses on his or her academic record.

For further information the reader is referred to the document, “Key to the Transcript,” available from the Office of the University Registrar.

Termination of Status

To remain in good standing, a student at all times must have a major advisor as well as a viable terminal date (the date by which all degree requirements must be completed). A viable terminal date may be the result of an extension of a student's expired original terminal date. Once the plan of study has been approved by the Executive Committee of the Graduate Faculty Council, a student at all times must have a duly
constituted advisory committee with at least two associate advisors in addition to the major advisor.

In the event that a student’s major advisor determines that resignation from the advisory committee is necessary, the student is provided with a reasonable opportunity to arrange for a new major advisor. If a new major advisor is not identified within six weeks of the resignation of the former major advisor, the student’s graduate degree program status is terminated.

A graduate student and his or her major advisor should always be cognizant of the student’s terminal date or terminal date extension, the date by which the Graduate School expects that all degree requirements will have been completed. The student and the major advisor are notified of the student’s terminal date when the Graduate School sends approved copies of the student’s plan of study. Any written recommendation to extend the terminal date must be submitted in a timely manner by the major advisor to the Graduate School. In the event that the major advisor determines that he or she cannot support a recommendation to extend an expiring terminal date or terminal date extension further, the Graduate School must be notified by the major advisor in writing at the earliest possible opportunity. Limited extensions of the terminal date are granted by the Graduate School only on the basis of substantial evidence that the student is making consistent and satisfactory progress toward the completion of degree requirements. In the absence of a timely recommendation to extend an expired terminal date, or in the event that a recommended extension has been denied by the Graduate School, the student’s graduate degree program status is terminated.

Whenever a student’s graduate degree program status is terminated, a letter is sent to the student by the Associate Dean. If the student wishes to request a hearing, the provisions outlined under “Hearing and Appeal Procedures” apply.

Academic Dismissal

A graduate student’s progress in a degree program is monitored regularly by the student’s advisory committee. If at any time, a student’s academic performance, progress in a graduate degree program, or professional development and/or suitability is judged by his or her advisory committee to be unsatisfactory, and if the advisory committee determines that dismissal on any of these grounds is warranted, the advisory committee must submit its written recommendation that the student be dismissed. The recommendation for dismissal must be supported by the Graduate School. If the recommendation is upheld by the Dean, the student may appeal further to the Provost. In any event, the decision of the Provost is final.

Graduate certificate programs may be offered within the structure of the Graduate School. Students may be awarded these certificates upon completion of a well-defined program of course work. The graduate certificate is not defined as a degree by the Graduate School; rather, it is simply a focused collection of courses that, when completed, affords the student some record of coherent academic accomplishment in a given discipline or set of related disciplines. Moreover, the graduate certificate is not viewed as a guaranteed means of entry into a graduate degree program. The courses comprising a graduate certificate may be used as evidence in support of a student’s application for admission to a graduate degree program, the certificate itself is not considered to be a prerequisite. The didactic material contained within a graduate certificate program may represent a more practice-oriented subset of an existing graduate discipline. Detailed information concerning admissions criteria and procedures can be obtained from graduate certificate program coordinators.

An appropriate number of academic credits must comprise the certificate program. The number of graduate (5000- or 6000-level) credits may not be fewer than nine nor more than one-half of the credits necessary for a related Master’s degree from the Graduate School. Ordinarily, the credit requirement ranges from 12 to 15 graduate semester credits. When there exists no related Master’s program, the number of credits required for a graduate certificate is limited to 12.

A certificate student may enroll on either a part-time or a full-time basis, as determined by the certificate program coordinator and the number of credits taken by the student. Students enrolled on a full-time basis have access to many of the same campus services as other full-time graduate students. They may live in on-campus graduate student housing and they may be granted student library access and campus parking privileges, among others. They also may be considered for merit-based financial aid by the department or program, as well as for need-based financial aid by the Student Financial Aid Office, but at a reduced priority compared to degree-seeking students.

Graduate School Certificate programs currently approved for offering include but are not limited to the following:

- Adult Learning
- Biomedical Science Research Experience
- Culture, Health, and Human Development
- Geographic Information Systems
- Global Governance Studies
- Health Promotion and Health Education
- Health Psychology
- Human Rights
- Music Performance
- Nonprofit Management
- Nursing Practice
- Occupational Health Psychology
- Public Financial Management
- Quantitative Research Methods
- Sixth-Year Certificate Programs in Education
 - Adult Learning
 - Bi-lingual and Bi-cultural Education
 - Cognition/Instruction
 - Counselor Education and Counseling Psychology
- Educational Administration
- Educational Technology
- Gifted and Talented Education
- Professional Education
- Reading and Language Arts Consultant
- Remedial Reading and Remedial Language Arts
- Teacher
- School Psychology
- Special Education
- Women’s Studies
Master's Degree Programs

Master's degree programs are offered in approximately 70 fields of study in the Graduate School. The Master of Arts degree usually is awarded to properly qualified candidates in the humanities, the social sciences, education, and all non-scientific fields except art, business administration, public affairs, and social work. The Master of Science degree is awarded to candidates in the natural, physical, mathematical, pharmaceutical, nutritional, and agricultural sciences, as well as Accounting, Nursing, and Engineering. Other Master's degrees awarded are the Master of Business Administration, the Master of Dental Science, the Master of Engineering, the Master of Fine Arts, the Master of Music, the Master of Professional Studies, the Master of Public Administration, the Master of Public Health, and the Master of Social Work. A master's degree program represents the equivalent of at least one year of full-time study beyond the baccalaureate (or its equivalent).

Since the Master's degree is the only intermediate degree offered by this University, it should be emphasized that the education it provides may prepare students for a variety of goals. The advisory committee should take into consideration the student's objectives and insist on the student's giving sufficient time to the program so that they may be fulfilled. Those students who are committed to doctoral study generally need less time to complete a Master's degree than those for whom the master's program provides the only opportunity to prepare for various professions. Recognizing the difference between a research degree and a terminal Master's degree, the committee should determine the student's goals and potential as early as possible, so as to help the student develop an appropriate predoctoral or terminal plan of study.

In most fields of study, work for the Master's degree is offered mostly, if not exclusively, on the main campus at Storrs. There are some exceptions. The Master of Business Administration is offered on a part-time basis at the downtown Hartford, Stamford, and Waterbury campuses and on a full-time basis at the Storrs campus. The Master of Dental Science program and the Master of Public Health program are offered primarily at the Health Center in Farmington. The Master of Social Work program is offered at the West Hartford campus. Certain courses in education, engineering, geological sciences, and oceanography are offered at locations other than Storrs. With the exception of the programs listed above, at least nine credits at the graduate level must be earned on the Storrs campus.

Time Limits

The student is expected to register for course work with reasonable regularity and to complete all requirements for the degree within a moderate span of time to assure continuity and adequate familiarity with developments in the field of study. (See "Continuous Registration.") Ordinarily, the Master's degree should be completed within two years or so. In any event, all work for the Master's degree must be completed within a maximum period of six years from the beginning of the student's matriculation in the degree program. Failure to complete the work within this period or failure to maintain continuous registration (see "Continuous Registration") will require re-evaluation of the student's entire program and may result in termination.

An extension of a student's terminal date is considered only when there is substantial evidence that the student has attempted to make regular and consistent progress toward completion of degree requirements. A written recommendation to extend the terminal date must bear the signature of the student's major advisor, and it must be submitted in a timely manner to the Graduate School. Approval is granted by the Dean. Each subsequent request to extend a student's terminal date requires greater justification and more extraordinary circumstances. Third requests for extension are rarely, if ever, granted.

Plan A and Plan B Master's Degrees

Master's degrees may be earned under either of two plans, as determined by the advisory committee. The first plan (Plan A) emphasizes research, while the second (Plan B) requires comprehensive understanding of a more general character. Plan A requires not fewer than fifteen credits of advanced course work and for students entering Fall 1998 or later, not fewer than nine additional credits of Master's Thesis Research (GRAD 5950 or GRAD 5960), as well as the writing of a thesis. Plan B requires not fewer than twenty-four credits of advanced course work, a final examination, but no thesis. In either case, advisory committees may require more than the minimum number of credits.

Up to six credits of advanced course work taken on a non-degree basis at the University of Connecticut may be included on a Master's degree plan of study provided the following conditions are met: (1) the grades earned in such course work are B (not B-) or higher; (2) such course work is within the six-year limit for completion of Master's degree requirements; and (3) such credits have not been applied toward any other degree, here or elsewhere (already completed or to be completed in the future). In any event, inclusion of non-degree course work on the plan of study requires the consent of the advisory committee and is subject to the approval of the Executive Committee.

Up to six credits of advanced course work completed or to be completed at other institutions may be approved for transfer to the student's Master's degree program at the University of Connecticut. Such credits are to be listed "below the line" on the plan of study. The following conditions must be met before final approval of any transfer of credit is granted: (1) the advisory committee must indicate its approval of the transfer of credit by signing the plan of study; (2) the courses must be at a level appropriate for a graduate degree and offered by an accredited institution; and (3) the grades earned in any courses to be transferred must be B (not B-) or higher. Official transcripts of any course work to be transferred must be on file in the Graduate School. When the student's plan of study has gained the approval of the Executive Committee and official transcripts indicating satisfactory completion of the course work to be transferred are received, the transfer of credit is noted on the student's permanent academic record. Any credits transferred to a graduate degree program at the University of Connecticut must not have been used toward a degree elsewhere (already completed or to be completed in the future).

Students admitted to study for the degree of Doctor of Philosophy may earn a Master's degree, if one is offered specifically in their field, under either Plan A or Plan B. They also may apply for this degree if they have on file a fully approved doctoral plan of study including at least twenty-four completed credits of suitable content course work taken at this University and have passed a master's final examination. They also may apply for this degree if they have completed at least 24 credits on an approved Ph.D. plan of study, have passed the doctoral general examination, and have been recommended by their major advisor or by the Dean of the Graduate School for award of the Master's degree.

More than one Master's degree may not be awarded at this institution to an individual student unless the degree titles are different or unless the degrees are earned in different fields of study. The same course may not be offered for credit toward more than one degree, except in the case of officially approved dual degree programs.

Candidacy and Plan of Study

To become a candidate for a Master's degree, the student must have on file with the Graduate School a plan of study prepared with the aid and approval of an advisory committee and approved by the Executive Committee of the Graduate Faculty Council. To be eligible for degree conferral, a Master's degree student must have been granted Regular status. The student may not take the final examination for the degree before the plan of study has been fully approved. The plan of study must be prepared in triplicate, signed by the student and the members of the advisory committee, and submitted to the Graduate School for approval by the Executive Committee when the student has completed not more than twelve credits of course work to be applied to
the degree. Failure to present the plan on time may prolong the period of study for the degree. Before drawing up and approving the plan, the major advisor should have on file and should consult for guidance a set of transcripts of all undergraduate and graduate work the student has taken. The advisory committee may require that the student take an exploratory examination to guide the committee in formulating the plan of study.

Courses elected shall be consistent with the student's objectives and related to the field in which the degree will be taken. Plans of study shall consist largely of courses at the 5000's level or above. A limited number of credits at the 4000's level (not more than six) may be accepted. Specially-approved courses at the 3000's level may also be considered for inclusion in certain cases. In addition to the minimum number of course credits required for the degree, the advisory committee may require the student to take other courses with or without graduate credit, depending on the student's objectives and previous preparation. Course credit by examination is not allowed as a means of accumulating credits to meet the requirements for advanced degrees at this institution.

After approval of the plan by the Executive Committee, any request for change must be submitted to the Graduate School on the official form bearing the signatures of the advisory committee and the student for approval by the Executive Committee. Successful completion of all work indicated on the approved plan of study is a fundamental prerequisite to the conferral of the degree.

Once the plan of study is approved, the student and the advisory committee should reevaluate it regularly and modify it, following the established procedures, if appropriate.

The Master's Thesis

The advisory committee must approve the topic and scope of the thesis required under Plan A and upon its completion, ascertain that it represents an independent investigation of a significant topic and is an important contribution to ongoing research in the candidate's field. The thesis must be acceptable in literary style and organization. The thesis is regarded as an important part of the student's program. Specifications for preparation of the thesis can be obtained at the Graduate School or from the Graduate School's website. It is the student's responsibility to be certain that the thesis conforms exactly to the specifications prescribed by the Graduate School.

No restrictions that limit or delay the accessibility, use, or distribution of the results of any student's research are acceptable, if such delays interfere with the timely completion of a student's academic program.

The thesis must be dated as of the calendar year in which all requirements for the degree are completed. Two high quality copies of the thesis must be deposited in the Graduate School by the conferred period deadline in August, December, or May. Each copy must contain an approval page bearing original signatures of all members of the advisory committee. At least 25% cotton-content bond paper of at least 20-pound weight must be used for both copies. Only one side of the paper is to be used for printing. After binding, both copies become the property of the Homer Babbidge Library, and the identical second copy is made available for faculty and student use. If the thesis is lengthy, the Babbidge Library may require that it be bound as more than one volume. If a program requires one or more extra copies, it is the student's responsibility to supply them directly to the program.

Final Examination

Near the close of the candidate's period of study – not later than one year after the completion of course work or the thesis -- the student must pass a final examination under the jurisdiction of the advisory committee. The candidate may not take the final examination before the plan of study has been approved by the Executive Committee or before regular status has been granted. The advisory committee has discretion to determine whether the examination shall be written, oral, or both. Invitation to participate in an oral examination is issued by the advisory committee, although any and all members of the faculty may attend. The examination must be completed by the published deadlines for the appropriate conferral period for the degree to have that conferral date.

The decision as to whether a student has passed or failed the examination rests solely with the advisory committee, which shall take into account the opinions of other participating faculty members. The vote of the advisory committee must be unanimous. Immediately following the examination, the major advisor shall communicate the results to the student and send a report on the official form to the Graduate School. If the student has failed the examination or if the advisory committee considers the result of the examination inconclusive, the committee has the option of requiring the student to retake it. In such cases, the recommendation must reach the Graduate School promptly, and any re-examination must take place within twelve months from the date of the original examination.

Under Plan A the examination may center on the candidate's research and its relation to the field of study as a whole, but may have a wider scope. Under Plan B the examination shall be comprehensive and designed to assess the candidate's mastery of the field and ability to integrate the knowledge acquired. The Master's final examination often is used as a qualifying examination for doctoral study.

THE DOCTOR OF MUSICAL ARTS DEGREE

The D.M.A. degree is the highest practice-oriented degree offered by the Graduate School in the field of Music. The program leading to its attainment is intended to give persons of outstanding ability the opportunity to become creative contributors in musical performance and scholarship. Award of the degree testifies to broad mastery of the art of music, an ability to practice that art on an exceptionally high level, and acquisition of appropriate research skills.

While certain minimum requirements are set by the Graduate School and the Music Department, it is important for students to realize that work toward this degree is not merely a matter of accumulating course credits or satisfying other requirements. The degree will be conferred only after the advisory committee and the Graduate Music Faculty are convinced that the student is able to demonstrate consummate artistry in a public forum, and has developed independence of judgment and mature scholarship.

Time Limits

The equivalent of at least two years of full-time study beyond the Master's degree is required. All work must be completed within seven years of the beginning of the student's matriculation in the degree program. The general examination shall be passed within four years of the beginning of doctoral study. Failure to complete the work within the periods specified or failure to maintain continuous registration (See "Continuous Registration") will require re-evaluation of the entire program and may result in a notice of termination. A five-year time limit applies to the acceptance of foreign-language courses. (See "Foreign Language.")

An extension of a student's terminal date is considered only when there is substantial evidence that the student has attempted to make regular and consistent progress toward completion of degree requirements. A written recommendation to extend the terminal date must bear the signature of the student's major advisor, and it must be submitted in a timely manner to the Graduate School. Approval is granted by the Dean. Each subsequent request to extend a student's terminal date requires greater justification and more extraordinary circumstances. Third requests for extension are rarely, if ever, granted.

Residence Requirement

A graduate student can fulfill the special demands of a doctoral program only by devoting a continuous period of time to concentrated study, practice, and research with a minimum of outside distraction or employment. The D.M.A. student must complete one year (two semesters) of full-time study in residence. This residence period must be completed through registration for and completion of appropriate course loads or research at the Storrs campus. Students
ordinarily must register for full-time student status during the residence period (see "Course Loads"). The principal criterion for full-time study as required for fulfillment of the doctoral residence requirement is whether the student is in fact devoting essentially full-time effort to studies, without undue distraction caused by outside employment. It is left to the advisory committee to determine whether a student's outside employment is a distraction that prevents the student from devoting essentially full-time effort to the planned program. The advisory committee will record this determination on the plan of study, along with a description of the nature, extent, and period(s) of outside employment during the residence period.

Plan of Study

The plan of study must be prepared; signed by the student, the members of the advisory committee, and the Director of Graduate Studies in Music; and then submitted to the Graduate School for approval by the Executive Committee of the Graduate Faculty Council. The student may not take the general examination before the plan of study has been fully approved. Failure to present the plan on time may prolong the period of study for the degree. Before formulating and signing the plan, the major advisor should have transcripts of all of the student's undergraduate and graduate work on file and should consult them for guidance. The advisory committee may require that the student take an exploratory examination to guide the committee in formulating the plan of study.

A limited number of credits at the 3000's or 4000's level (not more than six) may be accepted. The degree ordinarily requires at least 43 credits, depending on the area of concentration. The plan will designate any foreign language(s) in which the student is to be tested. Course credit by examination is not allowed as a means of accumulating credits to meet the requirements for advanced degrees at this institution. For students entering in Fall 1998 or later, at least fifteen credits of GRAD 6950 must appear on the plan of study. This effort represents the research for the D.M.A. Dissertation, which is an essential component of the student's program.

Advanced course work taken on a non-degree basis at the University of Connecticut may be included on a D.M.A. plan of study provided the following conditions are met: (1) the grades earned in such course work are B (not B-) or higher, (2) such course work is within the seven year limit for completion of D.M.A. degree requirements, and (3) such credits have not been applied toward any other degree here or elsewhere (already completed or to be completed in the future). In any event, inclusion of non-degree course work on the plan of study requires the consent of the advisory committee and is subject to the approval of the Executive Committee.

After approval of the plan by the Executive Committee, any request for change must be submitted in advance to the Graduate School on an official form bearing the signatures of the members of the advisory committee and the student. Such changes are subject to approval by the Executive Committee. The successful completion of all work indicated on the approved plan of study is a fundamental prerequisite to conferral of the degree.

Once the plan of study is approved, the student and the advisory committee should reevaluate it regularly and modify it, following the established procedure, if appropriate.

Foreign Language

Students in all areas of concentration shall be required to have a competent reading knowledge of at least one foreign language appropriate to the general area of study.

Students should plan to meet the language requirement early in their graduate career and well before they begin preparation for the general examination. Methods for establishing evidence of reading competence are the same as those for the Ph.D. (See explanation of the Foreign Language requirement under "The Doctor of Philosophy Degree.")

Transfer Credit

Transfer of credit for course work completed at other institutions is approved only after the student has demonstrated the ability to do acceptable graduate work at the University of Connecticut. Such ability must be demonstrated by successful completion of graduate level University of Connecticut course work. The maximum number of credits accepted from accredited institutions is six, provided it is of at least B (not B-) quality and contributes to the objectives of the proposed doctoral program. Such graduate work may be approved for transfer provided that the general examination is to be passed and all degree requirements are to be completed within the prescribed period – seven years – from the beginning date of the earliest course, wherever taken, listed on the approved doctoral plan of study. (See "Time Limits." Transfer credit is not granted for individual courses used for a degree elsewhere(already completed or to be completed in the future). Instead, consideration is given to that degree program as an entity when the doctoral plan of study is being prepared.

Evaluation of Performance

The advisory committee shall evaluate continually the student’s performance. Any graduate student whose scholastic performance does not meet the minimum requirements of the Graduate School may be subject to dismissal. The first recital for all D.M.A. students, except for those in conducting, is considered to be a qualifying recital, and must be presented during the first year of D.M.A. study. The hearing for this recital is evaluated by the full performance faculty. Any student who does not demonstrate an appropriate level of performance in this hearing and recital is subject to dismissal.

General Examination

The general examination shall be taken near the end of the course program but not later than eight months prior to the conferral of the degree. Before arrangements for the examination are made, the foreign language requirement(s) should have been met and the plan of study must have been approved by the Executive Committee of the Graduate Faculty Council. The examination is comprehensive in nature, and incorporates elements of music history and literature, music theory, performance practice, and practical application of these constituent components.

The examination is under the jurisdiction of the student's advisory committee and contains both written and oral components. Not fewer than five faculty members, including all members of the advisory committee, constitute the examining committee and participate in the examination. The final decision as to whether or not the student has passed the examination is determined solely by majority vote of the examining committee.

After the examination, the major advisor communicates the results to the candidate and sends the official report on the examination to the Graduate School.

D.M.A. Dissertation Proposal

Before preparation of the D.M.A. Dissertation is well under way, the student must file a proposal describing the intended research with the Graduate Studies Committee of the Music Department. Failure to file the proposal early may result in wasted effort on a document if changes are required in the project. The proposal must be approved by the Graduate Studies Committee in Music at least four months before the filing of the D.M.A. Dissertation and it must be approved by the Executive Committee of the Graduate Faculty Council at least three months before the filing of the D.M.A. Dissertation.

Candidacy, Recitals, and D.M.A.
Dissertation Preparation

Upon passing the general examination, the foreign language requirements, and (in the case of all students except conducting majors) the qualifying recital, the student becomes a candidate for the degree Doctor of Musical Arts. Students are notified of their advancement to candidacy.

Students in every D.M.A. area of concentration except conducting must present three full-length recitals during the course of study for the degree. The first of these is considered a qualifying recital, which must be preceded by a pre-recital hearing. This hearing must be presented on a designated date at least three weeks before the scheduled recital, and is adjudicated by the full performance
THE DOCTOR OF PHILOSOPHY DEGREE

The Ph.D. is the highest degree offered by the University and is conferred in more than 60 fields of study. The program leading to its attainment is intended to give persons of outstanding ability the opportunity to become creative contributors in a scholarly field. Award of the degree testifies to broad mastery of an established subject area, acquisition of acceptable research skills, and a concentration of knowledge in a specific field.

While certain minimum requirements are set by the Graduate School, it is important for students to realize that work toward this degree is not merely a matter of accumulating course credits or of satisfying other requirements. The degree will be conferred only after the advisory committee and the Graduate Faculty are convinced that the student has developed independence of judgment and mature scholarship in the chosen field. An individual may not earn more than one Ph.D. degree in a single field of study at this institution.

Time Limits

The equivalent of at least three years of full-time study beyond the baccalaureate or two years beyond the master's degree (in the same or a closely-related field) is required. All work must be completed within a period of eight years of the beginning of the student's matriculation in the degree program, or, if the student entered with a master's degree in the same or a closely related field, the doctorate must be completed within seven years. The general examination must be passed within five years of the beginning of the student's matriculation in the degree program, or within four years if the student entered with a master's degree in the same or a closely-related field. Failure to complete the work within the periods specified or failure to maintain continuous registration (see "Continuous Registration") will require reevaluation of the student's entire program and may result in a notice of termination. A five-year time limit applies to the acceptability of foreign-language courses. (See "Foreign Language; Related or Supporting Area of Study").

A one-time extension of the student's terminal date of no longer than two years is considered only when there is substantial evidence that the student has made regular and consistent progress toward completion of degree requirements. A detailed recommendation to extend the terminal date must be submitted in a timely manner to the Graduate School. Approval is granted by the Dean.

Residence Requirement

The graduate student can fulfill the special demands of a doctoral program only by devoting a continuous period of time to concentrated study and patient research with a minimum of outside distraction or employment. During the second or subsequent years of graduate work in the field, at least two consecutive semesters must be completed in residence. Alternatively, this requirement may be met by combining one semester of residence plus a contiguous 12-week summer period made up of Summer Sessions I & II or Summer Session IV, if agreed upon by the advisory committee and the student. The residence period must be completed through registration for and completion of appropriate course loads or research at the Storrs campus or, if more appropriate, at one of the other sites of instruction and research within the University system. Students ordinarily must register for full-time student status during the residence period (see "Course Loads").

The essential criterion for full-time study as required for fulfillment of the doctoral residence requirement is whether the student is in fact devoting essentially full-time effort to studies, without undue distraction caused by outside employment. It is left to the advisory committee to determine whether a student's outside employment is a distraction that prevents the student from devoting essentially full-time effort to the planned program. The advisory committee will record this determination on the plan of study, along with a description of the nature, extent, and period(s) of outside employment during the residence period.

Plan of Study

The plan of study must be prepared, signed by the student and the members of the advisory committee, and submitted to the Graduate School for approval by the Executive Committee of the Graduate Faculty Council when the student has completed not more than twelve credits of course work to be applied to the degree. The student may not take the general examination before the plan of study has been fully approved. Failure to present the plan on time may prolong the period of study for the degree. Before formulating and signing the plan, the major advisor should review a set of transcripts of all undergraduate and graduate work the student has taken. The advisory committee may require that the student take an exploratory examination to guide it in formulating
the plan of study.

Courses elected should be consistent with the student's objectives and related to the field in which the degree will be taken. Plans of study will consist largely of courses at the 5000's level or above. A limited number of credits at the 4000's level (ordinarily not more than six) may be accepted. While there are no specific course requirements for the doctorate, the Executive Committee expects the plan to include about twenty to twenty-four credits of course work – exclusive of any related or supporting area offered in lieu of a non-credit language requirement – beyond the master's degree or its equivalent in the same or a similar field. In other words, the work presented for the Ph.D. degree should equate to 44 to 48 credits beyond the baccalaureate or its equivalent. For students entering in Fall, 1998 or later, at least 15 credits of GRAD 6950 (Dissertation Research) must be included in the plan of study, representing the research effort the student devotes to the dissertation. The dissertation is regarded as an important part of the student's program and is considered to represent at least one year of full-time graduate study.

Special provisions apply to the Ph.D. degree in chemistry and in polymer science.

The plan shall designate any foreign language(s) in which the student is to be tested and any courses comprising a related or supporting area. Course credit by examination is not allowed as a means of accumulating credits to meet the requirements for advanced degrees at this institution. If an examination is permitted to be used to fulfill a related (or supporting) area requirement for the Ph.D. degree, course credit is not given.

Advanced course work taken on a non-degree basis at the University of Connecticut, ordinarily not more than 12 credits, may be included on a Ph.D. plan of study provided the following conditions are met: (1) the grades earned in such course work are B (not B-) or higher, (2) such course work is within the seven or eight year limit (whichever applies) for completion of Ph.D. degree requirements, and (3) such credits have not been applied toward any other degree here or elsewhere (already completed or to be completed in the future). In any event, inclusion of non-degree course work on the plan of study requires the consent of the advisory committee and is subject to the approval of the Executive Committee.

After approval of the plan by the Executive Committee, any request for change must be submitted to the Graduate School on an official form bearing the signatures of the members of the advisory committee and the student. Such requests are subject to approval by the Executive Committee. The successful completion of all work indicated on the approved plan of study is a fundamental prerequisite to the conferral of the degree.

Once the plan of study is approved, the student and the advisory committee should reevaluate it regularly and modify it, following the established procedure, if appropriate.

Foreign Language; Related or Supporting Area of Study

Students are required to have a competent reading knowledge of at least one foreign language appropriate to the general area of study or at least six credits of advanced work in a related or supporting area (unless faculty in a particular field of study have voted to require neither). However, an advisory committee may require a competent reading knowledge of more than one foreign language. The committee also may require additional advanced work in one or more related or supporting areas, alone or in conjunction with a foreign language.

Fields of Study which require neither a related area nor demonstrated reading knowledge of a language other than English currently include: Biochemistry, Biomedical Engineering, Biomedical Science, Cell Biology, Chemistry, Civil Engineering, Computer Science and Engineering, Ecology and Evolutionary Biology, Environmental Engineering, Genetics and Genomics, Human Development and Family Studies, Linguistics, Materials Science, Materials Science and Engineering, Microbiology, Pathobiology, Philosophy, Physics, and Structural Biology and Biophysics.

If a related or supporting area is required, the courses chosen must comprise a coherent unit of advanced (i.e., 4000's level or above) work outside the major field of study (or area of concentration, if appropriate). Ordinarily, such course work is taken outside the student's "home" department. The courses must be approved by the advisory committee as a part of the plan of study. With few exceptions, they must be taken at this institution. No course credits will be accepted in transfer toward the related or supporting area unless approved by the Executive Committee before the courses are taken. With the approval of the advisory committee, however, the passing of an examination may be substituted for the course work. In the event of a non-language examination, one or more examiners shall be designated by the Executive Committee. With the consent of the advisory committee, a three-credit advanced course in mathematics or statistics passed satisfactorily at this institution may fulfill the otherwise six-credit-minimum requirement if the student's preparation contains a suitably advanced prerequisite course (i.e., equivalent to a 4000's level University of Connecticut course) passed satisfactorily at this or another institution (although no course credits will be accepted in transfer).

For a specific language to be considered appropriate, there must exist a significant body of literature written in that language in the student's field. Students should plan to meet any language requirement early in their graduate careers and usually well before they begin preparation for the general examination. One of five methods may be used to establish evidence of reading competence in an approved language. The advisory committee may designate which method shall be used or may leave the choice of method up to the student. For methods (1) through (3), below, courses and examinations will not be accepted if passed more than five years prior to submission of the plan of study for Executive Committee approval.

(1) The student may pass both semesters of an approved one-year reading or intermediate course in the language with grades equivalent to C (not C-) or higher. This requirement will be considered to be met if, in light of previous preparation, the student is permitted by the instructor to enter directly into the second semester of the one-year sequence and earns a grade of C (not C-) or higher. The courses may be taken by graduate students on a Satisfactory/Unsatisfactory basis, with a grade of Satisfactory denoting performance at the level of C (not C-) or higher. The Executive Committee designates courses that may be taken for this purpose. Currently they are French 1163-1164, German 1145-1146, and Spanish 1003-1004. Alternatively, the student may pass a course in a foreign language or literature at or above the 3000's level, provided that the reading for the course is required to be done in the language.

Language courses taken at other institutions are not accepted. However, the student may consider option (2).

(2) The student may pass an examination set by a member of the University faculty (or, if approved by the advisory committee and the Graduate School, a faculty member at another college or university) designated by the student's advisory committee and approved by the head of the department in which the major advisor holds an appointment. The examiner may be a member of the same department but may not be a member of the student's advisory committee. The examination will include, but need not be limited to, the translation of a passage approximately 400 words in length. The use of a dictionary may be permitted at the option of the examiner. The translation is to be written in English unless permission is granted by the Executive Committee of the Graduate Faculty Council to write it in another language. Such permission is granted only if it is deemed in the best interest of the student and if an acceptable examiner is available. The examiner will choose the passage from among books or articles submitted by the major advisor. The passage may be the same for a group of students in the same field or may be selected individually for each student. The examination must be supervised and have a reasonable time limit. The result of the examination, whether passed or failed, must be reported to the Graduate School on the official form bearing the signature of the examiner.

(3) A doctoral reading examination passed at another graduate school of approved standing may be accepted in transfer (subject to the above five-year limitation) provided the examination was taken prior to the student's enrollment in this Graduate School.

(4) The student may establish evidence of competence in the language through an official transcript stating that the baccalaureate or a higher degree was earned with that language as the major.

(5) The student may establish evidence of competence in the language through documentation that it is the student's native language, learned
Transfer Credit

Transfer of credit for course work completed at other institutions is approved only after the student has demonstrated the ability to do acceptable graduate work at the University of Connecticut. Such ability must be demonstrated by successful completion of graduate-level University of Connecticut course work. The equivalent of two years of graduate work completed at accredited institutions may be accepted, provided it is of at least B (not B-) quality and it contributes to the objectives of the proposed doctoral program. Such graduate work may be approved for transfer provided that the general examination is to be passed and all degree requirements are to be completed within the prescribed periods—respectively, four or five years and seven or eight years—from the beginning date of the earliest course, wherever taken, listed on the approved doctoral plan of study. (See “Time Limits.”) Transfer credit is not granted for individual courses used toward a degree elsewhere (already completed or to be completed in the future). Instead, consideration is given to that degree program as an entity when the doctoral plan of study is being prepared.

Evaluation of Performance

The advisory committee continually evaluates the student’s performance. Any graduate student whose scholastic record does not meet the minimum requirements of the Graduate School may be subject to dismissal. However, the committee may insist on more than the minimum scholastic requirements and may take other factors into consideration in deciding whether or not to recommend to the Dean that the student be permitted to continue in the degree program.

General Examination

The general examination is taken near the end of the course program, but not later than eight months prior to the date of completion of all degree requirements. In any event, the examination must be passed within five years of the beginning of doctoral study or within four years if the student entered with a master's degree in the same or a closely related field. The beginning of doctoral study is defined as the beginning date of the earliest course, wherever taken, listed on the approved doctoral plan of study. Foreign language requirements should have been met and the related or supporting area courses completed well in advance. The student may not take the general examination before the plan of study has been approved by the Executive Committee.

The general examination is under the jurisdiction of the student’s advisory committee unless the members of the Graduate Faculty in a student’s field of study have voted to assign jurisdiction for all or part of the examination to a differently constituted examining committee. The examination may be written, oral, or both. All members of the advisory committee must be present during any oral examination. A student is examined in the several facets of his or her field of study, not merely in the particular area of concentration. Advisory or examining committees may give a series of cumulative examinations, to be taken at intervals over the student’s period of study. For practical purposes, the final part of such a series shall be regarded as “the general examination,” and its scope may be limited as the advisory or examining committee may judge appropriate.

The examining committee includes at least one faculty member representing each of the major areas addressed in the examination. Not fewer than five faculty members, including all members of the student’s advisory committee, must participate in the examination. All examiners are invited to submit questions and to evaluate answers, but the final decision as to whether or not the student has passed the examination shall rest solely with the advisory committee unless the members of the Graduate Faculty in a student’s field of study have voted to assign this authority to a differently constituted examining committee.

After the examination, the major advisor communicates the results to the candidate and immediately sends the official report, bearing the signature of each member of the advisory committee, to the Graduate School. Should the committee permit the student to take the examination in several sections, only the final result should be reported.

Dissertation Proposal

Before dissertation research is undertaken, the student is required to prepare and submit for advisory committee and external review a dissertation proposal addressing the intended research, following the guidelines contained on the special approval form obtainable at the Graduate School or from the Graduate School website. Failure to file the dissertation proposal early may result in wasted effort on a dissertation if changes are required in the project.

Ordinarily, it is expected that a Dissertation Proposal will be prepared and fully approved before preparation of the dissertation is well underway. If human and/or animal subjects are involved in the dissertation research, approval must be secured before the research is undertaken. Approval of the Institutional Review Board (IRB) and/or the Institutional Animal Care and Use Committee (IACUC) respectively. Approval of the Embryonic Stem Cell Research Oversight Committee (ESCRo) must be obtained in advance for any use of human stem cells in dissertation research.

When the dissertation proposal has been completed and signed by the student and also has been approved by the members of the advisory committee, the proposal then is submitted to the head of the department or program to which the student was admitted. The head appoints reviewers from outside the advisory committee to conduct a critical evaluation of the dissertation proposal. The use of at least one reviewer from outside the University is encouraged. Reviewers may be appointed to evaluate an individual student’s proposal, or they may be appointed to a committee responsible for reviewing all proposals in a particular field of study or group of related fields of study.

Dissertation proposals are reviewed with the following questions in mind: (1) Is the proposal well written, well organized, and well argued? (2) Does the proposal describe a project of appropriate scope? (3) Does the student demonstrate a knowledge of the subject and an understanding of the proposed method of investigation? (4) Does the student show awareness of the relevant research by others? and (5) Does the student consider how the proposed investigation, if successful, will contribute to knowledge?

The department or program head’s signature on the proposal when the review is complete confirms that the results of the review were favorable. The evaluation may take the form of a reading of the proposal or attendance at an oral presentation and discussion of the proposal. A copy of the signed approval form and dissertation proposal must be received by the Graduate School when the review process has been completed. Receipt by the Graduate School of the approved Dissertation Proposal and any required IRB, IACUC, or ESCRo approval is a basic requirement for eligibility to schedule the oral defense of the dissertation and for conferral of the doctoral degree.

Candidacy and Dissertation Preparation

Upon approval of the plan of study, passing the general examination, and having had the dissertation proposal fully approved by the Executive Committee of the Graduate Faculty Council, the student becomes a candidate for the degree of Doctor of Philosophy. Students are notified of their advancement to Candidacy.

A dissertation representing a significant contribution to ongoing research in the candidate’s field is a primary requirement. The preparation of the dissertation is under the immediate and continuous supervision of the advisory committee and it must meet all standards prescribed by the committee and by the Graduate School. It must be acceptable in literary style and organization. Specifications for its preparation may be obtained at the Graduate School or from the Graduate School website. It is
the student’s responsibility to be certain that the dissertation conforms exactly to the specifications prescribed by the Graduate School.

No restrictions that limit or delay the accessibility, use, or distribution of the results of any student’s research are acceptable, if such delays interfere with the timely completion of a student’s academic program.

The dissertation is dated as of the calendar year in which all requirements for the degree are met. The advisory committee will set a date for completion of the dissertation, allowing time for each advisor to make suggestions for revision, and will set a date for the final examination, allowing time for the student to make revisions and to submit a complete preliminary or “working” copy of the abstract and dissertation at the Graduate School (or, if more appropriate, at a central office at the Health Center in Farmington) at least seven days before the dissertation defense. When submitted to the Graduate School (or to the Health Center), the complete preliminary or “working” copy of the abstract and dissertation must be accompanied by a tentative-approval form signed by all members of the advisory committee.

Following the examination, the student must submit the final, fully-revised copies of the dissertation to the Graduate School (also another copy if submitted to the Health Center). The final copies of the dissertation should be printed with a laser printer or they may be high quality photocopies. In any event, at least 25% cotton-content bond paper of at least 20-pound weight must be used for any copy of the dissertation submitted to the Graduate School (or to the Health Center). Only one side of the paper is to be used for printing.

In some cases, revision of the dissertation is required by the advisory committee as a result of the final examination. Final approval of the dissertation following the examination is indicated by the presence of original signatures of all members of the advisory committee on the final approval page, which must be submitted to the Graduate School soon after the student has been examined if no revisions are necessary. In any case, final-approval pages (and the revised dissertation, if changes are required) must be received at the Graduate School by the conferral period deadline in August, December, or May. After binding, two copies of the dissertation become the property of the Homer Babbidge Library. If a department or program requires extra copies, it is the student’s responsibility to supply them directly to the department or program.

Abstract, Microfilming, and Other Completion Requirements

At the time the dissertation is submitted, four copies of the abstract (five if the dissertation is submitted to the Health Center) must be submitted to the Graduate School (or with the dissertation at the Health Center). The body of the abstract may not exceed 350 words in length, and it is published in Dissertation Abstracts.

Microfilming of the dissertation by PQIL is required. Agreement forms for this process must be completed by doctoral candidates when submitting the dissertation to the Graduate School (or the Health Center). This form also may be used to arrange for optional copyrighting of the dissertation. The student is required to pay a fee for the microfilming of the dissertation. There also is a fee for copyrighting the dissertation, if this is desired. There is no charge to the student, however, for the binding of the two final copies of the dissertation. Both final copies become the property of the Homer Babbidge Library.

All doctoral students are required to complete the “Survey of Earned Doctorates,” a federal form available at the Graduate School.

Final Examination

The final examination or dissertation defense deals mainly with the subject matter of the dissertation. The examination is oral, it is under the jurisdiction of the advisory committee, and it is held at the appropriate campus of the University (Storrs, Avery Point, Health Center, or School of Social Work). The examination may not be held sooner than seven days after a working copy of the complete dissertation and tentative advisory committee approval have been submitted to the Graduate School (or the Health Center) and by the conferral period deadline in August, December, or May. Invitation to participate in the examination is issued by the advisory committee, although any member of the faculty may attend. No fewer than five members of the faculty, including all members of the candidate’s advisory committee, must participate in the final examination, unless written approval for a lesser number has been secured in advance from the Dean of the Graduate School.

It is required that notification of the time, date, and place of the examination be posted at least two weeks prior to the examination on the University’s Web-based events calendar. Instructions for posting the announcement are available at <http://www.grad.uconn.edu/announcing.html>. In addition, the candidate should be advertised widely in the candidate’s department and elsewhere throughout the University, as appropriate.

The decision regarding whether a candidate has passed, conditionally passed, or failed the examination rests solely with the advisory committee, which will take into account the opinions of other participating faculty members and other experts. The vote of the advisory committee must be unanimous. Following the examination, the major advisor communicates the results to the student and verifies that the official report has been completed and signed for submission to the Graduate School.

n

CONFERRAL OF DEGREES

Conferral

Degree conferral requires that the student be in good academic standing and that all requirements for the degree have been completed satisfactorily on or before the last day of the conferral period. Degrees are conferred three times each year – in August, December, and May – although there is only one annual graduate Commencement ceremony at which graduate degrees are awarded (in May). Students who qualify for degree conferral receive their diplomas by mail, normally within three months following conferral.

Application for the Degree

Formal application for a degree to be conferred must be filed on-line by the degree candidate using the PeopleSoft system. Information and instructions are available at this website: <http://www.grad.uconn.edu/degree_completion.html>. If filing is not timely, conferral is delayed to the next conferral period, even though all other degree requirements may have been completed on time.

Commencement

The graduate Commencement ceremony is held once each year at the end of the spring semester. Individuals who have had degrees conferred at the end of the previous summer or the previous fall semester and candidates for degrees who complete degree requirements by the end of the spring semester may participate in the annual Commencement ceremony and are urged to do so. Academic regalia appropriate for the University of Connecticut degree being conferred is strictly required for all who participate in the ceremony. Information concerning the Commencement ceremony, including academic regalia and guest tickets, is made available by mid-February exclusively on the Graduate School’s website: <http://www.grad.uconn.edu/>.
Fields of Study

Fields of study and areas of concentration officially recognized by the Graduate School are limited to those listed below. Graduate degrees are awarded in these fields of study. Each field of study is shown in conjunction with the degree or degrees that may be awarded. The final transcript also will record completion of the special requirements of one listed area of concentration, if appropriate. These requirements are determined by a student’s advisory committee. The Graduate School does not require that a student select an area of concentration, although an advisory committee may require a student to do so.

Fields of Study

<table>
<thead>
<tr>
<th>Areas of Concentration</th>
<th>Degrees Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>M.S.</td>
</tr>
<tr>
<td>Adult Learning</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Agricultural and Resource Economics</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Allied Health</td>
<td>M.S.</td>
</tr>
<tr>
<td>Animal Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Physiology of Reproduction</td>
<td></td>
</tr>
<tr>
<td>Anthropology</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Social Science and Health Care (Ph.D. only)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Applied Financial Mathematics</td>
<td>M.S.</td>
</tr>
<tr>
<td>Applied Genomics</td>
<td>M.S.</td>
</tr>
<tr>
<td>Applied Microbial Systems Analysis</td>
<td>M.S.</td>
</tr>
<tr>
<td>Art</td>
<td>M.F.A.</td>
</tr>
<tr>
<td>Art History</td>
<td>History M.A.</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>M.S.</td>
</tr>
<tr>
<td>Biodiversity and Conservation Biology</td>
<td>M.S.</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Biomedical Science</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>Cell Analysis and Modeling</td>
<td></td>
</tr>
<tr>
<td>Cellular and Molecular Pharmacology</td>
<td></td>
</tr>
<tr>
<td>Genetics and Development Biology</td>
<td></td>
</tr>
<tr>
<td>Immunology</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology and Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Neuroscience</td>
<td></td>
</tr>
<tr>
<td>Skeletal, Craniofacial and Oral Biology</td>
<td></td>
</tr>
<tr>
<td>Biotechnology (not accepting new students at this time)</td>
<td>M.S</td>
</tr>
<tr>
<td>Business Administration</td>
<td>M.B.A., Ph.D.</td>
</tr>
<tr>
<td>Finance</td>
<td></td>
</tr>
<tr>
<td>Health Care Management</td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td></td>
</tr>
<tr>
<td>Venture Consulting</td>
<td></td>
</tr>
<tr>
<td>Marketing Intelligence</td>
<td></td>
</tr>
<tr>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>Part-time M.B.A. program</td>
<td></td>
</tr>
<tr>
<td>Areas of Concentration</td>
<td></td>
</tr>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Health Care Management</td>
<td></td>
</tr>
<tr>
<td>Human Resources (not accepting new students at this time)</td>
<td></td>
</tr>
<tr>
<td>International Business</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>Management of Technology</td>
<td></td>
</tr>
<tr>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>Ph.D. program Areas of Concentration</td>
<td></td>
</tr>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>Operations and Information Management</td>
<td></td>
</tr>
<tr>
<td>Cell Biology</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Cytology</td>
<td></td>
</tr>
<tr>
<td>Developmental Biology</td>
<td></td>
</tr>
<tr>
<td>Plant Cell and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>Plant Physiology</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Chemistry</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Applied Mechanics (Ph.D. only)</td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering (M.S. only)</td>
<td></td>
</tr>
<tr>
<td>Fluid Dynamics (Ph.D. only)</td>
<td></td>
</tr>
<tr>
<td>Geotechnical Engineering</td>
<td></td>
</tr>
<tr>
<td>Structural Engineering</td>
<td></td>
</tr>
<tr>
<td>Transportation and Urban Engineering</td>
<td></td>
</tr>
<tr>
<td>Clinical and Translational Research</td>
<td>M.S.</td>
</tr>
<tr>
<td>Communication Sciences</td>
<td>M.A., Au.D., Ph.D.</td>
</tr>
<tr>
<td>Audiology</td>
<td>(Au.D. only)</td>
</tr>
<tr>
<td>Communication</td>
<td>(M.A. only)</td>
</tr>
<tr>
<td>Communication Processes and Marketing Communication (Ph.D. only)</td>
<td></td>
</tr>
<tr>
<td>Speech, Language, and Hearing (M.A. and Ph.D. only)</td>
<td></td>
</tr>
<tr>
<td>Comparative Literary and Cultural Studies</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Curriculm and Instruction</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Bi-lingual and Bi-cultural Education</td>
<td></td>
</tr>
<tr>
<td>Elementary Education</td>
<td></td>
</tr>
<tr>
<td>English Education</td>
<td></td>
</tr>
<tr>
<td>Music Education (M.A. only)</td>
<td></td>
</tr>
<tr>
<td>Mathematics Education</td>
<td></td>
</tr>
<tr>
<td>Reading Education</td>
<td></td>
</tr>
<tr>
<td>Science Education</td>
<td></td>
</tr>
<tr>
<td>Secondary Education</td>
<td></td>
</tr>
<tr>
<td>Social Studies Education</td>
<td></td>
</tr>
<tr>
<td>World Language Education</td>
<td></td>
</tr>
<tr>
<td>Dental Science</td>
<td>M.Dent.Sc.</td>
</tr>
<tr>
<td>Dramatic Arts</td>
<td>M.A., M.F.A.</td>
</tr>
<tr>
<td>Acting</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Directing (not accepting new students at this time)</td>
<td></td>
</tr>
<tr>
<td>Performance/Production (M.A. only -- not accepting new students at this time)</td>
<td></td>
</tr>
<tr>
<td>Puppetry</td>
<td></td>
</tr>
<tr>
<td>Technical Direction</td>
<td></td>
</tr>
<tr>
<td>Theater History and Criticism (M.A. only -- not accepting new students at this time)</td>
<td></td>
</tr>
<tr>
<td>Ecology and Evolutionary Biology</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Economics</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Education Administration</td>
<td>M.A., Ph.D. (not accepting new students at this time)</td>
</tr>
<tr>
<td>Educational Leadership</td>
<td>Ed.D.</td>
</tr>
<tr>
<td>Educational Psychology</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Cognition/Instruction</td>
<td></td>
</tr>
<tr>
<td>Counselor Education and Counseling Psychology (Ph.D. only)</td>
<td></td>
</tr>
<tr>
<td>Gifted and Talented Education</td>
<td></td>
</tr>
<tr>
<td>Measurement, Evaluation, and Assessment</td>
<td></td>
</tr>
<tr>
<td>School Counseling (M.A. only)</td>
<td></td>
</tr>
<tr>
<td>School Psychology</td>
<td></td>
</tr>
<tr>
<td>Educational Technology</td>
<td>M.A., Ph.D.</td>
</tr>
</tbody>
</table>

1. M.A. degree program only
2. M.S. degree program only
3. Ph.D. degree program only
4. Interdisciplinary program
5. Health Center program only
6. Not accepting new students at this time
7. Au.D. program only
8. Not accepting new students to the Ph.D. program at this time
Fields of Study

Degrees Offered

<table>
<thead>
<tr>
<th>Areas of Concentration</th>
<th>M.S., Ph.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Electronics, Photonics, and Biophotonics</td>
<td>M.Engr.</td>
</tr>
<tr>
<td>Information, Communications, Decision, and Biosystems</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>English</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>American Studies(M.A. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Financial Risk Management</td>
<td>M.S.</td>
</tr>
<tr>
<td>French</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Genetics and Genomics</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Geography</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Geodetic Sciences</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Geology</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Geran</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Higher Education and Student Affairs</td>
<td>M.A.</td>
</tr>
<tr>
<td>History</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>American Studies(M.A. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Latin American (Ph.D. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Medieval European (Ph.D. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Modern European (Ph.D. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>United States (Ph.D. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Homeland Security Leadership</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Human Development and Family Studies</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Human Resource Management</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Humanitarian Services Administration</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>International Studies</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>European Studies</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Italian History and Culture</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Italian</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Judaic Studies</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Kinesiology</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Exercise Science</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Sport Management</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Linguistics</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Materials Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Alloy Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Corrosion Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Crystal Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Dental Materials</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Metallurgy</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Polymer Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Mathematics</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Actuarial Science (M.S. only)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Applied Mechanics (Ph.D. only)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Design</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>English</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>American Studies(M.A. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Financial Risk Management</td>
<td>M.S.</td>
</tr>
<tr>
<td>French</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Genetics and Genomics</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Geography</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Geodetic Sciences</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Geology</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Geran</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Higher Education and Student Affairs</td>
<td>M.A.</td>
</tr>
<tr>
<td>History</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>American Studies(M.A. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Latin American (Ph.D. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Medieval European (Ph.D. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Modern European (Ph.D. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>United States (Ph.D. only)</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Homeland Security Leadership</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Human Development and Family Studies</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Human Resource Management</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Humanitarian Services Administration</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>International Studies</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>European Studies</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Italian History and Culture</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Italian</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Judaic Studies</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Kinesiology</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Exercise Science</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Sport Management</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Linguistics</td>
<td>M.A., Ph.D.</td>
</tr>
<tr>
<td>Materials Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Alloy Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Corrosion Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Crystal Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Dental Materials</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Metallurgy</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Polymer Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Mathematics</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Actuarial Science (M.S. only)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Applied Mechanics (Ph.D. only)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Design</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

1. M.A. degree program only
2. M.S. degree program only
3. M.Mus. degree program only
4. D.M.A. degree program only
5. Ph.D. degree program only
6. No longer admitting master's students
7. See Curriculum and Instruction (previous page)
8. Interdisciplinary program
9. Not accepting new students at this time
HEALTH CENTER PROGRAMS

The following degree programs, also included in the preceding Field of Study list, are offered primarily at the University of Connecticut Health Center. Application to these programs should be made to the Graduate School Admissions Office, University of Connecticut Health Center, Farmington, Connecticut 06030-1827. In addition, some interdisciplinary fields of study and areas of concentration involve Health Center fields as participants (see below).

Biomedical Science ... Ph.D.
Cell Biology .. M.S.
Genetics and Developmental Biology................................. M.S.
Immunology .. M.A.
Molecular Biology and Biochemistry................................. M.S.
Neuroscience .. M.A.
Skeletal, Craniofacial and Oral Biology.............................. M.S.
Clinical and Translational Research................................. M.S.
Dental Science .. M.Dent.Sc.
Public Health .. M.P.H.
Occupational and Environmental Health Sciences............... M.P.H., +, Ph.D.
Social and Behavioral Health Sciences M.A., +

INTERDISCIPLINARY PROGRAMS

An interdisciplinary program includes substantial course work in two or more fields of study. In some programs the degree is awarded in one of the existing fields of study involved in an interdisciplinary field of study, the Dean of the Graduate School may choose to appoint an advisory committee which represents the various fields of study involved in an interdisciplinary program. The following is a listing of approved interdisciplinary programs.

Interdisciplinary Areas of Concentration

Each interdisciplinary Area of Concentration listed below is offered in each of the participating Fields of Study indicated in the middle column.

1 M.A. degree program only
2 M.S. degree program only
3 Ph.D. degree program only
4 Not accepting new students at this time
5 Interdisciplinary program
6 Health Center program only
Programs and Course Offerings

Programs

All graduate degrees at the University of Connecticut except the M.D., D.M.D., Pharm.D., and J.D. are awarded through the Graduate School.

Only those Fields of Study and Areas of Concentration identified in the preceding list are recognized by the University and the Graduate School. Here, descriptions of degree programs appear under the titles of the approved fields of study, if possible. In some cases, it has been necessary to group the approved fields of study under a departmental or other title in order to facilitate location in the text. For many of the programs, special requirements (over and above those of the Graduate School) that are generally applied to all students in that program are outlined. However, each student's program is non-departmental in that the advisory committee alone, in supervising it, is directly responsible to the Dean of the Graduate School.

Course Offerings

The following lists include most of the graduate courses that the University has approved for offering. However, not all courses listed are offered every semester or every year. For actual current offerings, students should consult the appropriate schedule of classes which can be accessed from the Graduate School's registration Web site. Part-time, evening, and summer session students may wish to consult class schedules published by the Office of Credit Programs, Center for Continuing Education. Descriptions of undergraduate courses are contained in the Undergraduate Catalog. The University reserves the right to change announced offerings.

Course Numbering System

Undergraduate courses are numbered 1000-4999. Courses numbered 1000-1999 are primarily for freshmen, courses numbered 2000-2999 are primarily for sophomores, courses numbered 3000-3999 are primarily for juniors, and courses numbered 4000-4999 are primarily for seniors. A limited number of credits of course work completed at the 4000-level (usually not more than six) may be applied, with the approval of the student's advisory committee, toward a graduate degree program provided certain conditions are met (See "Standards and Degree Requirements").

Graduate courses are numbered 5000-6999. This Catalog contains listings of graduate-level courses only. Courses numbered 5000-5999 are primarily for master's students, and courses numbered 6000-6999 are primarily for doctoral students.

The University of Connecticut changed its course numbering system from three-digit course numbers to four-digit course numbers following the 2007-2008 academic year. In this Catalog, the descriptions of courses which previously had a three-digit course number begin with that number in parentheses.

Satisfactory/Unsatisfactory Grading

Throughout the text, courses approved by the Executive Committee of the Graduate Faculty Council for Satisfactory (S)/Unsatisfactory (U) grading (see "Standards and Degree Requirements") are designated by the dagger symbol (†).

Course Semesters

Class schedules for each semester and session can be accessed from the University's
AGRICULTURAL AND RESOURCE ECONOMICS

Department Head: Professor Rigoberto A Lopez

Associate Professor Altobello, Minkler, Randolph, Shah, and Tripathi

Assistant Professors: Huang and Matchke

M.S. and Ph.D. degrees in Agricultural and Resource Economics are offered. Study may be undertaken in three broad areas, namely Food Marketing and Industrial Organization, Environmental and Resource Economics, and International Agricultural and Economic Development. Examples of sub-areas of specialization include prices and market performance, production economics, applied econometrics and statistics, environmental economics, benefit-cost analysis, economics of recreation, natural resource economics, economics of fisheries and aquaculture, economic development, and agricultural and resource policies.

The graduate program includes courses designed to provide a foundation in theory, empirical methods, and policy. Ph.D. students take additional courses in their field of interest prior to carrying out dissertation research. For M.S. students, the opportunity of selecting a specialized study area is offered via a thesis (or a non-thesis research project and additional course work). Graduate students usually take courses from those listed below and, in addition, select complementary offerings from the Departments of Economics, Natural Resources Management and Engineering, and Statistics, as well as the School of Business. Further information regarding graduate program structures and course requirements is available in the Departmental Graduate Bulletin (which may be downloaded from the Agricultural and Resource Economics website).

Admission Requirements.

The Department recommends that applicants for admission to the master's program have a background of basic courses in undergraduate level economics, mathematics, and statistics, although there are no fixed requirements. Applicants to the Ph.D. program are expected to have superior preparation in these subjects and are also required to submit scores from the GRE General Test.

Special Facilities and Opportunities.

Graduate students have exclusive access to a computer lab with state-of-the-art equipment, software, and wireless internet. The Food Marketing Policy Center has extensive scanner data and a collection of all major food industry trade publications. Several faculty members are engaged in international research, teaching, and policy projects that present numerous opportunities for graduate student participation. Prospective students are encouraged to visit the Department website for a more detailed description of program offerings and faculty interests.

COURSES OF STUDY

ANSC 5601 (3 credits) Experimental Design in Animal Science

This course will discuss the basic principles of design and analysis for experiments in animal and food science. Both theory and practical application of designing experiments will be included. Emphasis is placed on data analysis using SAS, highlighting determination of the most appropriate analysis for an experiment and interpretation of output.

Components: Lecture

ANSC 5611 (3 credits) Physiology of Lactation

Anatomical, endocrine and metabolic aspects of lactation, emphasizing lactation in dairy cattle. Mastitis prevention and therapy are discussed.

Components: Laboratory, Lecture

ANSC 5612 (2 credits) Instructor Consent Required

Advancements in Ruminant Nutrition

Critical review of current literature on digestive physiology, metabolism, feed processing and management related to ruminant animals.

Components: Lecture

ANSC 5613 (3 credits) Growth and Metabolism of Domestic Animals

An assessment of animal growth and metabolism interrelated to nutrition, selection, environment, production and idiosyncrasies among species.

Components: Lecture

ANSC 5621 (3 credits) Frontiers in Animal Embryo Biotechnology

Focuses on the genetic aspects of embryology such as imprinting and X inactivation. Introduces the state of technology of numerous established and emerging embryo biotechnologies such as assisted reproductive technologies, transgenesis, cloning, gene targeting, embryonic stem cells, as well as induced pluripotent cells. Lab demonstrations of basic embryology techniques will be included.

Components: Lecture

ANSC 5623 (1 credits) Instructor Consent Required

Current Advances in Epigenetics

Also offered as MCB 370. Epigenetics is a field of modern biological research that is concerned with influences on gene expression, developmental biology, and disease that are mediated by mechanisms independent of DNA sequence. This course is a literature review course in which each student will present and critically analyze primary literature in epigenetics. All students will present and participate in detailed...
technical evaluations of selected papers, and develop a written proposal for future research based on the paper(s) that they present individually. Topics will include imprinting, X chromosome inactivation, chromatin dynamics, and cloning (nuclear transfer). Components: Seminar

ANSC 5641 (3 credits) Instructor Consent Required
Food Chemistry
Chemical, physical and biological changes in foods and food macromolecules that occur during processing and storage that affect texture, color, flavor, stability and nutritive qualities. Field trips may be required.
Components: Lecture

ANSC 5692 (1 - 6 credits) Instructor Consent Required
Research
Independent research in animal science, livestock production, meats, dairy production, animal nutrition, growth, reproductive physiology, animal breeding, or environmental health.
Components: Independent Study

ANSC 5693 (1 credits) Instructor Consent Required
Graduate Presentation Skills
A discussion-based class which prepares students to make oral presentations.
Components: Lecture

ANSC 5694 (1 credits)
Animal Science Seminar
Students present a seminar on the topic of their thesis research.
Components: Seminar

ANSC 5695 (1 - 6 credits)
Special Topics in Animal Science
May be repeated for credit with a change of topic.
Components: Lecture

ANSC 5699 (1 - 3 credits) Instructor Consent Required
Independent Study
Independent study
Components: Independent Study

ANSC 6622 (1 credits)
Fundamentals of Proteomics
Principles and practices of various methodologies of protein separation science will be covered. The course intends to serve as an introduction to methodologies such as 1-D and 2-D electrophoresis, mass spectrometry, peptide mass fingerprint, tandem MS, protein identification by MS/MS, post-translational modification characterization etc. A lab exercise on database search on the internet is included.
Components: Lecture

ARE 5305 (3 credits)
The Role of Agriculture and Natural Resources in Economic Development
The role of agriculture in the economic development of less developed economies. Microeconomic dimensions of agricultural development, economics of food consumption and nutrition, agricultural technology and productivity, agricultural supply, land tenure and agrarian reform, foreign assistance, trade agreements, and agricultural price policy.
Components: Lecture

ARE 5311 (3 credits)
Econometrics I
Construction, estimation, and interpretation of economic behavioral and technical equations using data that are passively generated by a system of simultaneous, dynamic and stochastic relations.
Components: Lecture
Course Equivalents: ECON 5311

ARE 5315 (3 credits)
Mathematical Programming for Economists
Procedures for formulating and applying mathematical optimizing techniques. Emphasis is on the use of linear and nonlinear programming models for researching economic problems.
Components: Lecture

ARE 5462 (3 credits)
Environmental and Resource Economics
Natural resource use and environment

ARE 6472 (3 credits)
Microeconomic Applications to Food Markets
This course trains students in applied microeconomics, with particular emphasis on food markets and public policy. The course is divided into three broad areas: production economics, economics of consumer behavior, and market analysis. Particular emphasis is placed on quantitative tools using empirical models and welfare economics. Students design and undertake an individualized project in their area of interest.
Components: Lecture
Requirement Group: Prerequisites: ARE 5201 (325) or ECON 5201 (308) and ARE 5311 (345) or ECON 5311 (310) (RG 3510).

ARE 6474 (3 credits) Instructor Consent Required
Industrial Organization: Advanced Empirical Analysis
Empirical Industrial Organization models that use simultaneous equations, discrete choice, and/or nonlinear econometric methods to analyze conduct and/or performance of brands and firms in non competitive industries. Includes static and dynamic modeling of pricing and advertising in differentiated product oligopolies. Antitrust policy applications in the U.S. and E.U.
Components: Lecture

ARE 6495 (1 credits)
Graduate Research Seminar
Participation in research seminars presented by invited scholars and departmental faculty. This course can be repeated to a maximum of 12 credits.
Components: Seminar

ARE 6695 (1 - 3 credits)
Special Topics
May be repeated to a maximum of 12 credits with a change of topic. Topics and credits to be published prior to the registration period preceding the semester offerings.
Components: Lecture

Associated Grad School Courses
†GRAD 5930. Full-Time Directed Studies (Master's Level)
(GrAD 397) 3 credits.
†GRAD 5950. Master's Thesis Research
(GrAD 395) 1 - 9 credits.
†GRAD 5960. Full-Time Master's Research
(GrAD 396) 3 credits.
GRAD 5998. Special Readings (Master's)
(GrAD 398) Non-credit.
GRAD 5999. Thesis Preparation
(GrAD 399) Non-credit.
†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GrAD 497) 3 credits.
†GRAD 6950. Doctoral Dissertation Research
(GrAD 495) 1 - 9 credits.
†GRAD 6960. Full-Time Doctoral Research
(GrAD 496) 3 credits.
GRAD 6998. Special Readings (Doctoral)
(GrAD 498) Non-credit.
GRAD 6999. Dissertation Preparation
(GrAD 499) Non-credit.
Allied Health

Department Head: Professor Lawrence Silbart
Professors: Duffy and Faghri
Associate Professors: Coble and Kerstetter
Assistant Professors: Brown, Copenhaver, and Fridell
Adjunct Assistant Professors: Samos and Santamaria

The Master of Science degree in Allied Health Sciences emphasizes an interdisciplinary and individualized approach to graduate study for the student with a baccalaureate degree in the life sciences or a health-related field. In accordance with Graduate School’s requirements concerning advisory committees (as published in this Catalog), a student’s plan of study is developed in collaboration with the members of his or her advisory committee (comprising the major advisor and at least two associate advisors) to meet the student’s professional, educational, and scholarly goals.

The Program of Study.

Master’s degrees in the Graduate Program in Allied Health (GPAH) may be earned under either of two plans, as determined by the advisory committee. Plan A (Thesis track) emphasizes research and requires not fewer than 24 credits of advanced course work and completion of a Master’s thesis. Plan B (Project and Practicum Track) requires a comprehensive understanding of the subject matter, not fewer than 26 credits of advanced course work, and completion of a project and a practicum. Students in both Plans must assemble a graduate advisory committee in conjunction with their major advisor to develop the Plan of Study and the research agenda culminating in the writing and oral defense of a thesis (Plan A) or in the project/practicum (Plan B). Students must satisfy the University standards and degree requirements, and pass a comprehensive examination administered under the auspices of the advisory committee.

Typical Plans of Study for the two master’s tracks are shown below.

<table>
<thead>
<tr>
<th>Plan A – Thesis Track</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSY 5309 – Quantitative Methods in Research</td>
<td>3</td>
</tr>
<tr>
<td>GPAH 6306 – Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>Health Promotion and Allied Health Sciences</td>
<td>6</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
</tr>
<tr>
<td>GRAD 5950 – Thesis Research</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan B – Non-Thesis Track</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSY 5309 – Quantitative Methods in Research</td>
<td>3</td>
</tr>
<tr>
<td>GPAH 6306 – Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>Health Promotion and Allied Health Sciences</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
</tr>
<tr>
<td>GPAH 5314 – Professional Development Project</td>
<td>3</td>
</tr>
<tr>
<td>GPAH 5317 – Professional Development Practicum</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
</tr>
</tbody>
</table>

Admission.

The Graduate Program in Allied Health (GPAH) is open to students who hold a baccalaureate degree. Students ideally enter with a degree in a health related field and/or a strong life sciences background. All previous coursework must meet the general requirements of the University of Connecticut Graduate School. Information on the general requirements of the Graduate School can be found on the Graduate School’s website or by contacting the Department of Allied Health Sciences, 358 Mansfield Road, Unit 2101, Storrs, CT 06269-2101, by telephone (860-486-0018), or by email (pouran.faghri@uconn.edu).

Candidates seeking admission to the GPAH program who wish to receive further information are encouraged to contact the Department of Allied Health Sciences, 358 Mansfield Road, Unit 2101, Storrs, CT 06269-2101, by telephone (860-486-0018), or by email (pouran.faghri@uconn.edu).

Graduate Certificate in Health Promotion and Health Education. The Graduate Program in Allied Health (GPAH) offers a Graduate Certificate Program in Health Promotion and Health Education. For more information, contact the Program Director, Professor Pouran Faghri or visit the GPAH Website at <http://www.alliedhealth.uconn.edu/gpah_program.php>. The GPAH has a number of highly qualified professionals researching a wide range of topics in the allied health sciences. Students are encouraged to review faculty websites and meet with program faculty for more information regarding possible research topics.

Courses of Study

Health Promotion and Allied Health Sciences: (GPAH)

GPAH 5094(1 credits)
Integrative Seminar in Allied Health Research
Examination of advanced topics in allied health research. Emphasis is on integrating and applying research concepts and methodology.
Components: Seminar

GPAH 5095(1 - 6 credits) Instructor Consent
Required
Investigation of Special Topics
Advanced topics and investigations in the field of Allied Health Sciences. Topics and credits to be published prior to the registration period preceding the semester offering.
Components: Lecture

GPAH 5099(1 - 6 credits) Independent Study for Allied Health
Advanced study, project, or research of intensive, independent investigation in allied health consistent with the student’s needs, interests and plan of study.
Components: Independent Study

GPAH 5302(3 credits)
Health Care Policy
Concepts of health policy with special emphasis on federal policy. Examination of current health policy models, agencies involved in policy development, and the impact of policy on providers and clients. Selected policy issues will be studied through case studies, readings, and discussions with policy makers and regulators.
Components: Lecture

GPAH 5309(3 credits)
Health and Aging
Examination of the theoretical and applied issues in optimizing health for older adults. Focus is on the bio-psycho-social aspects of health; application of current research, and leadership skill building for program development.
Components: Lecture

GPAH 5314(3 credits) Instructor Consent Required
Professional Development Project
Prerequisite: At least 9 credits in Allied Health; open only to non-thesis (Plan B) students.
Examines contemporary issues and problems relevant to allied health practice. Focus is on interdisciplinary exchange of ideas and the development of a project relative to the student’s particular program emphasis.
Components: Independent Study

GPAH 5317(5 credits) Instructor Consent Required
Professional Development Practicum
This course is open only to non-thesis (Plan B) master’s students. The implementation and/or application of theory in GPAH 5314. A minimum of 300 practicum hours required.
Components: Practicum
Requirement Group: Prerequisite: GPAH 5314, which may be taken concurrently.
GPAH 5319(3 credits)
Allied Health Education Science
The study and application of current learning theories and principles needed by experienced health professionals to become effective instructors.
in didactic, clinical, and community settings.

GPAH 5328(3 credits) Instructor Consent Required
Cancer Intervention for Allied Health Professionals
Introduction to cancer from the biologic, pathologic, Wellness Testing and Cancer Prevention, public education, professional education and policy issues perspectives. With this knowledge each student designs and implements a Cancer Intervention Program pertinent to their field of study. Development and use of media models is encouraged in each project emphasizing distant learning, teleconferences and video conferences as a means to present Cancer Intervention Programs.
Components: Lecture

GPAH 5331(3 credits) Instructor Consent Required
Nutrition for Healthy Communities
Development of knowledge and skills in public nutrition including community assessment, development of program policies, and program planning, implementation, and evaluation.
Components: Lecture
Course Equivalents: NUSC 5314

GPAH 5350(3 credits) Instructor Consent Required
Advanced Medical Nutritional Therapy
This course is designed to provide the student with advanced nutrition therapy information for the effective treatment of complex medical problems. The course emphasizes all aspects of the nutrition care process as it relates to medical conditions. The research regarding the physiological, pathological and metabolic basis for nutrient modifications will be emphasized.
Components: Lecture
Requirement Group: Open only to Dietetics majors, others by consent of the Director of Dietetics.

GPAH 5351(3 credits) Instructor Consent Required
Contemporary Nutrition Issues and Research
Critical thinking and application of research to contemporary issues in food and nutrition applied to clinical nutrition and community/public health nutrition. Learning occurs through classroom discussions, self-exploration through reading and applying scientific studies to issues, and participation in a research project.
Components: Lecture
Requirement Group: Open only to Dietetics majors, others by consent of the Director of Dietetics.

GPAH 5360(3 credits)
Cross Cultural Health Care
Exploration of the relationships between culture/ethnicity and health status, health care beliefs and behaviors. Develops greater understanding of, and sensitivity toward the patient’s way of life utilizing case examples from the United States and international settings.
Components: Lecture

GPAH 5366(3 credits)
Environmental Health
Focuses on the environmental health consequences of exposure to toxic chemicals, food contaminants and radiation. Basic principles of environmental health are discussed, followed by lectures on specific topics such as: cancer and reproductive risks, occupational hazards, radiation, genetic biomonitoring, risk assessment techniques, risk/benefit analysis; social/legal aspects of regulating toxic chemicals, and other related topics.
Components: Lecture

GPAH 5632(3 credits) Instructor Consent Required
Vaccines: Mechanisms of Immune Protection
The focus is on several different approaches to inducing prophylactic immunity in the host. Both traditional and modern molecular approaches to vaccine design will be discussed. In addition, the mechanisms employed by pathogenic microbes to avoid hosts’ immune responses will be examined in the context of vaccine design. Students will gain an appreciation for the transition from basic research to practical applications. Also offered as PVS 5306.
Components: Lecture
Course Equivalents: PVS 5632

GPAH 6094(3 credits)
Health Promotion, Disease and Disability Prevention
Research Seminar
Inquiry into the theory and nature of research in health promotion, disease and disability prevention. Students are encouraged to meet regularly with their major advisors.
Components: Seminar

GPAH 6305(3 credits)
Program Evaluation for Health Professionals
A theoretical and practical introduction to program evaluation for health professionals who deliver health care services, manage departments and personnel, or provide training and continuing educational opportunities. Students apply the practical program evaluation framework for health-related intervention programs and document the impact of interventions within health promotion and disease and disability prevention programs. Skill development is facilitated.
Components: Lecture

GPAH 6306(3 credits)
Research Methods in Allied Health
An inquiry into the nature of research with emphasis on the spirit, logic, and components of the scientific method. Health related research literature is used to aid the student in learning to read, understand, and critically analyze published materials. The preparation of research proposals and reports is emphasized.
Components: Lecture
Requirement Group: Prerequisite: EPSY 5605 or a course in basic statistics (RG160).

GPAH 6324(3 credits) Instructor Consent Required
Critical Issues in Health Promotion, Disease and Disability Prevention
An in-depth study of health promotion, disease and disability prevention policies, programs and strategies.
Components: Lecture

GPAH 6405(3 credits) Instructor Consent Required
Exercise Intervention for Health Promotion in Persons with Chronic Disease & Disability
This course provides in-depth information for determining functional capacity and developing appropriate exercise programming for optimizing functional capacity of persons with chronic disease and/or disabilities. Understanding the effects of exercise on the disease process as well as the effects of disease on the exercise responses in chronic disease and disability are explored.
Components: Lecture

GPAH 6409(3 credits) Instructor Consent Required
Geriatric Nutrition
This course provides in-depth information on nutritional problems and requirements for the healthy and ill older adult. The focus is on design and critique of research methodology in the nutrition literature. Development and presentation of a major nutrition-related research proposal is required of all students.
Components: Lecture

GPAH 6420(3 credits) Instructor Consent Required
Clinical Management Models for Health Promotion
Systematic design and analysis of the roles of health service managers and clinicians in the delivery of services for managed care are addressed. The course will analyze health care delivery from an integrated management-clinician perspective. Attention will focus on patient care and the use of clinical algorithms and critical pathways in health-care delivery.
FM-3/25/02
Components: Seminar

GPAH 6421(3 credits) Instructor Consent Required
Design and Implementing Health Promotion Programs
Designed to assist students with the skill development necessary to design and implement health promotion programs via a settings approach. Various program development models will be presented. Experts from the field will be integrated into the course from various programmatic settings.
FM-3/25/02
Components: Lecture

GPAH 6422(0 credits) Instructor Consent Required
Writing Successful Grant Proposal
Designed for the advanced graduate student in a health field to obtain experience writing a scientific research proposal. Students will be expected to enter the course with both a fairly well developed research topic and an actual Request for Proposal in hand. The final outcome from this class will be a grant proposal that is suitable for submission to a
American Studies

A graduate degree in American Studies is not offered. Students who wish to earn the master’s-level area of concentration in American Studies must first be admitted to one of the participating fields of study: English, History, or Political Science. The student then informs his or her major advisor and the Director of American Studies of the intention to pursue the concentration.

The student must complete all of the degree requirements of the home field of study. During this process, the student would take two graduate-level courses outside of that field.

To earn the concentration, the student must write an interdisciplinary thesis on a topic approved by the major advisor and the Director of American Studies. The membership of the advisory committee must include one member from outside the home field of study. This committee advises the student during the writing of the thesis and approves it as acceptable for the American Studies concentration.

Animal Science

Department Head: Professor Daniel L. Fletcher
Professors: Darre, Faustman, Hart, Hoagland, and Zinn
Associate Professors: Andrew, Dinger, Kazmer, Nadeau, Milvae, Rasmussen, Tian, and Venkitanarayanan
Assistant Professors: Carter, Govini, and Mancini

The Master of Science and Doctor of Philosophy degrees are offered in Animal Science with supportive instruction in biochemistry, environmental health, food science, physiology, biology, nutrition, statistics, and related fields. All prospective students should have a strong academic background in the biological sciences. In addition to the credit requirements indicated below, M.S. and Ph.D. students must complete one credit of ANSC 5693 (Graduate Presentation Skills). In addition, M.S. students must complete one credit of ANSC 5694 (Animal Science Seminar), while Ph.D. students must complete two credits of ANSC 5694. M.S. (Plan B) students are exempt from the ANSC 5694 requirement. All graduate students receiving assistantship support are required to assist with the teaching of 1 course per year of enrollment.

The M.S. degree offers students the opportunity to emphasize study in animal behavior, food science, nutrition, growth, physiology of lactation, physiology of reproduction, or production management within Animal Science. Master of Science students are required to conduct thesis research (Plan A) or attain a comprehensive understanding in one of the above outlined areas (Plan B). Plan A programs of study must include a minimum of 15 credits of formal course work exclusive of research. Plan B programs of study must include a minimum of 24 credits of formal course work of which at least two, but not more than four credits, shall be a special research project. Additional specialization may be attained by focusing on dairy and beef cattle, sheep, swine, poultry, horses, companion or aquatic animals or their products. The Master of Science and Doctor of Philosophy degrees are offered in Animal Science with supportive instruction in biochemistry, environmental health, food science, physiology, biology, nutrition, statistics, and related fields. All prospective students should have a strong academic background in the biological sciences. In addition to the credit requirements indicated below, M.S. and Ph.D. students must complete one credit of ANSC 5693 (Graduate Presentation Skills). In addition, M.S. students must complete one credit of ANSC 5694 (Animal Science Seminar), while Ph.D. students must complete two credits of ANSC 5694. M.S. (Plan B) students are exempt from the ANSC 5694 requirement. All graduate students receiving assistantship support are required to assist with the teaching of 1 course per year of enrollment.

Admission.

In addition to the admission requirements of the Graduate School, all applicants are required to submit scores from the General Test of the Graduate Record Examinations, three letters of recommendation, and a Personal Statement. Prospective students are strongly encouraged to work with a faculty member in the Department of Animal Science to discuss the specific requirements of the program.
encouraged to read the Department of Animal Science Web pages before applying.

The Ph.D. Program. The Doctor of Philosophy degree is offered in Animal Science with an area of concentration in Physiology of Reproduction. Dissertation research may also emphasize environmental health, immunobiology, animal behavior, animal breeding, food science, nutrition, growth, and physiology of lactation. The Ph.D. degree requires demonstrated capabilities for conducting independent research plus related scholarly attributes. Each Ph.D. plan of study must include 44 to 48 credits of course work beyond the baccalaureate degree, not including credits for foreign language or those substituted for foreign language requirements prescribed by the Graduate School.

Special Facilities. Modern and extensive laboratory capabilities exist for the support of graduate student research in animal science, reproductive physiology, and animal food products. Special laboratory facilities include eight modern endocrinology, physiology, and molecular genetic laboratories; a modern abattoir; and modern field laboratory facilities.

COURSES OF STUDY

ANSC 5601 (3 credits) Instructor Consent Required Experimental Design in Animal Science
This course will discuss the basic principles of design and analysis for experiments in animal and food science. Both theory and practical application of designing experiments will be included. Emphasis is placed on data analysis using SAS, highlighting determination of the most appropriate analysis for an experiment and interpretation of output.
Components: Lecture

ANSC 5611 (3 credits) Physiology of Lactation
Anatomical, endocrine and metabolic aspects of lactation, emphasizing lactation in dairy cattle. Mastitis prevention and therapy are discussed.
Components: Laboratory, Lecture

ANSC 5612 (2 credits) Instructor Consent Required Advancements in Ruminant Nutrition
Critical review of current literature on digestive physiology, metabolism, feed processing and management related to ruminant animals.
Components: Lecture

ANSC 5613 (3 credits) Growth and Metabolism of Domestic Animals
An assessment of animal growth and metabolism interrelated to nutrition, selection, environment, production and idiosyncrasies among species.
Components: Lecture

ANSC 5621 (3 credits) Frontiers in Animal Embryo Biotechnology
Focuses on the genetic aspects of embryology such as imprinting and X inactivation. Introduces the state of technology of numerous established and emerging embryo biotechnologies such as assisted reproductive technologies, transgenesis, cloning, gene targeting, embryonic stem cells, as well as induced pluripotent cells. Lab demonstrations of basic embryology techniques will be included.
Components: Lecture

ANSC 5623 (1 credit) Instructor Consent Required Current Advances in Epigenetics
Also offered as MCB 370.
Epigenetics is a field of modern biological research that is concerned with influences on gene expression, developmental biology, and disease that are mediated by mechanisms independent of DNA sequence. This course is a literature review course in which each student will present and critically analyze primary literature in epigenetics. All students will present and participate in detailed technical evaluations of selected papers, and develop a written proposal for future research based on the paper(s) that they present individually. Topics will include imprinting, X chromosome inactivation, chromatin dynamics, and cloning (nuclear transfer).
Components: Seminar

ANSC 5641 (3 credits) Instructor Consent Required Food Chemistry
Chemical, physical and biological changes in foods and food macromolecules that occur during processing and storage that affect texture, color, flavor, stability and nutritive qualities. Field trips may be required.
Components: Lecture

ANSC 5692 (1 - 6 credits) Instructor Consent Required Research
Independent research in animal science, livestock production, meats, dairy production, animal nutrition, growth, reproductive physiology, animal breeding, or environmental health.
Components: Independent Study

ANSC 5693 (1 credit) Instructor Consent Required Graduate Presentation Skills
A discussion-based class which prepares students to make oral presentations.
Components: Lecture

ANSC 5694 (1 credit) Instructor Consent Required Animal Science Seminar
Students present a seminar on the topic of their thesis research.
Components: Seminar

ANSC 5695 (1 - 6 credits) Instructor Consent Required Special Topics in Animal Science
May be repeated for credit with a change of topic.
Components: Lecture

ANSC 5699 (1 - 3 credits) Instructor Consent Required Independent Study
Components: Independent Study

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(GrAD 497) 3 credits.

†GRAD 5950. Master’s Thesis Research
(GrAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master’s Research
(GrAD 396) 3 credits.

GRAD 5998. Special Readings (Master’s)
(GrAD 398) Non-credit.

GRAD 5999. Thesis Preparation
(GrAD 399) Non-credit.

ANSC 6622. Fundamentals of Proteomics
(ANSC 350) 1 credit. Lecture.
Principles and practices of various methodologies of protein separation science will be covered. The course intends to serve as an introduction to methodologies such as 1-D and 2-D electrophoresis, mass spectrometry, peptide mass fingerprint, tandem MS, protein identification by MS/MS, post-translational modification characterization etc. A lab exercise on database search on the internet is included.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GrAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(GrAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(GrAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(GrAD 498) Non-credit.

GRAD 6999. Dissertation Preparation
(GrAD 499) Non-credit.
ANTHROPOLOGY

Department Head: Professor Sally McBrearty
Professors: Boster, Dussart, Erickson, Handwerker, Linnekin, Singer, and Wilson
Associate Professors: Martinez, McBride, and Sosis
Assistant Professors: Adler, Bruhac, Munro, and Smith

The Department of Anthropology offers programs leading to the M.A. and Ph.D. degrees in anthropology. Selected study areas at the Ph.D. level include: applied medical anthropology, ecology and evolution, globalization and transnational studies, New England ethnology and ethnohistory, Old World prehistoric archaeology, and psychological and cognitive anthropology. Area strengths include Africa, Caribbean, Latin America, and North America, including both North American and other U.S. ethnic minorities. Interdisciplinary study in related fields may be pursued in consultation with the major advisor.

Admission Requirements.

Applicants must present results of the General Test of the Graduate Record Examinations and three letters of recommendation. These should be sent directly to the Graduate Record Examinations and three letters of recommendation. These should be sent directly to the Graduate school, University of Connecticut, 438 Whitney Road Extension, Unit 1006, Storrs, CT 06269-1006. The application deadline is December 1st.

The M.A. Program.

An undergraduate major in anthropology is not required for admission to the M.A. program. Qualified students who hold a baccalaureate in various fields may be admitted provided that they meet the requirements of the Graduate School and the department.

The Ph.D. Program.

The department admits into the Ph.D. program only those students whose past work in anthropology on either the undergraduate or the graduate level shows promise of high scholastic ability and whose research interests are compatible with the areas of specialization represented among the faculty. Students are expected to define at the outset the study area which they wish to emphasize. A period of field research normally precedes the writing of the dissertation.

Interdisciplinary Study

The medical anthropology area of emphasis involves course work and research in public health at the Health Center in Farmington

COURSES OF STUDY

ANTH 5305(1 - 6 credits) Instructor Consent Required
Investigation of Special Topics
Special topic readings or investigations according to the needs of each student. Components: Seminar
ANTH 5306(3 credits) Human Behavioral Ecology

This seminar will apply the theory of natural selection to the study of human behavior in an ecological setting, with particular focus on the adaptive features and biological design of human behavior. Components: Seminar

ANTH 5308(3 credits) Human Evolutionary Theory
Evolutionary concepts applied to human body size and shape, diet, disease, group composition, and reproductive behavior. Components: Lecture

ANTH 5309(3 credits) Violence, Stress, and Social Support
This seminar surveys theory and observations bearing on the nature, sources and consequences of traumatic stress, stressors, and social support in human populations. Components: Seminar

ANTH 5311(3 credits) Instructor Consent Required
History of Anthropological Theory
Development of theory from the nineteenth century through the 1970s. Required for graduate students in Cultural and Historical Anthropology. Components: Seminar

ANTH 5312(3 credits) Instructor Consent Required
Seminar: Contemporary Theory in Social and Cultural Anthropology
Selected current issues and debates in the discipline. Components: Seminar

ANTH 5315(3 credits) Instructor Consent Required
Gender and Culture
Anthropological perspectives on the analysis of gender with special focus on dynamics of gender, culture, and power. Components: Seminar

ANTH 5321(1 - 3 credits) Instructor Consent Required
Ethnographic Methods I
Theoretical foundations and basic tools used to conduct professional field studies in anthropology. Research design; moral and ethical dimensions of field work; designing and conducting informal, semi-structured and structured interviews (one-on-one and in groups); managing field notes, questionnaires, and data; computer data management; summary statistics and graphics; identifying and interpreting random variation; modeling and testing explanations. Components: Seminar

ANTH 5322(3 credits) Instructor Consent Required
Research Methods and Design
Selected topics in ethnographic methods and research design. Components: Seminar

ANTH 5332(3 credits) Cognitive Anthropology
The study of how the content of thought or knowl-
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor Consent Required</th>
<th>Prerequisite</th>
<th>Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 5345</td>
<td>Advanced Analysis in Archaeology</td>
<td>3 credits</td>
<td>Yes</td>
<td>ANTH 5358 (RG169)</td>
<td>Seminar</td>
<td>Intensive study of selected tools for ethnographic data collection and analysis. Design and implementation of specialized ethnographic interviews; protocols, event histories, life histories, censuses, identity construction. OLS and logistic regression, demographic methods, triads tests, consensus analysis, ProFit analysis, multidimensional scaling, cluster and factor analysis, scale construction and validation, and text analysis.</td>
</tr>
<tr>
<td>ANTH 5350</td>
<td>Advanced Analysis in Anthropology</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>Critical review of selected topics and current issues in the theory and practice of physical anthropology.</td>
</tr>
<tr>
<td>ANTH 5352</td>
<td>Applied Anthropology</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>An overview of various applications of anthropology to solve human problems both internationally and within the United States. Emphasis upon history of applied anthropology, ethical considerations, and specific roles of anthropologists in development.</td>
</tr>
<tr>
<td>ANTH 5353</td>
<td>Contemporary Issues in Archaeology</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>An overview of current theory and practice in medical anthropology.</td>
</tr>
<tr>
<td>ANTH 5354</td>
<td>History of Archaeological Theory</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>A critical review of the development of archaeology, with particular emphasis on the theoretical innovations of the 1960s and 1970s.</td>
</tr>
<tr>
<td>ANTH 5356</td>
<td>History of Anthropology</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>Approaches to human systems of settlement, including the applications of locational models and hierarchical analysis of settlement system data.</td>
</tr>
<tr>
<td>ANTH 5357</td>
<td>Analytical Methods in Archaeology</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>The use of qualitative and quantitative techniques in the analysis of archaeological data. Topics covered include seriation, sampling, data screening, statistical testing and numerical taxonomy.</td>
</tr>
<tr>
<td>ANTH 5359</td>
<td>Advanced Analysis in Archaeology</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>An examination of recent developments in archaeological analysis, with particular emphasis on multivariate techniques, new methods of spatial analysis, chronological seriation, and microcomputer applications.</td>
</tr>
<tr>
<td>ANTH 5361</td>
<td>The Ecology of Human Evolution</td>
<td>3 credits</td>
<td>Yes</td>
<td>ANTH 5358 (RG169)</td>
<td>Seminar</td>
<td>Early human ancestors as components of past ecosystems. Recovery of ecological information from fossil sites; reconstruction of ancient behavior; relevance of ethology and the study of contemporary foraging people for reconstruction of the past.</td>
</tr>
<tr>
<td>ANTH 5363</td>
<td>Archaeological Site Formation Processes</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>The creation of archaeological sites by human behavior and geological forces. The characteristics of various formation processes and identification of them in the archaeological record.</td>
</tr>
<tr>
<td>ANTH 5369</td>
<td>Culture and Reproduction</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>A cross-cultural overview of human reproduction. Biological, social, cultural, and behavioral factors; cultural patterning of fertility and perinatal behavior; fertility control; gender and power in reproduction.</td>
</tr>
<tr>
<td>ANTH 5374</td>
<td>Culture, Power, and Social Relations</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>Power, cultural evolution, and social change; law, global relations, identity and ethnicity, revolution and revitalization, the power of numbers, parents and children, women and men.</td>
</tr>
<tr>
<td>ANTH 5375</td>
<td>Ethnographic Methods Laboratory</td>
<td>3 credits</td>
<td>Yes</td>
<td></td>
<td>Seminar</td>
<td>Instructor Consent Required</td>
</tr>
</tbody>
</table>
ANTH 5613 (3 credits) Instructor Consent Required
Modern Human Dispersals
Interdisciplinary understanding of the tempo and mode of modern human dispersals across Europe, Asia, Australia, and the Americas.
Components: Seminar

ANTH 5617 (3 credits) Instructor Consent Required
Hunter-Gatherers Past and Present
Investigation of recent and prehistoric hunter-gatherer societies informed by human behavioral ecology, archaeology, and ethnoarchaeology.
Components: Seminar

ANTH 5609 (3 credits) Instructor Consent Required
Quantitative Zooarchaeology
Archaeological problem solving using zooarchaeological and taphonomic data; the evolutionary ecology of human economies; evaluation and quantification of zooarchaeological data; formation of faunal assemblages
Components: Seminar†GRAD 6960. Full-Time Doctoral Research

†GRAD 5930. Full-Time Directed Studies (Master's Level)
(GRAD 397) 3 credits.

†GRAD 5950. Master's Thesis Research
(GRAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research
(GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master's)
(GRAD 398) Non-credit.

GRAD 5999. Thesis Preparation
(GRAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GRAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(GRAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(GRAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(GRAD 498) Non-credit.

GRAD 6999. Dissertation Preparation
(GRAD 499) Non-credit.

APPLIED MECHANICS
Courses and research opportunities leading toward the Ph.D. degree in the interdisciplinary area of applied mechanics are offered by the Applied Mechanics Committee of the School of Engineering. This Committee comprises faculty members from both the Civil and Environmental Engineering and the Mechanical Engineering Departments. Study areas include elasticity, plasticity, plates and shells, stability, dynamics, wave propagation, vibrations, and biomechanics.

The facilities of the departments are available and include Biomechanics, solid mechanics, vibrations, and photoelasticity laboratories. Close collaboration exists with the faculty and facilities of the Institute of Materials Science (IMS).

The major advisors authorized to supervise doctoral work in applied mechanics are M. Accorsi, D. Basu, R. Christenson, H. Epstein, L. Liu, J.-H. Kim, and R. Malla, and A. Zolka in the field of study of civil engineering; and E. Jordan, S. Kotha, G. Lykotrafitis, K. Murphy, and W. Sun in the field of study of mechanical engineering.

ART AND ART HISTORY
Department Head: Professor Judith Thorpe
Professors: Givens, Mazzocca, Muirhead, Myers, Ogubie, and Talvacchia
Associate Professors: Bock, D’Alleva, Deibler, DiCapua, Greeley, Hagen, Hoyt, Machida, Noelker, Orwicz, Pritchard, Sloan, Yegir, and Zurolo
Assistant Professors: Dennis and Rosenberg

The Master of Fine Arts.

The Master of Fine Arts degree, a terminal degree for studio artists, requires a minimum of two years study in residence. Graduate level studio work for the serious artist is desirable to enable intensive aesthetic experimentation assisted by the guidance of established professional artists. As a result of such experience, a student is expected to complete a body of art significant in content and of professional quality. Students develop a plan of study in consultation with a major advisor and advisory committee. While the program emphasizes individualized studies concentrating on and combining studio art areas such as ceramics, drawing, painting, performance art, photography, printmaking, and sculpture and video there are courses which enable students to engage other resources of the Department of Art and Art History and the University community.

Admission.

Students are admitted to begin study in the fall semester only. Applicants for the M.F.A. degree must first meet the admission requirements of the Graduate School as specified in this Catalog. Consideration for admission also requires submission of the following to the Department of Art and Art History: (1) examples of recent original art presented digitally; (2) three letters of recommendation; (3) a personal letter of application also submitted online; (4) official transcripts of all undergraduate and graduate level studies. The principal criterion for admitting applicants into the M.F.A. program is the quality of the art work submitted and the potential for graduate level development it suggests. Applicants are not required to take the Graduate Record Examinations or the Miller Analogies Test.

Plan of Study.

Students establish their own direction and goals in consultation with a major advisor and an advisory committee. After such consultation, the plan of study is completed for the approval of the student’s advisory committee. Candidates for the M.F.A. are required to complete a minimum of 60 credits of graduate coursework. This total typically includes 39 credits of graduate studio art distributed as follows: 21 credits in an area of major emphasis, 12 credits outside the area of major emphasis, and six credits of M.F.A. project. An additional 15 credits are to be taken in non-studio graduate art courses and are distributed as follows: nine credits of graduate art seminar, three credits in modern and contemporary issues in art, and three credits of special topics in art history. The remaining six credits are graduate electives. When deemed appropriate by the advisory committee, additional credits in advanced studio or art history may be required of students whose undergraduate backgrounds are deficient in these areas.
M.F.A. Project.

Reserved for the last semester of study after candidacy review, the M.F.A. project requires accomplishment of a body of studio work culminating in a substantial exhibition for public viewing, supported by a written statement, public presentation, and a digital photographic portfolio. Each candidate presents to the advisory committee an oral defense of the completed body of studio work and the written statement. The exhibition emphasizes work resulting from the M.F.A. project and courses taken in the final year of study. A public presentation is required in conjunction with the exhibition. The digital photographic portfolio, which is to include each work in the exhibition, and the candidate’s written statement should be prepared in duplicate for retention in the Department of Art and Art History and in the Art and Design Division of the Homer Babbidge Library.

Scholastic Standards.

The advisory committee evaluates the student’s program whenever a grade of C or lower is recorded for a graduate course. Progress in all courses is monitored by the advisory committee, particularly if a student’s cumulative grade point average falls below 3.00 at any time during the course of study. The M.F.A. is not conferred unless the candidate maintains a cumulative grade point average of at least 3.00 in all course work.

The Master of Arts in Art History.

The M.A. emphasizes the application of a range of investigative methods to historical and contemporary visual practices, exploring the ways they inform and organize our understanding of both Western and non-Western visual traditions. This interdisciplinary program provides students with a focused structure for advanced studies in the history, theory, and criticism of visual art. The program highlights the investigation of a range of theoretical and methodological approaches that engage art-making within its social, political and cultural contexts. The Master of Arts in Art History requires a minimum of two years study in residence.

Admission.

Applicants for the M.A. degree must meet the admission requirements of the Graduate School as specified in this Catalog. Three letters of recommendation, preferably from members of the academic profession, along with a writing sample and personal statement from the applicant are required. Students are admitted to begin study in the fall semester only.

Advisory Committee.

The advisory committee includes a major advisor and at least two associate advisors, one a member of the Art History faculty and one from outside the Department of Art and Art History. One associate advisor may be chosen from outside the University in accordance with Graduate School procedures.

Plan of Study.

Candidates for the M.A. are required to complete a minimum of 30 credits of graduate course work including 18 credits of required work and twelve elective credits. A plan of study listing the courses to be taken must be prepared by the student, and approved by the advisory committee and the Graduate School. Other requirements including specifics regarding the language requirement, the M.A. Thesis, and the Final Examination are described in the pamphlet, The Graduate Program in Art History, which may be obtained from the Department of Art and Art History.

Foreign Language Requirement.

A reading knowledge of one foreign language appropriate to scholarly research in art history is required. Mastery of French, Italian, Spanish, or German is accepted for this requirement; others will be considered by formal petition. Proficiency may be demonstrated by passing a departmental language exam or by passing a graduate-level literature course at the University of Connecticut in one of the accepted languages with a grade of B or above. The language requirement must be completed before the student is eligible to take the M.A. Final Examination (Thesis Defense). Language proficiency is considered by the faculty in making graduate assistantship awards.

M.A. Thesis.

The required M.A. thesis is a research paper of approximately 50 pages that is intended to demonstrate the candidate's mastery of independent scholarly study and a professional understanding of the discipline of art history.

Final Examination.

The final examination or thesis defense is an oral examination under the jurisdiction of the advisory committee that deals primarily with the subject matter of the thesis. In addition to the final examination, the candidate publicly presents the research at a symposium organized by the Department.

Special Facilities.

Since graduate students are required to work in the immediate University vicinity, individual or shared studio space is available for students in the M.F.A. program. Technical facilities are available in photography, video, printmaking, sculpture, and ceramics. Located on the main campus is the William Benton Museum of Art and within two hours of driving time from Storrs are the Wadsworth Atheneum, New Britain Museum of American Art, Boston Museum of Fine Arts, Worcester Art Museum, Yale Art Galleries, Lyman Allyn Museum, Slater Museum, and other notable museums and public collections. New York City is just under three hours travel time from the University campus.

COURSES OF STUDY

ART

ART 5301. Graduate Studio Art (Ceramics) (ART 301) 3 credits. Lecture. Open to students in Studio Art, others with permission.

ART 5303. Graduate Studio Art (Painting) (ART 303) 3-6 credits. Laboratory. Open to students in Studio Art, others with permission.

ART 5304. Graduate Studio Art (Photography) (ART 304) 3-6 credits. Laboratory. Open to students in Studio Art, others with permission.

ART 5305. Graduate Studio Art (Printmaking) (ART 305) 3-6 credits. Laboratory. Open to students in Studio Art, others with permission.

ART 5306 Graduate Studio Art (Sculpture) (ART 306) 3-6 credits. Laboratory. Open to students in Studio Art, others with permission.

ART 5307 Graduate Studio Art (Drawing) (ART 307) 3-6 credits. Laboratory. Open to students in Studio Art, others with permission.

ART 5308. Graduate Studio Art (Video) 3-6 credits. Laboratory. Instructor consent required. Open to students in studio art, others with permission.

ART 5309. Graduate Studio Art (Performance) 3-6 credits. Laboratory. Instructor consent required. Open to students in studio art, others with permission.

ART 5310. Graduate Art Seminar (ART 310) 3 credits. Seminar. Open to students in Studio Art, others with permission. Discussions, readings, and analyses relating current studio work to contemporary trends in art.

ART 5320. Modern and Contemporary Issues in Art (ART 320) 3 credits. Seminar. Instructor consent required. Open to students in studio art, others with permission. Seminar investigating selected critical and theoretical issues of significance to the visual arts, involving a core of general reading and discussion on historical and contemporary topics in art from the 20th century to the present day. An individual research project culminating in an oral presentation and a final paper on the research are required.

ART 5330. Interdisciplinary Study (ART 330) 3-6 credits. Practicum. Open to students in Studio Art, others with permission. Special course work that combines resources in art and/or areas outside of art.

ART 5340. Studio Art Instruction and Curriculum Planning (ART 340) 3 credits. Lecture. Must be taken in the first semester in the initial program year by all
graduate students with teaching appointments. Teaching methods, strategies, and curriculum planning in studio art instruction.

ART 5383. Special Topics in Studio Art (ART 383) 3 credits. Seminar. Instructor consent required. May be repeated to a maximum of 12 credits with change in course content. Seminar focused on special, limited topic relating to practices in studio art. The content will vary from semester to semester.

ART 5392. Independent Study (ART 392) 3-6 credits. Independent Study. Open to students in Studio Art, others with permission.

ART 5397. M.F.A. Project (ART 397) 6 credits. Seminar. Open to students in Studio Art, others with permission. Seminar and studio work culminating in required exhibition, supported by a written statement, public presentation and photographic color-transparency portfolio.

ART HISTORY

ARTH 5319. Theories of Visual Representation (ARTH 319) 3 credits. Seminar. Theoretical and interpretive practices that have shaped the field of art history, including: Marxism, psychoanalysis, semiology, and feminism.

ARTH 5320. Historical and Contemporary Issues in Art Criticism (ARTH 320) 3 credits. Seminar. Seminar investigating selected issues of significance to the criticism of the visual arts, involving a core of general reading and discussion on the history of art criticism from the eighteenth century to the present day. An individual research project culminating in an oral presentation and a final paper on the research are required.

ARTH 5321. Historiography of Art History (ARTH 321) 3 credits. Seminar. Philosophical, theoretical, cultural and historical issues that underwrite art historical methods.

ARTH 5322. Theory in Art History (ARTH 322) 3 credits. Seminar. Prerequisites: ARTH 5319 and ARTH 5321. May be repeated to a maximum of 6 credits with a change in course content. Selected topics in theory and/or methodology.

ARTH 5340. Museum Practices (ARTH 340) 3 credits. Seminar. Prerequisites: ARTH 5321 and ARTH 5322. Contemporary and theoretical issues in museum and exhibition practices directed toward their application in various internship contexts.

Critical and theoretical issues in twentieth and twenty-first century art production and reception including: modernism, postmodernism, feminism, technology, and globalization.

ARTH 5383. Special Topics in Art History (ARTH 383) 3 credits. Lecture. Instructor consent required. May be repeated for credit with a change in course content. For M.F.A. students, consent of advisory committee and instructor required for enrollment beyond 3 credits. Seminar focusing upon a special, limited topic in the history of art. The content will vary from semester to semester.

ARTH 5392. Independent Study (ARTH 392) 3 credits. Independent study. May be repeated to a maximum of 6 credits with a change in course content. Independent study in Art History.

ARTH 5397. Museum Studies Internship (ARTH 397) 3 credits. Practicum. May be repeated to a maximum of 6 credits with a change in course content. Internship practicum in museum, gallery, or other curatorial context.

All Sections

†GRA D 5930. Full-Time Directed Studies (Master's Level) (GRAD 397) 3 credits.
†GRAD 5950. Master's Thesis Research (GRAD 395) 1-9 credits.
†GRAD 5960. Full-Time Master's Research (GRAD 396) 3 credits.
GRAD 5998. Special Readings (Master's) (GRAD 398) Non-credit.
GRAD 5999. Thesis Preparation (GRAD 399) Non-credit.

BIOMEDICAL ENGINEERING

Program Director: Assistant Professor Donald R. Peterson

Biomedical Engineering (BME) is a profession involving engineering and the life sciences, physical sciences, and medical science to understand problems in physiology and biology and improve human health. The BME Graduate Handbook at the website http://www.bme.uconn.edu further describes the program.

The goal of the biomedical engineering graduate program is to provide students the interdisciplinary training in biological and medical sciences, physical sciences, and engineering necessary to solve complex biomedical problems. Faculty members from engineering, biomedical sciences, materials sciences, chemistry, physics, medicine, and dental medicine form an interdisciplinary graduate degree program that spans the University of Connecticut campuses at Storrs and at the Health Center (UCHC) in Farmington.

Biomedical engineering can embrace the following diverse yet complementary research areas: bioengineering, bioinformatics, bioinstrumentation, biomaterials, biomechanics, biomedical imaging/biosignal processing, biosensors, biotechnology, cellular and tissue engineering, clinical engineering, ergonomics, medical informatics, physiological systems modeling, and rehabilitation engineering.

An entering student's primary undergraduate training may be in engineering, the physical sciences, medicine or biology. However, all students must demonstrate competence in mathematical analytical methods, certain basic and advanced skills in engineering and computer science, as well as knowledge of core fundamentals of biomedical engineering at the time of their graduation. Plans of study are developed in consultation with the student's advisory committee and are designed to meet individual needs and program requirements.

Application Procedure.

Applicants are required to submit three letters of recommendation (preferably from members of the academic profession), a personal letter from the student describing their interest in biomedical engineering and the application to the Graduate School. The GRE and TOEFL (minimum score of 550) are required only for students with an undergraduate degree from a non-US institution.

The M.S. Program.

Students whose primary training is in engineering can prepare themselves for entrance into one of the biomedical fields by completing a program leading to the master's degree in biomedical engineering. The program also offers the biology and chemistry student a means of achieving the mathematical, engineering, and instrumentation skills necessary for a career in biomedical engineering after completing remedial coursework.

Both a Plan A (thesis option) and Plan B M.S degree are offered. For the Plan A, eight graduate courses (24
The Ph.D. Program.

Applicants to the Ph.D. program are expected to demonstrate outstanding ability and to show, based on their record of previous scholarship and experience, that they are likely to do superior creative work in their respective fields. Holding a master's degree from this or any other institution does not render the applicant automatically admissible to a doctoral program. In general, doctoral applicants must meet all admission requirements for the Bme M.S. degree program. In general, doctoral applicants must meet all admission requirements for the Bme M.S. degree and must present evidence that they are capable of doing independent work of distinction. Exceptional students with a B.S. degree may be directly admitted into the Bme Ph.D. program. It is recommended, however, to first earn a Bme M.S degree before starting Ph.D. studies.

Beyond the M.S., a minimum of 24 credit hours of Bme course work is required for the Ph.D. Additionally, 15 credits of Doctoral Dissertation Research (GRAD 6950) are required. There is no language requirement for a Ph.D. in Bme.

If a doctoral student has not taken the five suggested MS courses or their equivalents (see "The MS Program"), these courses may be required in addition to the course work and research credits otherwise required for the Ph.D. The Bme Graduate Program Director must approve any exceptions to the course requirements.

The Bme Ph.D. program requires the passing of two tests, the Qualifying Exam and the General Exam. Admitted Ph.D. students must pass the Bme Qualifying Exam within their first year of study. The exam is given once a year in May. The objective of this exam is to determine the student's aptitude to advance to candidacy for Ph.D. studies in Biomedical Engineering. This examination seeks to evaluate a candidate's competency in basic skills and knowledge essential to conducting research in Biomedical Engineering by examining the student's grasp of material covered in the Bme core curriculum. The Ph.D. Qualifying Exam is a written test given by the Bme program with several parts that are based on the candidate's in-depth grasp of the material in core areas that may include: Bme 5000, Bme 5500 or Bme 6500, Bme 5100, Bme 5600, Bme 5800 and Bme 6420. Students who have passed any of these courses at the University of Connecticut with a grade of B or better may automatically pass the portion of the Qualifying exam related to that course, and therefore may not need to take that part of the exam.

All Ph.D. Candidates must take the Bme General Exam no later than nine months before defending their dissertation at a time arranged between the Ph.D. Candidate and Advisory Committee. The objective of the General Exam is to evaluate a Ph.D candidate's competency in developing and formulating a research project and the student's ability to approach a new problem in ways appropriate for an independent scientist. The exam will consist of a research proposal based on the student's research project. At least two weeks prior to the exam, the student will submit a written research proposal (approximately 40 pages) to the advising committee. The general exam is mainly an oral defense of this research proposal by the student. The committee tries to evaluate the candidate's competency in developing and formulating the research project, as well as the scientific merits of the project, research hypothesis, research methods, potential findings, implications and limitations. The General Exam must be conducted by at least five faculty (including the Ph.D. Candidate's Advisory Committee) in the fields related to the student's project. There are no exemptions from the General Exam.

Research required for the doctoral degree in biomedical engineering involves the use of advanced engineering techniques for the solution of a biological or medical problem. Ph.D. candidates must submit at least two journal papers to a leading Bme journal before graduation, with at least one of them having gone through the review process favorably. Note that the journal submissions must be full papers, with two short papers the equivalent of a full paper.

Clinical Engineering Internship.

This is a hospital-based, two-year program supported by the clinical engineering departments of various hospitals including Hartford Hospital, The John Dempsey Hospital (Uchc), Baystate Medical Center, St. Francis Hospital,UMass Medical Center, Rhode Island Hospital, MiddlesexMemorial Hospital, Providence V.A. Hospital, and West Haven V.A. Hospital. Applications should be received by January 1 for full consideration. As part of the selection process, applicants are invited to the hospital and campus in February and March for interviews. The interview is required to secure a graduate assistantship (paid internship). Final selections are made in April for Fall admission. Each intern is expected to spend 20 hours per week in a hospital's clinical engineering department. The primary objectives are to: (1) provide exposure to hospital organization and administrative structure; (2) provide an opportunity to apply engineering techniques to patient care and hospital-based research; and (3) provide substantial hands-on experience working with health care technology and hospital personnel, including administrators, nurses, technicians and medical staff. Clinical engineering trainees are supported by stipends contributed by the participating hospitals. Students accepted for the internship earn either a Plan A or Plan B Master's degree.

The following courses are required of all Clinical Engineering interns: Bme 5000, Bme 5500 or Bme 6500, Bme 5020, Bme 5030, and Bme 5050. The remaining courses are taken only from the Bme course offerings, and should be related to the student's background, interests and future career plans. The Bme Graduate Program Director must approve any exceptions to the course requirements.

Industrial Engineering Internship.

The industrial internship offers an in-depth, vigorous, industrial experience that complements the engineering expertise gained in the classroom. Students in the industrial internship can earn an M S and Ph.D degree. Companies located throughout New England participate in the program. The primary objectives of this industrial internship program are to provide: exposure to the industrial workplace; the opportunity to apply engineering knowledge and expertise to a variety of industrial projects; and the opportunity to interact with a variety of industrial work groups, including administrators, engineers, and technicians.

Additional details are contained in the Bme Graduate Handbook.

Research Facilities.

Because of the interdisciplinary nature of the Biomedical Engineering field of study, graduate research facilities in biomedical engineering are diverse, and can be found in the various academic departments of the biomedical engineering major advisors on the Storrs campus and at the University of Connecticut Health Center in Farmington.

Graduate Advisors in Biomedical Engineering.

COURSES OF STUDY

BME 5000. Physiological Systems I
BME 5000(3 credits) Instructor Consent Required
Physiological Systems I
Eleven major human organ systems are covered in this course, including: integumentary, endocrine, lymphatic, digestive, urinary, reproductive, circulatory, respiratory, nervous, skeletal, and muscular. Recommended preparation: BME 211 (or equivalent).
Components: Lecture
Course Equivalents: MEDS 6471

BME 5010(3 credits)
Research Methods in Biomedical Engineering
(Also offered as GPAH 306.)
An inquiry into the nature of research with emphasis on the spirit, logic, and components of the scientific methods. Health related research literature is used to aid the student in learning to read, understand, and critically analyze published materials. The preparation of research proposals and reports is emphasized.
Components: Lecture

BME 5020(3 credits) Instructor Consent Required
Clinical Engineering Fundamentals
Provides the fundamental concepts involved in managing medical technology, establishing and operating a
clinical engineering department, and the role of the clinical engineering designing facilities used in patient care. Topics covered include managing safety programs, technology assessment, technology acquisition, the design of clinical facilities, personnel management, budgeting and ethical issues of concern to the clinical engineer.

Components: Lecture

BME 5030(3 credits)
Human Error and Medical Device Accidents
This course teaches the basic principles needed to analyze medical devices, medical device users, medical device environments and medical device accidents. It particularly focuses on human factors engineering as an important step to minimizing human error. The role of medical device manufacturers, medical device regulators and medical device owners will be examined to identify their role in reducing medical device use errors and medical device accidents. The nature and types of human error as well as a taxonomy of medical device accidents will also be presented. Investigative techniques involving root cause analysis and failure modes and effects analysis will be taught and applied to industrial and medical device accidents. Operating room fires, electrosurgical and laser burns, anesthesia injuries, infusion device accidents, catheters and electrode failures and tissue injury in the medical environment will be discussed in detail. A semester project will require the student to employ these tools and techniques to analyze a medical device accident.

Components: Lecture

BME 5040(3 credits)
Medical Instrumentation in the Hospital
This course will examine 10-12 current major technologies in use by healthcare practitioners. It will review the physiological principles behind each technology, the principles of operation, major features, methods for testing and evaluating each technology and will highlight available versions of the devices on the market today. Technologies to be covered will be selected from anesthesia equipment, surgical and ophthalmic lasers, cardiac assist devices, surgical & endoscopic video systems, radiographic and fluoroscopic devices, CT, MRI, ultrasound imaging equipment, radiation therapy, nuclear medicine, clinical chemistry analyzers, spectrophotometers and hematology analyzers. The course will be based on one text, selected manufacturers training documents as well as journal articles from current medical publications. Grading will be based on exams, quizzes, a semester project and class participation. Several classes will take place on site in Hartford area hospitals in order to observe and examine the equipment being discussed.

Components: Lecture

BME 5050(3 credits) Instructor Consent Required
Engineering Problems in the Hospital
This course will cover engineering solutions to problems that are found in the healthcare environment. This includes a wide variety of topics such as electrical power quality of and the reliable operation of high tech medical equipment; electrical safety in the patient care environment; electromagnetic compatibility of various medical devices and electromagnetic interference; radiation shielding and radiation protection; medical gas systems, medical ventilation systems and indoor air quality; fire protection systems required in the hospital; networking medical devices, patient information systems, digital imaging and image storage systems; telemedicine and medical image transmission; and finally, hospital architecture and the design of patient care facilities.

Components: Lecture

Course Equivalents: ECE 5301

BME 5099(1 - 3 credits) Instructor Consent Required
Independent Study
Individual exploration of special topics as arranged by the student with an instructor of his or her choice.

Components: Independent Study

BME 5100(3 credits) Instructor Consent Required
Physiological Modeling
Unified study of engineering techniques and basic principles in modeling physiological systems. Focuses on membrane biophysics, biological modeling, and systems control theory. Significant engineering and software design is incorporated in homework assignments using MATLAB and SIMULINK. Recommended preparation: BME 211 and BME 251 (or equivalent).

Components: Lecture

BME 5302(3 credits)
Biochemical Engineering for Biomedical Engineers
Introduction to chemical reaction kinetics; enzyme and fermentation technology; microbiology, biochemistry, and cellular concepts; biomass production; organ analysis; viral dynamics.

Components: Lecture

BME 5329(3 credits)
Advanced Ultrasonic Imaging Techniques

Components: Lecture

Course Equivalents: ECE 6303

Requirement Group: Prerequisite: EE 6302 or BME 6400 (RG3445).

BME 5341(3 credits)
Exposure Assessment in Ergonomics
The goal of the course is to develop a broad understanding of ergonomic risk factors, knowledge of the measurement modalities available for characterizing workplace risk, and an appreciation of the advantages and disadvantages of each modality. Students will be introduced to the use of laboratory techniques (EMG, videotaping and digitization, digital motion capture, force cells, accelerometry and exercise physiology). They will also be instructed in methods used in ergonomic work-site assessment, ranging from simple check-lists (geared towards worker-based interventions), through detailed time/motion studies, self-report effort scales, epidemiological instruments, and psychosocial and organizational measurement tools. The grade will depend on completion of a laboratory-based, field or epidemiological project.

Components: Lecture

Requirement Group: Prerequisite: BME 5339 (RG3445).

BME 5500(3 credits)
Clinical Instrumentation Systems
Analysis and design of transducers and signal processors; measurements of physical, chemical, biological, and physiological variables; special purpose medical instruments, systems design, storage and display, grounding, noise, and electrical safety. These concepts are considered in developing devices used in a clinical or biological environment. Recommended preparation: ECE 210W, BME 251, and 252 (or equivalent).

Components: Lecture

BME 5600(3 credits) Instructor Consent Required
Human Biomechanics
Instructor consent required. Recommended preparation: BME 261W (or equivalent). Applies principles of engineering mechanics in the examination of human physiological subsystems such as the musculoskeletal system.
and the cardiovascular system. Topics drawn for biosolid mechanics, biofluids, and biodynamics, the viscoelastic modeling of muscle and bone, non-Newtonian fluid rheology, blood flow dynamics, respiratory mechanics, biomechanics of normal and impaired gait, and sport biomechanics.

Components: Lecture

BME 5700(3 credits) Instructor Consent Required Biomaterials and Tissue Engineering Instructor consent required. Recommended preparation: BME 271W (or equivalent). Also offered as MEDS 313.

A broad introduction to the field of biomaterials and tissue engineering. Presents basic principles of biological, medical, and material science as applied to implantable medical devices, drug delivery systems, and artificial organs. Also offered as MEDS 5700.

Components: Lecture
Course Equivalents: MEDS 5700

BME 5800(3 credits) Bioinformatics
Advanced mathematical models and computational techniques in bioinformatics. Topics include genome mapping and sequencing, sequence alignment, database search, gene prediction, genome rearrangements, phylogenetic trees, and computational proteomics. Recommended preparation: BME 280 (or equivalent).

Components: Lecture
Course Equivalents: CSE 5800

BME 6020(3 credits) Physiological Systems II
A problem-based learning course that focuses on in-depth coverage of four human organ systems. Format: didactic session followed by group problem solving. Also offered as MEDS 472.

Components: Lecture
Course Equivalents: MEDS 6472
Requirement Group: Prerequisite: BME 5000 (310). Enrollment limited to BME students in the Ph.D. program (RG347).

BME 60861-6 credits) Special Topics In Biomedical Engineering
Classroom and/or laboratory courses in special topics as announced in advance for each semester.

Components: Lecture

BME 6110(3 credits) Instructor Consent Required Computational Neuroscience
Explores the function of single neurons and neural systems by the use of simulations on a computer. Combines lectures and classroom discussions with conducting computer simulations. The simulations include exercises and a term project.

Components: Lecture
Course Equivalents: MEDS 5378

BME 6120(3 credits) Neuronal Information Processing and Sensory Coding
Processing, transmission, and storage of information in the central and peripheral nervous systems. Mechanisms of signal generation, transmission and coding by neurons and dendrites. Analysis of invertebrate and vertebrate visual and auditory systems, including: mechanisms of neurosensory transduction, coding, and signal-to-noise ratio enhancement. Neural spatio-temporal filters for feature extraction and pattern recognition. Information theoretic analysis of signal encoding and transmission in the nervous system. This course assumes a background in linear systems and feedback control systems.

Components: Lecture
Course Equivalents: ECE 6311
Requirement Group: Prerequisite: BME 5100 (315). This course and ECE 6311 (372) may not both be taken for credit (RG3473).

BME 6130(3 credits) Systems Identification of Physiological Systems
Overview of linear and nonlinear methods for determining the input-output relationship of sensory and other physiological systems. Topics include: white noise analysis using the Volterra and Wiener expansion of non-linear system, moving average and autoregressive models, transfer function method, parametric identification using least-squares method, multi-input systems, spectrotemporal and spatiotemporal reverse correlation, spectral estimation methods using coherence. Examples from a host of neuronal systems will be provided, including the mammalian and amphibian visual and auditory systems.

Components: Lecture
Requirement Group: Prerequisite: BME 5100 (315) (RG3443).

BME 6140(3 credits) Cellular Systems Modeling
Cellular response to drugs and toxins, as well as normal cell processes such as proliferation, growth and motility often involve receptor-ligand binding and subsequent intracellular processes. Focuses on mathematical formulation of equations for key cellular events including binding of ligands with receptors on the cell surface, trafficking of the receptor-ligand complex within the cell and cell signaling by second messengers. Background material in molecular biology, cell physiology, estimation of parameters needed for the model equations from published literature and solution of the equations using available computer programs are included. Examples from the current literature of cell processes such as response to drugs and proliferation will be simulated with the model equations.

Components: Lecture
Requirement Group: Prerequisite: BME 5600 (RG654).

BME 6150(3 credits) Instructor Consent Required Computational Cell Biology for Biomedical Engineers
In the last decade, interdisciplinary science has established itself as a leading area of scientific investigation. The use of physics and mathematics to help understand biological systems hints at being one of the major scientific frontiers of this coming century. This course looks at biology at three separate length scales: molecular, cellular, and organismal/population. We will find that the math/physics of elasticity, hydrodynamics, statistical mechanics and reaction/diffusion can explain a broad range of phenomena throughout these size ranges. This course stresses the physical intuition of how to apply quantitative methods to the study of biology through the use of dimensional analysis, analytic calculation and computer modeling.

Components: Lecture

BME 6160(3 credits) Computational Genomics
Advanced computational methods for genomic data analysis. Topics covered include motif finding, gene expression analysis, regulatory network inference, comparative genomics, genome sequence variation and linkage analysis.

Components: Lecture
Course Equivalents: CSE 6800
Requirement Group: Prerequisite: CSE 5800 (377) or BME 5800 (380) (RG3878).

BME 6400(3 credits) Instructor Consent Required Biomedical Imaging
Fundamentals of detection, processing and display associated with imaging in medicine and biology. Topics include conventional and Fourier optics, optical and acoustic holography, thermography, isotope scans, and radiology. Laboratory demonstrations will include holography and optical image processing. Assumes a background in linear systems. Recommended preparation: BME 251 or ECE 232 (or equivalent).

Components: Lecture
Course Equivalents: ECE 6302

BME 6420(3 credits) Medical Imaging Systems
This course covers imaging principles and systems of x-ray, ultrasound, optical tomography, magnetic resonance imaging, positron emission tomography.

Components: Lecture
Requirement Group: Prerequisite: BME 5500 (311) or BME 6500 (354) (RG3442).

BME 6450(3 credits) Optical Microscopy and Bio-imaging
The course presents the current state of the art of optical imaging techniques and their applications in biomedical research. The course materials cover both traditional microscopes (DIC, fluorescence etc.) that have been an integrated part of biologists’ tool-box, as well as more advance topics, such as single-molecule imaging and laser tweezers. Four lab sessions are incorporated in the classes to help students to gain some hands-on experiences. Strong emphasis will be given on current research and experimental design. Also offered as MEDS 301.

Components: Lecture
Course Equivalents: MEDS 6450
BME 6460 (3 credits)
Advanced Optical Microscopy and Bio-imaging
This course will cover several aspects of state of the art biological and biophysical imaging. We will focus on advanced techniques including nonlinear optical processes (multi-photon excitation, second harmonic generation, and stimulated Raman processes), as well as optical coherence tomography. 3 lab projects will supplement the lectures, providing hands-on experience with nonlinear optical methods. Special emphasis will be given to current imaging literature and experimental design. Also offered as MEDS 302.
Components: Laboratory, Lecture
Course Equivalents: MEDS 6460
Requirement Group: Prerequisite: BME 6450 or MEDS 6450 (RG 4099).

BME 6500 (3 credits) Instructor Consent Required
Biomedical Instrumentation I
Origins of bioelectric signals; analysis and design of electrodes and low noise preamplifiers used in their measurement. Statistical techniques applied to the detection and processing of biological signals in noise, including the treatment of nerve impulse sequences as stochastic point processes. Methods of identifying the dynamic proper ties of biosystems. Assumes a background in linear systems and electronics.
Components: Lecture
Course Equivalents: ECE 6301
Requirement Group: Prerequisite: BME 5500 or consent of the instructor (RG653).

BME 6510 (3 credits) Instructor Consent Required
Biomedical Instrumentation Laboratory
Experimental investigation of electrodes, transducers, electronic circuits and instrumentation systems used in biomedical research and clinical medicine.
Components: Lecture
Course Equivalents: ECE 6304

BME 6520 (3 credits)
Biosensors
Principles and design of acoustic imaging transducers, and force, pressure and hearing sensors. Covers also optical biosensors including oxygen monitoring sensors, glucose sensors and optical sensors used in imaging.
Components: Lecture
Requirement Group: Prerequisite: BME 5500 or consent of the instructor (RG653).

BME 6610 (3 credits)
Biofluid Mechanics
Provides a foundation for continued studies of biofluid mechanical subjects. Topics covered include kinematic principles, the Navier-Stokes equations, the vorticity equation, unsteady fluid flows of physiologic relevance, turbulence and interfacial phenomena. Emphasis is placed on physical analysis of the cardiovascular and pulmonary systems, as well as of other biologic systems of interest.
Components: Lecture
Requirement Group: Prerequisite: BME 5600 (RG652).

BME 6620 (3 credits)
Biosolid Mechanics
Components: Lecture
Requirement Group: Prerequisite: BME 5600 (312) (RG3444).

BME 6630 (3 credits)
Biodynamics
Dynamic modeling of biological systems using three-dimensional rigid body dynamics with a review of kinematics and kinetics and three-dimensional vector calculus. Applications of Newton's laws and Lagrangian Equations presented. A critical review of various biofluid assessment techniques and the principles of their operation will also be discussed. Biodynamic data analysis techniques will be shown along with fundamental model construction.
Components: Lecture
Requirement Group: Prerequisite: BME 5600 (312) (RG3444).
Associated Grad School Courses

†GRAD 5930. Full-Time Directed Studies (Master's Level)
(GRAD 397) 3 credits.

†GRAD 5950. Master's Thesis Research
(GRAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research
(GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master's)
(GRAD 398) Non-credit.

GRAD 5999. Thesis Preparation
(GRAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GRAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(GRAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(GRAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(GRAD 498) Non-credit.

GRAD 6999. Dissertation Preparation
(GRAD 499) Non-credit.

BME 6460 (3 credits)
Advanced Optical Microscopy and Bio-imaging
This course will cover several aspects of state of the art biological and biophysical imaging. We will focus on advanced techniques including nonlinear optical processes (multi-photon excitation, second harmonic generation, and stimulated Raman processes), as well as optical coherence tomography. 3 lab projects will supplement the lectures, providing hands-on experience with nonlinear optical methods. Special emphasis will be given to current imaging literature and experimental design. Also offered as MEDS 302.
Components: Laboratory, Lecture
Course Equivalents: MEDS 6460
Requirement Group: Prerequisite: BME 6450 or MEDS 6450 (RG 4099).

BME 6500 (3 credits) Instructor Consent Required
Biomedical Instrumentation I
Origins of bioelectric signals; analysis and design of electrodes and low noise preamplifiers used in their measurement. Statistical techniques applied to the detection and processing of biological signals in noise, including the treatment of nerve impulse sequences as stochastic point processes. Methods of identifying the dynamic proper ties of biosystems. Assumes a background in linear systems and electronics.
Components: Lecture
Course Equivalents: ECE 6301
Requirement Group: Prerequisite: BME 5500 or consent of the instructor (RG653).

BME 6510 (3 credits) Instructor Consent Required
Biomedical Instrumentation Laboratory
Experimental investigation of electrodes, transducers, electronic circuits and instrumentation systems used in biomedical research and clinical medicine.
Components: Lecture
Course Equivalents: ECE 6304

BME 6520 (3 credits)
Biosensors
Principles and design of acoustic imaging transducers, and force, pressure and hearing sensors. Covers also optical biosensors including oxygen monitoring sensors, glucose sensors and optical sensors used in imaging.
Components: Lecture
Requirement Group: Prerequisite: BME 5500 or consent of the instructor (RG653).

BME 6610 (3 credits)
Biofluid Mechanics
Provides a foundation for continued studies of biofluid mechanical subjects. Topics covered include kinematic principles, the Navier-Stokes equations, the vorticity equation, unsteady fluid flows of physiologic relevance, turbulence and interfacial phenomena. Emphasis is placed on physical analysis of the cardiovascular and pulmonary systems, as well as of other biologic systems of interest.
Components: Lecture
Requirement Group: Prerequisite: BME 5600 (RG652).
The Ph.D. program in the area of concentration of Genetics and Developmental Biology provides qualified students with fundamental interdisciplinary training in modern molecular genetics and developmental biology, emphasizing cellular and molecular aspects as well as tissue interactions. Primary emphasis is placed upon regulation of gene expression and molecular events in development. Areas of emphasis include the mapping and cloning of structural and functional sequences of genes, regulatory elements of genes, and their interaction with transcription factors. Special emphasis is placed upon the genetic and biochemical mechanisms controlling biosynthesis, structure and function of macromolecules and their assembly into complex cellular structures. There are five major study areas: (1) relation of the structure of macromolecules to their function, with special emphasis on the structural base for the activity of enzymes and the interactions of macromolecules in biological systems; (2) biosynthesis of macromolecules, including nucleic acids, proteins, and polysaccharides; (3) control of gene expression in bacteria, viruses and eucaryotic cells; (4) assembly of macromolecules into complex cellular structures during the processes of cellular development and differentiation; and (5) genetic and molecular basis of complex cellular processes, such as cell division and cellular development and differentiation.

Neuroscience

Program Director: Assistant Professor James Hewett

Professors: Barbarese, Bernstein, Carson, Epper, Frank, Kim, Kuwada, Loew, Mains, Maxwell, Morse, Oliver, Pachter, Pappano, and Potashner

Associate Professors: Bansal, S. Hewett, Levine, Shoemaker, Smlowitz, Waitzman, and Zecевич

Assistant Professors: Antic, Conti-Crocker, J. Hewett, Li, Ma, McCullough, Schiller, Wang, and Zecевич

The Neuroscience Graduate Program at the University of Connecticut Health Center is an interdisciplinary and interdepartmental Ph.D. program. The goal of research in this program is to understand the development, function, and dysfunction of the nervous system at the molecular, cellular, systems, and whole animal levels. Molecular, electrophysiological, behavioral, confocal imaging, and stem or virtual cell approaches are employed, as well as cellular, animal, transgenic, and mathematical models. The breadth of this program is depicted in a survey of the numerous topics covered by faculty research, which include: stem and precursor cell biology as it pertains to gliogenesis and neurogenesis in the developing nervous system; biochemistry and regulation of gene expression, signal transduction, and intracellular trafficking in neurons and glia; structure and function of voltage-sensitive ion channels; synthesis, storage and secretion of neuropeptides; neurotransmission and plasticity; synaptic organization and stimulus coding; sensory perception, behavioral neuroscience, and human psychophysics; and neuroinflammation, autoimmunity, and neurodegeneration. Research pertaining to specific diseases or disorders include: substance abuse; stroke; epilepsy; multiple sclerosis; and deafness. (For additional information, see http://neuroscience.uchc.edu/).

Skeletal, Craniofacial and Oral Biology

Program Director: Professor William Upholt

Professors: Arnold, Frank, Goldberg, Gronowicz, Hand, Hansen, Hurley, Kosher, Kream, Lalande, Lefrançois, Lurie, Mina, Pilbeam, Rossomando, Rowe, and Upholt

Assistant Professors: Dongari-Bagtzoglou, P. Epstein, Dealy, Drissi, Harrison, and Lichtler

Assistant Professors: Delany, Kalajzíc, Kuhn, Mallya, Magee, Reichenberger, Rogina, Wadhwia, and Y. H. Wang

This program provides students with interdisciplinary research training in the areas of skeletal, craniofacial, and oral biology, emphasizing contemporary research technologies in cell, molecular, and developmental biology, genetics, and biochemistry. Trainees may enter a Ph.D. Program, a dual D.M.D./Ph.D or M.D./Ph.D, or a combined Dental Residency/Ph.D Program. The Program prepares trainees for academic or industrial careers in the basic biomedical sciences, or for academic careers in Medicine or Dental Medicine. Areas of research include regulation of the formation, outgrowth, and patterning of the developing limb; control of cartilage differentiation, endochondral ossification, osteogenesis, and joint formation; human embryonic stem cell differentiation into mesodermal and musculoskeletal lineages; molecular regulation of gene expression in bone; homeobox gene regulation of osteoblast differentiation; gene therapy of bone diseases; hormonal and cytokine regulation of bone growth, formation, and remodeling; control of craniofacial skeletogenesis and tooth development; biochemistry, function, and regulation of the extracellular matrix; signal transduction and intracellular signaling pathways; cellular and molecular aspects of the pathogenesis of inflammatory disease; microbiology, pathogenesis, and immunology of caries and periodontal disease; neural structure and function in the gustatory system; biomaterial development for tissue engineering; bone cell/implant interactions; and, analysis of oral and mucosal function and disease.

M.S. in Clinical and Translational Research. An M.S. degree program is offered in the field of Clinical and Translational Research (see pp. 79-80).

Dual M.D./Ph.D. Degree Program. The dual degree program provides students with an integrated educational experience leading to completion of both the M.D. and Ph.D. degrees. The goal of the program is to prepare individuals of outstanding potential for productive careers as physician-scientists. Students spend the first two years completing the preclinical medical school curriculum together with selected graduate school coursework and two laboratory rotations. During the graduate phase, students complete additional coursework and pursue thesis research. Students then return to medical school to complete two years of clinical training. The program is usually completed within seven to eight years including summers. The program is administered
by the M.D./Ph.D. Steering Committee under the jurisdiction of the Graduate Programs Committee at the University of Connecticut Health Center. Students apply to the program through the American Medical College Application Program (AMCAS). The Steering Committee reviews applications and, in conjunction with the medical school admission committee, accepts students into the program. Assistantship support is provided to students in the program.

COURSES OF STUDY

MEDS 416(2 credits)
Contemporary Topics in Oral Biology II
A combination-lecture/seminar course which focuses on current investigation in the areas of dentomaxillofacial growth and development, oral microbiology and immunology, oromaxillofacial mineralized tissues, and salivary glands and saliva. Subject matter covered in this course and DENT 415 will rotate over a two to three year schedule.
Components: Lecture
Same As Offering: MEDS 5416

MEDS 5306(3 credits)
Physiological Digital Imaging
A combination lecture/seminar/project course in "Foundations of Imaging Science." It covers the principal mechanisms of physiological imaging in digital applications and focuses on critical analysis of the performance of modern imaging sensors, modeling and measuring of visual perception parameters for image information and optimizing of digital imaging for the life sciences, pathology and radiology, including telediagnosis. The course is intended for anyone who works with or will use digital images.
Components: Lecture

MEDS 5307(2 credits)
Critical Analysis of the Biological Literature
This course is intended to develop and improve each student's capacity for critical analysis of research articles, with special emphasis on the logic used to frame hypotheses and justify conclusions. An understanding of experimental methods will also be emphasized. Each week one or two papers, across a wide spectrum of modern biomedical research, will be discussed in depth in small group format.
Components: Seminar

MEDS 5308(2 credits)
The Nature of Evidence in Scientific Research
This course will examine the aspects of the scientific process that are common to all levels of biomedical investigations: from biophysics in cell-free systems to molecular biology in cells, to physiology in whole organisms, to epidemiology and clinical investigation in humans. These features begin with enunciation of the question to be asked, and include (1) identification of a system to address the question, (2) specification of the systems and their manipulation, (3) assessment of outcomes, and (4) drawing inferences on the basis of results. The course will be designed as a discussion of seminal, published works on the topics. Two to three key papers will be distributed to participants at least one week before the scheduled discussions. There will be no examination for the course. Students are expected to actively participate in critical evaluation and discussion during each of the weekly two-hour sessions. Evaluation of performances will be based solely on such participation.
Components: Discussion

MEDS 5309(2 credits)
Molecular Basis of Disease
This is a seminar and discussion-based course that reviews the molecular understanding of human disease.
Components: Discussion

MEDS 5310(1 credits)
Responsible Conduct in Research
This course introduces the student to ethical and legal issues associated with the practice and reporting of science. The course uses a case study approach and requires in-class student participation.
Components: Discussion

MEDS 5313(3 credits)
Instructor Consent Required
Biomaterials and Tissue Engineering
Instructor consent required. Recommended preparation: BME 271W (or equivalent). Also offered as BME 313.
A broad introduction to the field of biomaterials and tissue engineering. Presents basic principles of biological, medical, and material science as applied to implantable medical devices, drug delivery systems, and artificial organs. Recommended preparation: BME 271 (or equivalent).
Components: Lecture

MEDS 5322(2 credits)
Developmental Biology
This course covers history, concepts, and experimental strategies in both classical and modern developmental biology. Topics ranging from early fertilization, to early embryonic development, to the formation of adult structures are considered and compared in a range of model organisms. Class format includes one hour of lecture by instructors and one hour of literature analysis and discussion by students each week. Course grade will combine results of class participation and a final exam.
Components: Lecture

MEDS 5323(1 credits)
Genetics and Developmental Biology Journal Club
Reading and discussion of current research in the fields of genetics and developmental biology with emphasis on molecular aspects. Periodic presentation of research papers and active discussion will be expected of all participants.
Components: Seminar

MEDS 5325(2 credits)
Instructor Consent Required
Practical Applications of Sequence Analysis
Provides an understanding of how to analyze genetic sequence information by computer. Includes basic analyses such as restriction mapping and detection of coding sequences, to more advanced analyses such as sequence similarity searching, sequence comparisons and multi-sequence alignment, prediction of functional motifs from primary sequence information, and current tools for mapping, assembly, and analysis of genomic sequence information. The course emphasizes NCBI and other Web-based tools currently available for use. Students will be exposed to the Genetic Computer Group (GCG) series of sequence analysis programs, but these are not emphasized. Students are required to complete a series of computer-based exercises to demonstrate proficiency in the application and use of the various computer programs presented in class.
Components: Lecture

MEDS 5327(4 credits)
The Logic of Modern Biology
This course covers the fundamental biochemical and genetic principles that underlie all areas of modern biology. The biochemistry and genetics of both prokaryotes and eukaryotes are addressed. Reading and discussion of papers in the literature are important elements of the course.
Components: Discussion

MEDS 5329(2 credits)
Immunobiology I
An overview of basic concepts in immunology including antibody structure, function and production, molecular genetics of the immune system and cellular regulation of immunity.
Components: Lecture

MEDS 5330(2 credits)
Immunobiology II
This continuation of MEDS 329 will consider effect or mechanisms of the immune system in inflammation, hypersensitivity, transplantation and autoimmunity as well as regulation of the immune system by cells, cellular products and chemical or physical agents.
Components: Lecture
Requirement Group: Prerequisite: MEDS 5329 (RG179).

MEDS 5333(2 credits)
Instructor Consent Required
Immunobiology of Transplantation
Immunogenetics of transplantation, alloantigen reaction lymphocytes, antigen recognition phase of transplantation immunity, cellular effector mechanisms and antibody participation in transplant immunity.
Components: Lecture

MEDS 5335(4 credits)
Instructor Consent Required
Advanced Molecular and Cellular Immunology I.
Major areas covered include: (1) Development of the
immune system with respect to lymphoid organs and lymphocyte subsets; (2) Mechanisms of antigen processing and presentation; (3) Lymphocyte activation including the role of costimulatory molecules and (4) Regulation of the immune response including tolerance induction, cytokine interactions and signal transduction.

Components: Lecture

MEDS 5336(4 credits) Instructor Consent Required Advanced Molecular and Cellular Immunology II. Major areas covered include: (1) Immunoglobulin genetics and structure; (2) T cell receptor genetics and structure; (3) Molecular nature of antigen recognition by T cell receptor; (4) Structure, function and molecular genetics of lymphocyte accessory molecules; (5) Mechanisms of cytolysis and (6) Complement and complement receptors.

Components: Lecture

Requirement Group: Prerequisite: MEDS 5329 and 5330 (RG180).

MEDS 5337(3 credits) Immunopathology
The immediate-type hypersensitivities will be considered, with special emphasis on anaphylactic-type responses, pathologic responses, pathologic responses to immunologic complexes, immunohematologic diseases and models such as virus immunopathology, and rheumatoid arthritis and systemic lupus erythematosus.

Components: Lecture

MEDS 5338(2 credits) Instructor Consent Required Techniques in Structural Biology
Also offered as MEDS 338.
A short course to introduce graduate students and selected undergraduates to modern techniques in structural biology. Each course offering covers a specific technique: NMR, computational and graphical analysis of biomolecules, X-ray crystallography, analytical ultracentrifugation, spectroscopy, calorimetry, and others.

Components: Lecture

Course Equivalents: MCB 5038

MEDS 5341(3 credits) Instructor Consent Required Molecular Neurobiology of Excitable Membranes
Emphasizes the relation between structure and function of biological interfaces that comprise electrically excitable and chemically excitable (synaptic) membranes. Models of electrically-and chemically-induced regulation of ion movement via channels and transporters are examined. Genetic manipulation of channel composition is evaluated with attention to altered function and inferences about their structure.

Components: Lecture

MEDS 5349(1 - 3 credits) Principles of Pharmacology
An introductory course covering the basic principles of Pharmacology. Introduces the student to the concept that drugs and chemicals act on the body by binding to receptors. The physico-chemical properties of ligand-binding to macromolecules is examined, followed by an examination of the nature of the receptors and the mechanisms whereby they exert their physiological responses to pharmacological agents. The uptake and fate of xenobiotics (compounds foreign to the body) in the body is discussed. The responses to chemicals, as therapeutic agents, i.e., the desired correction of diseased conditions, as well as toxins, carcinogens and teratogens. The mechanisms governing these different responses are examined in detail.

Components: Lecture

MEDS 5350(4 credits) Biochemistry I
Introductory biochemistry of protein structure, function and synthesis, enzymology, structure and replication of nucleic acids, membrane structure and function.

Components: Lecture

MEDS 5351(3 credits) Biochemistry II
This course covers fundamentals of biomolecular interactions and protein structure. Additionally, the course covers the structure/function of select proteins and enzymes essential to the following: metabolic pathways, DNA/RNA transactions, gene expression, cell cycle and signal transduction, and the cytoskeleton.

Components: Lecture

MEDS 5365(3 credits) Genetics
Introduction to the principles and practices of molecular genetics of prokaryotes and eukaryotes. Topics include gene structure and function; gene transfer and recombination; gene regulation; molecular genetics of eukaryotic viruses, yeast, Drosophila, somatic cells and humans.

Components: Lecture

MEDS 5367(1 credits) Instructor Consent Required Introduction to Molecular Biology and Biochemistry
This course involves reading and discussing classic papers in Molecular Biology and Biochemistry in order to introduce first year students to the field and to develop critical skills. Topics will vary from year to year but may include nature of the gene, basic principles of transcription, translation, DNA replication, and membrane structure. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)

Components: Lecture

Requirement Group: Open only to students enrolled in the Biomedical Science doctoral program (RG600).

MEDS 5368(1 credits) Topics in Biochemistry and Molecular Biology
To be offered every semester by a different faculty member on a rotating basis. Topic to be determined by individual faculty member. The purpose of the course will be to discuss and critically evaluate relevant literature in each topic. The topics will include viral replication strategies, membrane molecular biology, growth factors and second messengers, molecular biology of microbial development, membrane receptors, extracellular matrix-cell interactions, and peptide hormones. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)

Components: Lecture

MEDS 5369(3 credits) Advanced Genetics and Molecular Biology
An advanced course emphasizing approaches to the genetic analysis of eukaryotic systems including yeast, fungi, Drosophila, mice, and humans. Topics include genome organization, DNA replication, regulation of gene expression, development, and differentiation.

Components: Lecture

MEDS 5370(1 credits) Instructor Consent Required Introductory Neuroscience
This course will provide an introduction to neuroscience as a discipline and the important concepts and problems that make the nervous system unique. The nervous system consists of the brain, spinal cord, and peripheral nervous structures. Our scientific understanding of sensation, movement, emotional behavior, homeostatic systems, and cognition each require knowledge and understanding of the nervous system. This course will provide the student with an introduction to the neurobiological bases of these behaviors and the experimental approaches that underlie modern neurobiological research. The course will also introduce the student to the unique cell and molecular biology of the nervous system. Neuroscience, as a discipline, incorporates data from many other scientific fields to address fundamental problems. Therefore, one goal of the course is to show how our understanding of the nervous system requires the integration of data from disciplines like endocrinology, genetics, computation biology, engineering, and biophysics. In addition, this

Components: Lecture

MEDS 5371(2 credits) Instructor Consent Required Systems Neuroscience
Part of the core series in the Neuroscience graduate program. This course will address the functional organization of neural systems underlying sensation, movement, language, learning/plasticity, and emotion/arousal. Sensory systems will include the somatosensory, auditory, visual, vestibular, and chemosensory systems. Motor systems will include the spinal cord, brain stem, cerebellum, vestibular system, oculometer system, basal ganglia and cerebral cortex.

Components: Lecture

MEDS 5372(4 credits) Instructor Consent Required Neuroscience: Cellular and Molecular Neuroscience
Part of a core series in the Neuroscience Program, this course provides an introduction to basic concepts in the study of cell biology, neuroanatomy,
neurophysiology, neurochemistry, and molecular biology of the nervous system.
Components: Lecture

MEDS 5374(1 - 6 credits) Instructor Consent Required
Neuroscience: Structure, Function, and Development of the Nervous System
Provides systematic coverage of neuroanatomy, neurophysiology, neuropathology, neurochemistry and developmental neurobiology (including embryology and neural plasticity). Introduction to neuroendocrinology, degeneration and regeneration, communicative sciences (speech, hearing, chemical senses, and psychophysics), and research methods.
Components: Lecture
Requirement Group: Prerequisite: MEDS 5372 (RG182).

MEDS 5375(1 credits) Instructor Consent Required
Neuroscience: Current Research Topics/Methods
The goal of this course is to familiarize students early in their education (first or second year) with various key methodologies to which they will be exposed in courses, journal club presentations, and seminars. After a brief overview of basic concepts, applications, controls, and permutations of the method in the classroom, students will observe and participate in a demonstration of important technical aspects of themethod in the laboratory setting. The course is targeted especially toward students with an interest in neuroscience or neuroimmunology.
Components: Seminar

MEDS 5376(2 credits)
Developmental Neurobiology
Emphasis on the cellular and molecular mechanisms which underlie the development of the nervous system. Reading and discussion of research papers in the literature is stressed.
Components: Lecture

MEDS 5377(3 credits) Instructor Consent Required
Neurobiology of Hearing
Provides in-depth analysis (using the Auditory System as a model system) with application of interdisciplinary approaches of cell and molecular biology, developmental neurobiology, neuroanatomy, neurophysiology/biophysics, neurochemistry, neural modeling, psychophysics, and plasticity, with state-of-the-art methods used in neuroscience research today. The team of faculty members contribute a variety of complementary fields of study.
Components: Lecture

MEDS 5378(3 credits) Instructor Consent Required
Computational Neuroscience
Students study the function of single neurons and neural systems by the use of simulations on a computer. The course will combine lectures and classroom discussions with conducting computer simulations. The simulations will include exercises and a term project. Each student will complete a term project of neural simulation to be developed during the second half of the semester. The topic of the term project should be approved by the instructors by the middle of the semester. The grade will be based on a combination of work done on the exercises and the term project.

Course includes: analysis of electrical circuits modeling neuronal cell membrane and the related differential equations; the Hodgkin-Huxley model of voltage- and time-dependent sodium and potassium conductances in the squid axon; voltage-clamp and current-clamp; the relationship between two rate constants versus the steady-state value and time constant underlying each conductance; neuronal response properties that are related to voltage-dependent and calcium-dependent ion channels; single- and multi-compartment models with components: Lecture
Course Equivalents: BME 6110

MEDS 5380(4 credits)
Cell Biology
Basic eucaryotic cell biology. Major topics include: Methods in Cell Biology; Cell Growth and Proliferation; Cytoskeleton; Transport: Hormone Response; Cyttoplasmic Organelles and Membrane Structure; Function, Biogenesis, Transport and Sorting; Cell Motility: Chromatin Structure and Organization; and Extracellular Matrix and Cell Adhesion.
Components: Lecture

MEDS 5381(4 credits)
Cell Biology and Physiology II
Part I: Lecture format on membrane biophysics (membrane structure and permeability, electrical properties and gated channels, concentration gradients, volume and shape control, energy transduction, membrane dynamics).
Part II: Lecture/Seminar format. Topics in receptors and channels, cell biology of the senses, cell junctions in the nervous system, growth factors and cell activation, cell cytoskeleton and matrix. Emphasis on in-depth discussions of specific cell systems through current literature. Final paper required in the form of research proposal.
Components: Lecture
Requirement Group: Prerequisite: MEDS 5380 (RG186).

MEDS 5382(2 credits)
Advanced Cell Biology: From Microscope to Model-Quantitative Approaches to Cell Biology
Intracellular signaling is one of the most rapidly advancing fields in cell biology. The objective of this course is to introduce to the students the most recent achievements in the field of intracellular signaling and regulation. Each of the participating faculty members will give an introductory lecture to provide an overview of signaling events in their field of expertise and discuss the most important recent papers.
Components: Lecture

MEDS 5383(2 credits)
Neurobiology of Disease
The intent of the course is to introduce “neurobiology of disease” to graduate students receiving basic neuroscience training. The course will span a breadth of diseases and disorders affecting the nervous system, emphasizing links and common themes across diseases/disorders, and addressing both the pathology of these diseases/disorders and their basic science underpinnings.
Components: Lecture

MEDS 5384(2 credits)
Mammalian Neuroanatomy
The Mammalian Neuroanatomy course offers the opportunity to learn the mammalian sinal cord and brain and to explore the relationship of structure and function in the nervous system. It is intended to complement courses that cover integrative, functional, and cognitive neuroscience. Using an informal, small-group, laboratory-based format, students will undertake an extensive analysis of the nervous system. Students will explore the entire central nervous system in the human and the rodent. Readings and discussions will address how structural information is obtained from the intact nervous system at sub-cellular, cellular, or tissue levels, and the students will learn how this information is applied to the analysis of neural systems. Additional activities will include dissection of the spinal cord and brain and the analysis of the human brain in magnetic resonance images (MRI) and computerized axial tomography (CAT)
Components: Lecture

MEDS 5385(3 credits)
Advanced Molecular Neurobiology
This course is a special topics discussion in current “hot topics” in cell and molecular endocrinology and neuroscience. The underlying theme is that the underlying biochemical and molecular events in many endocrine and neurobiological processes are unfolding, often raising more interesting new avenues of research as one area becomes clarified. The course will include studies of lower vertebrates and invertebrates, genetic approaches, a wide variety of molecular and biochemical techniques, as well as some electrophysiology and anatomical mapping as appropriate.
Components: Lecture

MEDS 5388(1 - 4 credits) Instructor Consent Required
Principles and Techniques of Biological Electron Microscopy
A lecture/laboratory course on the theory and practice of transmission and scanning electron microscopy as applied in the biological sciences. Topics include instrument design and operation, electron optics, specimen preparation, photography, microscopic image interpretation and special techniques. Laboratory students learn
and carry out commonly used preparative techniques, observe and photograph specimens in the electron microscope, and complete an independent project.

Components: Lecture

MEDS 5391(2 credits) Instructor Consent Required
Enzymes of Xenobiotic Biotransformation
Lectures and student presentations of journal articles relevant to the lectures plus one laboratory. Topics include an overview of metabolic routes of drugs and chemicals in the body with an emphasis on the hepatic cytochrome P450 monooxygenases. Other topics include conjugative xenobiotic metabolizing enzymes.

Components: Lecture

MEDS 5395(1 - 6 credits)
Independent Study
Independent Study
Components: Independent Study

MEDS 5415(2 credits)
Contemporary Topics in Oral Biology I
A combination lecture/seminar course which focuses on current investigation in the areas of dentomaxillofacial growth and development, oral microbiology and immunology, oromaxillofacial mineralized tissues, and salivary glands and saliva. Subject matter covered in this course and MEDS 416 will rotate over a two to three year schedule.

Components: Lecture

MEDS 5416(2 credits)
Contemporary Topics in Oral Biology II
A combination lecture/seminar course which focuses on current investigation in the areas of dentomaxillofacial growth and development, oral microbiology and immunology, oromaxillofacial mineralized tissues, and salivary glands and saliva. Subject matter covered in this course and DENT 415 will rotate over a two to three year schedule.

Components: Lecture

Same As Offering: MEDS 416

MEDS 5418(3 credits)
Stem Cells and Regenerative Biology
A literature based course on the fundamental aspects of stem cells; their nature, origin, self-renewal and differentiation during embryogenesis and tissue regeneration. Taught by a team of experts. Grade based on mid-term tests, class participation and presentation.

Components: Lecture

Requirement Group: Prerequisite: MEDS 5322 or MEDS 5327 or MEDS 5380 (RG 4543).

MEDS 6401(1 - 9 credits) Instructor Consent Required
Organ Systems I
Presents, in an integrated fashion, the anatomy, histology, biochemistry, and physiology of the central nervous system. Concurrently, the students dissect the head and the neck.

Components: Lecture

MEDS 6402(1 - 9 credits) Instructor Consent Required
Organ Systems II
Presents, in an integrated fashion, the anatomy, histology, biochemistry, and physiology of the cardiovascular, respiratory and renal-urinary systems. The emphasis is placed on how these organ systems interact and work together to maintain homeostasis. Concurrently, the students dissect the thorax.

Introductory biostatistics and epidemiology are also presented at this time.

Components: Lecture

MEDS 6403(1 - 9 credits) Instructor Consent Required
Organ Systems III
Presents, in an integrated fashion, the anatomy, histology, biochemistry and physiology of the gastrointestinal, endocrine and reproductive systems. Also presented is material related to principles of human genetics. At the same time, students dissect the abdomen and pelvis.

Components: Lecture

MEDS 6404(2 credits) Instructor Consent Required
Correlated Medical Problem Solving - Part A
This course serves to expand upon and integrate basic science concepts introduced in the Human Systems.

Components: Lecture

MEDS 6405(2 credits) Instructor Consent Required
Correlated Medical Problem Solving - Part B
Expands upon and integrates basic science concepts introduced in the Human Systems course.

Components: Lecture

MEDS 6406(1 - 9 credits)
Human Development & Health
This 170-hour course comprises (a) a multidisciplinary scientific survey of biological, psychological, and social development from conception to death; (b) an investigation of the behavioral and social dimensions of health and illness; (c) an introduction to principles of medical law and ethics applied to doctor-patient relationships and health care problems; and (d) an overview of the structure, function, and services of the American health care system and the political and economic forces shaping its evolution.

Components: Lecture

MEDS 6407(1 - 9 credits) Instructor Consent Required
Mechanisms of Disease: Part A
General pathology, pharmacology and infectious disease.

Components: Lecture

MEDS 6408(1 - 9 credits) Instructor Consent Required
Mechanisms of Disease: Part B
Diseases affecting homeostasis.

Components: Lecture

MEDS 6409(1 - 9 credits) Instructor Consent Required
Mechanisms of Disease: Part C
Medicine. Oncology, metabolism, endocrinology, and the nervous system.

Components: Lecture

MEDS 6410(1 - 9 credits) Instructor Consent Required
Mechanisms of Disease: Part D
Reproduction, immunology, and connective tissue.

Components: Lecture

MEDS 6411(12 credits) Instructor Consent Required
Clinical Practicum
Clinical experience in the major disciplines including: Medicine, Surgery, Obstetrics & Gynecology, Psychiatry, Family Medicine, and Pediatrics.

Components: Practicum

MEDS 6412(11 credits) Instructor Consent Required
Advanced Clinical Practicum
Advanced clinical work with opportunities in the major clinical disciplines. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).

Components: Practicum

MEDS 6413(2 credits)
Cancer Biology
This is a survey course to explore the genetics and pathobiology of cancer by focusing on a variety of current research topics. Understanding the disease process requires studying normal mechanisms of growth control. Emphasis will be on topics such as differentiation, apoptosis, growth factors, onco-
genes, tumor suppressor genes, viruses and signal transduction.
Components: Lecture

MEDS 6414(2 credits)
Advanced Correlated Medical Problem Solving - Part A
Expands upon and integrates basic science concepts introduced in Human Development and Health and Mechanisms of Disease. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Lecture

MEDS 6417(2 credits) Instructor Consent Required
Advanced Correlated Medical Problem Solving - Part B
Expands upon and integrates basic science concepts introduced in Human Development and Health and Mechanisms of Disease. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Lecture

MEDS 6419(1 credits)
Classic Papers in Molecular Biology & Biochemistry
Students are required to read and critically analyze one or two papers selected by the instructor each week. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Lecture

MEDS 6421(1 - 6 credits)
Classic Papers in Cell Biology & Developmental Biology
Students are required to read and critically analyze one or two papers selected by the instructor each week. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Lecture

MEDS 6422(1 credits)
Classic Papers in Cellular & Molecular Pharmacology
Students are required to read and critically analyze one or two papers selected by the instructor each week.
Components: Lecture

MEDS 6423(2 credits)
Cellular and Molecular Biology of the Vascular System
Systematic survey of classic and current literature in vascular biology, emphasizing the molecular and cellular basis of the development, function, and malfunction of the vascular system.
Components: Lecture

MEDS 6424(2 credits)
Neuropharmacology
Highlights the different neurotransmitter and neuromodulator systems and the pharmacological agents that affect them. Emphasis is placed on the mechanisms of drug action in the treatment of nervous system and mental disease, serving to complement other courses in neuroscience, pharmacology, immunology, and pharmaceutical science.
Components: Lecture

MEDS 6425(2 credits)
Neuroimmune Interactions
Addresses the chemical and physical relationships between the immune system and the nervous system and emphasizes the coordinate operations of the two systems.
Components: Lecture

MEDS 6430(2 credits) Course ID:013108 05-FEB-2008
Molecular and Medical Parasitology
Provides students with an in-depth knowledge of classical and modern parasitology. The course will focus on the molecular and cellular bases of parasite development, differentiation, parthenogenesis and host-pathogeninteractions. The course will address the most recent advances in genomics, proteomics, bioinformatics and large-scale functional analyses and their contributions to treatment and prophylaxis of parasitic infections.
Components: Lecture

MEDS 6444(3 credits)
Molecular Microbiology
Provides first and second year graduate students with a broad understanding of contemporary topics in bacteriology and virology. Although the course centers primarily around the more basic aspects of these two disciplines, the outline also includes sessions intended to relate this basic material to important issues in pathogenesis of bacterial and viral diseases.
Components: Lecture

MEDS 6445(3 credits) Instructor Consent Required
Skeletal Biology
A comprehensive survey of the cellular and molecular mechanisms that regulate the development, growth, differentiation, remodeling, and repair of the skeletal system.
Components: Lecture

MEDS 6447(1 credits) Instructor Consent Required
Presentation of Scientific Data
Through a series of lectures and workshops, this course is designed to improve the ability of students to present scientific data in written and oral format. These skills are essential, not only as a graduate student, but in future careers as scientist. The curriculum covers basic elements and logical order of presentations. Reviewer's perspectives, grant writing resources, workshops, and evaluation of recent seminars help students to design and evaluate research projects.
Components: Lecture

MEDS 6450(3 credits)
Optical Microscopy and Bio-imaging
The course presents the current state of the art of optical imaging techniques and their applications in biomedical research. The course materials cover both traditional microscopies (DIC, fluorescence etc.) that have been an integrated part of biologists' tool-box, as well as more advance topics, such as single-molecule imaging and laser tweezers. Four lab sessions are incorporated in the classes to help students to gain some hand-on experiences. Special emphasis will be given on current research and experimental design. Also offered as BME 341.
Components: Lecture
Course Equivalents: BME 6450

MEDS 6460(3 credits)
Advanced Optical Microscopy and Bio-imaging
This course will cover several aspects of state of the art biological and biophysical imaging. We will focus on advanced techniques including nonlinear optical processes (multi-photon excitation, second harmonic generation, and stimulated Raman processes), as well as optical coherence tomography. 3 lab projects will supplement the lectures, providing hands-on experience with nonlinear optical methods. Special emphasis will be given to current imaging literature and experimental design. Also offered as BME 342.
Components: Laboratory, Lecture
Course Equivalents: BME 6460

MEDS 6461(2 credits) Instructor Consent Required
Clinical Radiation Sciences: Physics and Biology (Part A)
A continuous pair (i.e., MEDS 451 and 452) of semester lecture/seminar courses which examines the physical and biological principles underlying the uses of radiation and allied radiation sciences in clinical diagnosis and therapy. Characteristics of imaging systems, Nuclear Medicine, Radiation Therapy, biological effects of ionizing radiation, radiation measurement and dosimetry, and quality assurance will be covered through critical readings in texts and the literature. This course is available to individuals enrolled in residency programs of medical radiology, oral and maxillofacial radiology, and other specialties engaged in patient imaging. Some of these students will be enrolled in a concurrent degree program, either Master of Dental Science or PhD in Biomedical Sciences. The course is also available to individuals in Master’s or PhD level graduate studies who desire an in-depth study of radiation sciences, and how they apply to patient care.
Components: Lecture
Meds 6495 (1-6 credits) Independent Study
A reading course for those wishing to pursue special topics in the biomedical sciences under faculty supervision.
Components: Independent Study

Meds 6496 (1-6 credits) Laboratory Rotation
Components: Laboratory

Meds 6497 (1-6 credits) Graduate Seminar
Reading and discussion of recent research developments in various areas of biomedical science.
Components: Seminar

Associated Grad School Courses

†Grad 5930. Full-Time Directed Studies (Master’s Level) (Grad 397) 3 credits.
†Grad 5950. Master’s Thesis Research (Grad 395) 1-9 credits.
†Grad 5960. Full-Time Master’s Research (Grad 396) 3 credits.

Grad 5998. Special Readings (Master’s) (Grad 398) Non-credit.
Grad 5999. Thesis Preparation (Grad 399) Non-credit.
†Grad 6930. Full-Time Directed Studies (Doctoral Level) (Grad 497) 3 credits.
†Grad 6950. Doctoral Dissertation Research (Grad 495) 1-9 credits.
†Grad 6960. Full-Time Doctoral Research (Grad 496) 3 credits.

Grad 6998. Special Readings (Doctoral) (Grad 498) Non-credit.
Grad 6999. Dissertation Preparation (Grad 499) Non-credit.

Business Administration
Dean: Christopher Earley
Associate Deans: Linda Klein and Shantaram Hegde
Director, Storrs M.B.A. Program: Michael J. Deotte
Director, Hartford M.B.A. Program: Afshin Ghiaei
Director, Stamford M.B.A. Program: Jud Savikas
Director, Waterbury M.B.A. Program: Glen Richardson
Director, Executive M.B.A. Program: Afshin Ghiaei
Director, M.S. in Accounting Program: Andrew J. Rosman
Director, Ph.D. Program: Gary Powell

Associate Professors: Ba, Bhattacharjee, Dechant, Diaby, Dino, Dolde, Dunbar, Gis, Goes, Golec, Goodman, Hoskin, Hurley, N. Moore, Phillips, Plesko, Rosman, Salorio, Seow, Simsek, Spiggle, Srivavan, Stallar, Thakur, and Tung
Assistant Professors: Bird, Cao, Cruz, Day, Dimov, Gramling, Knopf, Liu, Madjar-Nanovska, Nunez, Pancras, Reilly, Sankaranarayanan, Souder, Yin, and Zhang

The School of Business offers course work and research leading to the degrees of Master of Business Administration (M.B.A.); Master of Science (M.S.) in the fields of Accounting, Business Analytics and Project Management, and Financial Risk Management; and Doctor of Philosophy (Ph.D.) in Business Administration. Detailed descriptions of these programs (as well as the Executive M.B.A.) can be found in brochures available from the School of Business.

The Ph.D. Program

The Ph.D. Program prepares students to conduct state-of-the-art research and to take faculty positions in business schools at leading universities. Students select an area of concentration from the following: accounting, finance, management, marketing or operations and information management. The program emphasizes: (1) student/faculty interaction; (2) flexibility in designing a program to meet individual needs; and (3) timely completion of the degree.

Degree Requirements.

The Ph.D. program has four major components: Course work, qualifying research paper, written general qualifying examination, and dissertation. While specific course work will vary depending upon the student’s area of concentration (students should confer with their major advisors to obtain specific information), all students must complete a minimum of 37 credits (53 credits for the Accounting concentration and 45 credits for the Finance concentration). All courses must be at the graduate level and the twelve credits in the major area typically are Ph.D. level seminars. Interdisciplinary courses are encouraged in the supporting electives. Completion
of the qualifying research paper is required by the end of the second year. The general qualifying examination is administered by the faculty in the student's area of concentration. The dissertation is the final requirement.

Admission.

Admission to the Ph.D. program is based upon the applicant's potential to conduct research and commitment to a rigorous program of study. Applicants to the Operations and Information Management concentration may submit a GRE or GMAT score. All other applicants must submit a GMAT score, regardless of their background. Students who have not previously acquired knowledge of the subject matter of the Common Body of Knowledge courses of the AACSB are expected to acquire that knowledge as part of their program. In addition, applicants should have satisfactorily completed one year of calculus. Letters of recommendation also are considered in the admission decision and a campus interview is desirable. International applicants must submit scores on the Test of English as a Foreign Language.

The M.S. Program in Accounting

The Master of Science Program in the field of Accounting is an online degree which will provide students with the skill set critical to a successful professional career in public and private accounting. A dynamic online community has been created that supports and nurtures student-centered learning and information literacy, also known as "learning to learn." Information literacy is the process of identifying a problem and information sources, evaluating information to make a judgment, and then communicating that judgment. Student-centered learning shifts the focus for learning from the instructor to the student, with the instructor facilitating and guiding the learning experience. Both information literacy and student-centered learning produce individuals who can succeed in challenging work environments.

The online community allows students to readily access other students in the online class as well as pertinent faculty members. Completion of this program, combined with an undergraduate degree with at least 30 credit hours in business or economics other than accounting, will fulfill the 150-hour educational requirements in preparation for the CPA exam in most U.S. states.

Students can complete the 30-credit degree program in eight months on a full-time basis or within 16 months on a part-time basis. The part-time program provides a wide range of summer course offerings minimizing the coursework taken during the fall semester.

Admission.

Admission is highly selective. General targets for admission are: a GMAT score of 550 (with a reasonable balance between verbal and quantitative scores); and an undergraduate grade point average of 3.2 on a 4.0 scale. In addition, applicants must have completed at least 24 semester hours of accounting courses and received a baccalaureate degree at a college or university accredited by a regional accounting commission subscribing to established national policies and procedures or of equivalent accreditation as determined by the Connecticut State Board of Accountancy. Students with fewer than 24 credits in accounting should contact the program director or manager to discuss acquiring the necessary background courses.

Applicants with significant work experience and applicants who add to the cultural and geographic diversity of the student body are encouraged to apply even if they do not possess typical GMAT scores or undergraduate grade-point averages.

Students enter the program in May of each year. Applications and all accompanying materials should be received as early as possible, since admissions decisions are made on a rolling basis until the entering class is filled. The deadline for submitting the application and all materials is March 1.

The M.B.A. Program

The M.B.A. Program emphasizes the role of experiential learning across all functional disciplines. The curriculum requires a total of 19 courses (57 credits) to earn the degree. This typically takes two academic years to complete.

The M.B.A. Program requires a laptop computer as a tool of the trade, and the laptop's use is completely integrated into the curriculum.

The first-year M.B.A. curriculum during the fall semester consists of core introductory courses in economics, managerial statistics, financial accounting and reporting, managing organizations, and management information systems. The spring semester consists of core introductory courses in financial management, operations management, cost analysis and control, and market-driven management.

As part of the first-year curriculum, students are grouped into functional teams. These teams undertake a comprehensive Integration Project which solves business problems faced by a partner company. As the term "integration" implies, students synthesize knowledge and skills from all first-year courses and past professional experiences to develop solutions. Recent projects include experiential learning with such firms as Aetna, The Hartford, Pratt & Whitney, Xerox, Engineering Systems, General Electric, Hamilton Sundstrand, and ING.

In the second year, students complete courses toward their chosen concentrations. Concentrations enable M.B.A. candidates to explore areas of business in greater depth to prepare for specific careers. By March of their second year, full-time M.B.A. students are required to choose a primary concentration (in which the M.B.A. degree is to be awarded). This concentration is to be chosen from the six that have been designated for the full-time M.B.A. Program: Finance, Health Care Management, Marketing Intelligence, Venture Consulting, Operations and Information Management, and Real Estate. Students are required to take four specific courses in their primary concentration and three graduate electives round out the M.B.A. plan of study.

Second-year students also benefit from partnerships with the General Electric edgelab, the SS&C Technologies Financial Accelerator and the Innovation Accelerator. M.B.A. students participate in real-time company-sponsored projects, mentored by faculty and by business executives. By “pushing the envelope” of cooperative research and analysis, by employing student teams on substantive “live” projects, and by providing a creative, collaborative environment, edgelab, the Financial Accelerator, and the Innovation Accelerator are redefining the partnership between business and education at UConn.

Admission.

All applicants must take the Graduate Management Admission Test (GMAT) and must meet the general requirements for admission to the Graduate School. Interviews may be requested by the M.B.A. admissions committee. Non-degree students are permitted, in exceptional cases, to register for a total of not more than 15 credits. They also are required to take the GMAT before enrolling in courses.

Scholastic Standards.

Ordinarily, a student will not be permitted to continue in the M.B.A. program if he or she: receives two or more grades of B- or below with a cumulative average below 3.0 after completing four courses in the program, accumulates four grades of B- or below at any point in the program with a cumulative average below 3.0, or receives an F at any point in the program. Under no circumstances will the M.B.A. degree be conferred if the student has a mark of Incomplete (I) or Absent (X) on his or her record even though the course may not be listed on the plan of study.

The Executive M.B.A. Program

The objective of the Executive M.B.A. program is to provide experienced managers with the opportunity to broaden and update their managerial knowledge and skills. The program is designed for individuals with significant managerial experience. By using a Friday/Saturday format for classes, managers are able to retain their positions in their companies while pursuing graduate studies. Completion time is approximately 20 months. Class size is limited to provide a highly interactive classroom environment. The program leads to the degree of Master of Business Administration. The School of Business at the University of Connecticut is accredited by the AACSB - The American Assembly of Collegiate Schools of Business. Admission takes place only once per year. Classes are held at the Graduate Business Learning Center in Hartford.

Admission.

All applicants must take the Graduate Management Admission Test (GMAT) and must meet the general requirements for admission to the Graduate School. Interviews may be requested by the Executive M.B.A. Admissions Committee.

Curricular Program for the Full-Time M.B.A. Degree
Students are required to complete the following general curricular program unless they enter the specialized M.B.A. program in health care management.

57 Credit General Program

Candidates for the general M.B.A. degree are required to complete 57 credits of graduate study: 39 credits prescribed and 18 elective/breadth credits as follows:

Required Courses –

ACCT 5121 – Financial Accounting and Reporting
ACCT 5123 – Cost Analysis and Control
BLAW 5175 – Business, Law, and Ethics in Modern Society
FNCE 5101 – Financial Management
FNCE 5151 – Economic Analysis for Business
MGMT 5138 – Managing Organizations
MGMT 5800 – Strategy, Policy, and Planning
MKTG 5115 – Market-Driven Management
OPIM 5103 – Managerial Statistics
OPIM 5110 – Operations Management
OPIM 5165 – Management Information Systems
BADM 5895 – Integration Project

In their second year, full-time M.B.A.s choose a primary concentration (in which the M.B.A. degree is to be awarded). Concentrations include: Finance, Marketing Intelligence, Operations and Information Management, Real Estate, Venture Consulting, and Health Care Management. The primary concentration consists of four courses. Three graduate electives round out the M.B.A. plan of study.

Based upon prior preparation, substitution of up to 6 credits of required courses, other than MGMT 5800, may be possible. Each student in the 57 credit general program is required to establish an area of emphasis consisting of at least six credits of core work beyond the required courses.

A college-level calculus course covering limits, functions, integration, and differentiation must have been completed at or prior to the time of admission to the M.B.A. program. Each student who transfers from another institution must earn a minimum of 42 credits of graduate work at the University of Connecticut.

Dual M.B.A. and J.D. Degree Program

This program offers the student the opportunity to combine academic training in the fields of Business Administration and Law by combining into four years of study the three-year J.D. program offered by the School of Law and the two-year M.B.A. program offered by the Graduate School. Fifteen credits from the J.D. program are used to meet the M.B.A. requirements. Twelve credits from the M.B.A. program are used to satisfy the J.D. requirements. To be admitted to the joint M.B.A./J.D. program, a student must meet the admission requirements of both schools. For additional information, interested students should review the materials of the regular programs contained in the catalogs of the respective schools.

Dual M.B.A. and M.D. Degree Program

Rapid changes in the health care industry as well as the increasing size and complexity of health care organizations have created a demand for physicians who also are effective managers. The Doctor of Medicine program is offered at the University of Connecticut Health Center. Usually, students complete the first two years of study in the School of Medicine, enroll in the full-time M.B.A. program in Storrs for the third year, and then return to the Health Center to take electives in both the School of Medicine and the M.B.A. program in Hartford. M.D./M.B.A. students are required to complete 42 credits in the M.B.A. program. For more information, contact the Director of the Storrs M.B.A. program or the Office of Admissions, School of Medicine.

Dual M.B.A. and M.S.W. Degree Program.

This program is designed for students who anticipate careers in the management and administration of social work services in either governmental or private agencies. Application to each school is made independently. Nine credits in the M.B.A. program are used to meet the M.S.W. requirements. Fifteen credits in the M.S.W. program are used to meet the M.B.A. degree requirements. Additional details are available from the Storrs M.B.A. Director and the School of Social Work.

Dual M.B.A. and M.A. in International Studies Degree Program

This program is designed for students interested in the management of international organizations in African, Latin American and Caribbean, and Euro- and-opean areas. Fifteen credits of course work in area studies in the School of Liberal Arts and Sciences are used to meet both M.B.A. and M.A. degree requirements. More details are available from the Directors of the Storrs M.B.A. Program, the Center for Contemporary African Studies, the Center for Latin American and Caribbean Studies or the Center for European Studies.

Dual M.B.A. and M.S. in Nursing.

This dual degree program is available for students in the administrative track in the Nursing Program. The M.S. in Nursing usually includes a minimum of 39 credits. Fifteen credits of course work in the Nursing Program are used to meet both M.B.A. and M.S. degree requirements.

Dual M.B.A. and M.I.M. Degree Program

A two-year program, with one year in the University of Connecticut Graduate School and one year in France, permits the student to earn the University of Connecti- cut M.B.A. and the Master’s in Management of the Ecole Supérieure de Commerce (ESC) de Lyon. Classes at ESC Lyon are taught in French.

Dual M.B.A. and Pharm.D. Degree Program

This program permits the pursuit of dual M.B.A. and Pharm.D. degrees. Continuous Registration for Degree Students. All continuing M.B.A. students not registered for credit courses during the fall or spring semesters must register for GRAD 5998 Special Readings (Master’s).

COURSES OF STUDY

Well qualified non-degree students are admitted into M.B.A. courses only in very special cases and only if they have taken the GMAT.

Accounting

ACCT 5121 (3 credits)
Financial Accounting and Reporting

Accounting is an information system. This course is designed to introduce students to accounting concepts essential to the preparation and interpretation of financial statements issued to management and to external users such as stockholders and creditors. While appropriate consideration is given to procedural aspects of accounting, more emphasis is placed on understanding the conceptual bases of generally accepted accounting principles and the effects of using alternative accounting methods on financial statements.

Components: Lecture

Requirement Group: Open to graduate business students only, others with permission. Prerequisite: undergraduate calculus course or OPIM 5602 (RG2739).

ACCT 5123 (3 credits)
Cost Analysis and Control

Internally, managers need timely information in order to plan and control operations. This course focuses on managerial uses of accounting information for decision-making within the business enterprise. Decisions considered include product pricing, transfer pricing, make or buy, and capital budgeting. Formation of budgets establishing an internal control structure, performance evaluation, and cost control techniques are also discussed.

Components: Lecture

Requirement Group: Open to MBA students, others with permission. Prerequisite: ACCT 5121 (RG2809).

ACCT 5327 (3 credits)
Financial Statement Analysis and Business Valuation

Addresses the use of financial statements to analyze and value firms. Topics include advanced issues in accounting, earnings quality, performance measurement, cash flows, and accounting-based valuation and trading strategies.

Components: Lecture

Requirement Group: Open to MBA students, others with permission. Prerequisite: ACCT 5121 (RG2809).

ACCT 5505 (3 credits) Instructor Consent Required
Understanding the Responsibilities of an Accounting Professional

The groundwork for fundamental issues that are included in the curriculum in the MS in Accounting Program relating to content and skills associated with professional success will be set.

Components: Seminar

Requirement Group: Open to students in the Accounting MS program (RG2753).
ACCT 5520(3 credits)
Financial Planning for Accounting Professionals
Designed for the accounting professional in the role of financial planner, this course covers all facets of a professional in financial planning practice. Topics include personal income tax planning, debt management, investment and retirement planning, risk management and insurance, and estate planning.
Components: Lecture
Requirement Group: Prerequisite: ACCT 5571. Accounting 5572 preferred but not required. (RG192).

ACCT 5531(3 credits)
Contemporary Financial Accounting Issues
Study of major financial accounting issues, including the conceptual framework of accounting, the standard-setting process, asset valuation, income determination, and the agency theoretic perspective on managerial behavior and the use of accounting information in contracts. Other topics covered are fair value and derivatives accounting, and corporate governance issues related to the Sarbanes-Oxley Act of 2002. Concentrates on developing theories of the usefulness of accounting information in financial markets. This theoretical perspective is used to evaluate the conceptual framework, specific accounting standards, and issues related to international harmonization of accounting standards.
Components: Lecture

ACCT 5533(3 credits)
Contemporary Managerial Accounting Issues
Study of major managerial accounting issues including analysis and evaluation of cost management systems. Overall focus is on the use of internally generated accounting data to support business strategy and maintain competitive advantages. Current research in the constantly evolving area of managerial accounting is emphasized.
Components: Lecture

ACCT 5535(3 credits)
Global Financial Reporting and Analysis
Students will develop and test expectations about the content of financial reports based on an understanding of how national culture and subcultures affect financial reporting in a principles-based decision environment.
Components: Lecture

ACCT 5539(3 credits)
Financial Services Reporting & Analysis in the Financial Services Industry
Introduces the nature of and accounting for financial services firms. The major emphasis is on insurance and banking. In each section of the course the student will learn about the nature of the business and the basic transactions in which the business engages. The unique accounting aspects of the businesses are discussed, including any special regulatory accounting rules. The analysis of firms in the industry will be covered.
Components: Lecture

ACCT 5543(3 credits)
Advanced Assurance Services
Advanced treatment of significant assurance services issues. Intended for students with previous coursework in assurance services and/or auditing. The course demonstrates more detailed level of audit techniques: audit planning, risk analysis, assessing internal control, executing audit procedures to substantiate validity of key financial accounts, and presenting the audit findings in a final audit report.
Components: Lecture

ACCT 5545(3 credits)
Instructor Consent Required
Business Law, Business Ethics, and Public Accounting
This course covers the major legal and ethical issues in business and their significance for the accounting profession and related stakeholders. Included among the topics are the tension between profit and the public interest, corporate responsibility to society, environmental concerns, consumer and employee relations; confidentiality, whistle blowing, advertising and hiring practices. This course may not be taken by MBA students, who should instead take BLAW 375.
Components: Lecture

ACCT 5546(3 credits)
Instructor Consent Required
Forensic Accounting and Securities Fraud
Forensic accounting has become the buzz in accounting, largely due to several highly publicized fraud cases. Recent surveys identified this specialized field of accounting as the future growth area for both public and private accounting. However, forensic accounting involves much more than fraud. The course will define and contextualize forensic accounting, as well as provide students the mindset and skill set required of a forensic accountant, both of which can be applied to fraud or other contexts, or can prove to be invaluable within the traditional auditing and taxation areas as well.
Components: Lecture

ACCT 5549(3 credits)
Instructor Consent Required
Accounting and Disclosure for Not for Profit Entities
Accounting for not-for-profit organizations (NFPs), including educational institutions, hospitals and other health care entities, and civic and cultural organizations, is substantially different than for-profit entities. This course will examine topics relating to preparing and using financial statements for NFPs, including accounting, audit, and disclosure requirements and selected issues relating to government grants awarded to NFPs.
Components: Lecture

ACCT 5553(3 credits)
Instructor Consent Required
Evaluating Internal Controls
This course examines frameworks for evaluating the control practices that an organization relies on to help ensure the integrity of information provided by its accounting systems. Students will learn how to: (1) analyze an organization’s control environment and processes to assess information integrity risks that can be managed with control procedures; (2) design, implement, and monitor internal controls for both manual processing procedures and information-intensive accounting systems; and (3) test the effectiveness of controls in order to evaluate the extent to which deficiencies threaten the reliability of accounting information.
Components: Lecture

ACCT 5571(3 credits)
Taxation of Business Entities
Application of basic tax concepts to business entities, with particular emphasis on C corporations and partnerships. At the end of the course, students should be able to identify and address the tax issues faced when forming, operating, and liquidating a business entity.
Components: Lecture

ACCT 5572(3 credits)
Research in Taxation
Application-oriented tax research, which has the objective of determining the defensibly correct tax treatment of a transaction based on the existing law. Tax research is a process of two basic activities: (1) the conceptualizing process to decide what research is needed and then to evaluate any information located through tax research, and (2) the search process, which requires the ability to use the massive quantity of tax authority available in electronic format. Students further develop their communication skills, both oral and written.
Components: Lecture

ACCT 5573(3 credits)
Advanced Corporate Taxation
Focus is on topics relating to the taxation of corporations: taxable sales and acquisition of going concerns; tax-free reorganizations; multistate taxation; and international taxation of U.S. multinational corporations. The objective is to familiarize the student with the applicable tax rules. Students learn to identify applicable tax planning strategies and tax issues present in business decisions such as those involving the sale or acquisition of a going business, the location or expansion of operations, the repatriation of foreign earnings, and the setting of transfer prices for goods and services provided to related parties.
Components: Lecture
Requirement Group: Prerequisite: ACCT 5571. Accounting 5572 preferred but not required. (RG192).

ACCT 5574(3 credits)
Advanced Individual Taxation
Focus is on topics relating to taxation of individuals: estate and gift taxation; income taxation of estates and trusts; estate planning; compensation planning including, but not limited to, equity-based compensation; income taxation of and planning for high-income taxpayers, including taxation of investments and charitable planning. Students learn tax rules and tax planning strategies necessary for individuals to create, preserve, and transfer wealth to future generations.
Components: Lecture
Requirement Group: Prerequisite: ACCT 5571. Accounting 5572 preferred but not required. (RG192).
ACCT 5582 (3 credits) Instructor Consent Required
Research for Accounting Professionals
This course provides students with the information literacy skills required of an accounting professional to identify information needs, specify and implement research strategies, evaluate resources in order to fulfill those needs, and communicate findings.
Components: Lecture

ACCT 5583 (3 credits) Instructor Consent Required
Financial Reporting and Auditing Implications Relating to Income Taxes
This course focuses on the financial reporting and auditing provisions related to federal, foreign, and state income taxes. Students will learn how to: calculate income tax amounts reported on the income statement, balance sheet, and statement of cash flows; prepare the income tax footnote and related disclosures; identify substantive audit procedures relating to income tax balances and disclosures; and evaluate and recommend internal controls relating to income taxes.
Components: Lecture

ACCT 5603 (3 credits)
Advanced Accounting
An in-depth study of accounting for business combinations. Coverage also is given to accounting for nonprofit entities and contemporary issues in financial accounting.
Components: Lecture
Requirement Group: Prerequisite: ACCT 5622. Not open to students who have passed ACCT 4203 (RG190).

ACCT 5604 (3 credits)
Assurance Services
Issues relevant to the public accounting profession, such as legal liability and ethics, audit risk analysis, planning of audit engagements, audit reports, and other assurance services and reports. Students learn to think critically about issues facing the audit profession, primarily by analyzing cases and completing a number of individual and research group projects.
Components: Lecture
Requirement Group: Not open to students who have passed ACCT 4243 (RG634).

ACCT 5622 (3 credits)
Financial Accounting
Study of the financial accounting principles which determine financial statements and the uses of the financial statements. The course adopts a broad perspective to understanding major accounting concepts contained in the intermediate accounting curriculum. Emphasis is placed on financial statement presentation and the meaning of resulting balance sheet and income statement amounts.
Components: Lecture
Requirement Group: Prerequisite: ACCT 5121 (RG191).

ACCT 5625 (3 credits)
The Federal Income Tax and Business Decisions
Designed for the business manager who wants an awareness of tax considerations involved in business decisions. It involves a symptom/recognition level of learning rather than a detailed analysis of each section of the law. The course involves an examination of the definition of income, evaluation of different business entities, methods of reporting income and deferral transactions. Students examine how slight changes in a transaction can materially alter the tax consequences. The course includes discussion of the social, economic, and political aspects of taxation as well as an opportunity to familiarize the student with tax research techniques.
Components: Lecture
Requirement Group: Prerequisite: ACCT 5121 (RG191).

ACCT 5894 (1-3 credits)
Special Topics in Accounting
Investigation and discussion of special topics in accounting.
Components: Seminar
Requirement Group: Open to MBA students, others with permission. Prerequisite: ACCT 5121 (RG2089).

ACCT 5895 (1-6 credits)
Instructor Consent Required
Independent Study in Accounting
Faculty-student interaction on a one-to-one basis involving independent study of specific areas of accounting. Emphasis, selected by the student, may be on theoretical or applied aspects. A written report is required.
Components: Independent Study

ACCT 6200 (1-3 credits)
Investigation of Special Topics
Components: Lecture

ACCT 6201 (3 credits)
Instructor Consent Required
Introduction to Accounting Research
This seminar introduces students to three major elements of accounting research. First, students are introduced to philosophy of science and how that translates into the major research paradigms in accounting. Second, students are introduced to research design issues and how those issues are illustrated in the accounting literature. Finally, students are introduced to the major research paradigms in accounting.
Components: Seminar

ACCT 6202 (3 credits)
Seminar in Accounting Research II: Organizational Behavior
Continuation of study in current research topics in accounting.
Components: Seminar

ACCT 6203 (3 credits)
Accounting and Capital Markets
This seminar provides a broad survey of capital markets research in accounting and related fields. Students are introduced to major theoretical and methodological issues in this line of research. The seminar focuses on theoretical and intuitive constructs that frame accounting research questions and the methods that are used to address those research questions.
Components: Seminar

ACCT 6204 (3 credits)
Judgment and Decision Making in Accounting
The seminar examines theories and empirical research related to individual judgment and decision making in accounting. Students are introduced to the major theoretical and methodological issues involved in this line of research, and develop the background for reading the literature and for further study.
Components: Seminar

ACCT 6211 (1 credits)
Seminar in Special Research Topics
Students are exposed to a broad range of accounting research through reading and critiquing research papers presented at the Accounting Department Research Workshop (papers are presented by local scholars as well as scholars from other institutions). The seminar also focuses on how to present effective written and oral criticisms of research papers.
Components: Seminar

Business Administration

BADM 5310 (3 credits) Instructor Consent Required
Financial Accelerator I: Business Applications in Finance
This practicum is open to the participants of ongoing projects at the Financial Accelerator. It involves scoping the project, identification and review of the pertinent academic and practitioner literature, development of the deliverables, identification of data sources required for analysis, and performing various project work. The practicum involves a student team project with a faculty mentor.
Components: Practicum

BADM 5311 (3 credits) Instructor Consent Required
Financial Accelerator II: Advance Financial Analysis
This practicum is open to the participants of ongoing projects at the Financial Accelerator. It involves application of advanced financial models to business problems, identification of the appropriate method for analysis of data, interpretation of results, making presentations to client managers during the semester, and writing the final report. The practicum involves a student team project with a faculty mentor.
Components: Practicum

BADM 5320 (3 credits) Instructor Consent Required
Innovation Accelerator I: Evaluation of New Ventures -- Business Process
This practicum provides students hands on experience working with the founders of a high-tech entrepreneurial venture. Students, working in a team, are empowered to act as the CEO of the start-up venture focusing on developing innovative and implementable strategic solutions to a defined mission-critical problem faced by the venture. Students develop an expert¿s knowledge with respect to the venture¿s industry, markets, products, competitors, etc. that serve as a foundation for recommending evidence-based transformational solutions. Emphasis is placed on skill acquisition such that students can effectively
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Description</th>
<th>Components</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>BADM 5321</td>
<td>3 credits Instructor Consent Required Innovation Accelerator II: New Venture Analytics</td>
<td>This practicum provides the students with hands on experience working with the founders of a high-tech entrepreneurial venture. Under a faculty mentor, the lab provides the students with hands-on experience collecting both primary and secondary data. Students acquire skills related to identifying targeted survey populations, the development of unambiguous survey questions, as well as best methods for survey implementation. Furthermore, students learn how to analyze the resultant data, combine it with other secondary research, extract relevant, non-duplicative findings, and develop evidence-based conclusions and strategic recommendations/solutions for the client venture.</td>
<td>Practicum</td>
<td>Open to MBA</td>
</tr>
<tr>
<td>BADM 5330</td>
<td>3 credits Instructor Consent Required SCOPE I: Social Entrepreneurship Processes</td>
<td>This practicum provides students with hands on experience in working with social entrepreneurs at work in start-up or existing organizations (private, public or not-for-profit). Experiences may include helping organizations identify social needs, evaluate alternative methods for improving social conditions and develop programs to implement solutions. Meaningful social entrepreneurship can be local in scope, or contribute to the development of cities, regions, nations or even be global in its reach. Under a faculty mentor, students work on projects which will provide the opportunity to make a positive difference by applying their skills and training to address critical social needs.</td>
<td>Practicum</td>
<td>Open to MBA</td>
</tr>
<tr>
<td>BADM 5331</td>
<td>3 credits Instructor Consent Required SCOPE II: Social Innovation Processes</td>
<td>This practicum examines how innovation by organizations can be used to develop responses to social problems. Social innovators employ "entrepreneurial skills," such as finding opportunities, inventing new approaches, securing and focusing resources to meet social needs and managing risk, in the service of creating social value. We see social innovation, defined as innovative, social value creation, occurring within or across nonprofit, governmental, and for profit organizations. Under a faculty mentor, students in this course will work with an organization to help it improve people's lives through the development of innovative programs to meet social needs.</td>
<td>Practicum</td>
<td>Open to MBA</td>
</tr>
<tr>
<td>BADM 5894</td>
<td>1 - 3 credits Special Topics Special Topics</td>
<td>Components: Lecture Requirement Group: Open to MBA students, others with permission (RG2998).</td>
<td>Practicum</td>
<td>Open to MBA</td>
</tr>
<tr>
<td>BADM 6201</td>
<td>1 credits Introduction to Research and Teaching</td>
<td>This course introduces students to important dimensions of an academic career. The role and importance of research and teaching is stressed with emphasis on philosophy of science, as well as appreciation of research in other business administration areas of concentration. Teaching methods and values in higher education are covered. Guest speakers discuss research in their areas. Practical aids such as how to write a research proposal and how to manage a dissertation are covered.</td>
<td>Seminar</td>
<td>Open to MBA</td>
</tr>
<tr>
<td>BLAW 5175</td>
<td>3 credits Business Law, and Ethics in Modern Society</td>
<td>In order to survive, business must meet the legal and ethical standards being imposed by a changing society. This course emphasizes that the business enterprise is not an island and that business decision-making must be undertaken in light of current legal and ethical demands. Such demands may take the form of globalization of business enterprise, reactions to hostile takeovers, concerns with market concentration and efficiency, changes in legal philosophy and corporate ethics and developments in international law and administrative regulation. By examining the philosophical, legal, social, historical, and political/economic regulatory environments, this course places business decision-making in the legal and ethical perspective so critical in today's market.</td>
<td>Practicum</td>
<td>Open to MBA</td>
</tr>
<tr>
<td>BLAW 5676</td>
<td>3 credits Law for the Manager</td>
<td>All business activity must be conducted with a sensitivity toward both the requirements of the law and the legal ramifications that flow from discretionary action. Whether such activity involves the formation of a contract, the choice of a business organization, the use of an agent, the purchase or sale of securities, or the institution of a lawsuit, legal considerations are pervasive. This course exposes students to some of the basic tenets of business law including the judicial process, contracts, partnerships, corporations, securities regulation, labor law, torts, and the principal-agent relationship.</td>
<td>Practicum</td>
<td>Open to MBA</td>
</tr>
<tr>
<td>BLAW 5894</td>
<td>1 - 3 credits Seminar</td>
<td>Seminar Investigation and discussion of special topics in law.</td>
<td>Practicum Seminar Requirement Group: Open to MBA students, others with permission (RG2998).</td>
<td>Practicum Seminar Requirement Group: Open to MBA students, others with permission (RG2998).</td>
</tr>
<tr>
<td>BLAW 5895</td>
<td>1 - 6 credits Instructors Consent Required Special Topics in Business Law</td>
<td>Faculty-student interaction on a one-to-one basis involving independent study of specific areas of law. Emphasis, selected by the student, may be on theoretical or applied aspects. A written report is required.</td>
<td>Seminar</td>
<td>Practicum Seminar Requirement Group: Open to MBA students, others with permission (RG2998).</td>
</tr>
<tr>
<td>BLAW 5910</td>
<td>3 credits Introduction to Economic Markets</td>
<td>Provides a foundation in the economics of markets, with particular application to financial markets and the role of information. Specific topics include the following: (1) the basic principles of supply, demand, profit maximization, price determination, international trade, and exchange rates; (2) the basic structure of modern, global financial markets, as an application of the basic economic principles; (3) the use of information and information technology in financial markets, including use of the internet, Bloomberg, Dow Jones and other computerized sources of information; and (4) a review of the "efficient market hypothesis.</td>
<td>Practicum Seminar Requirement Group: Open to MBA students, others with permission. Prerequisite: undergraduate calculus course or OPIM 5602 (RG3739).</td>
<td>Practicum Seminar Requirement Group: Open to MBA students, others with permission. Prerequisite: undergraduate calculus course or OPIM 5602 (RG3739).</td>
</tr>
<tr>
<td>FNCE 5101</td>
<td>3 credits Financial Management</td>
<td>All major business decisions have financial implications, and therefore, the financial manager's contribution to directing the operations of the firm has become increasingly critical in the last decade. This course provides an overview of techniques for effectively studying financial decisions and their impact on the company. The course covers the basic concepts and tools necessary to understand the financial decision-making process. The fundamental issues of timing and uncertainty are integrated into the problem of asset valuation. Financial analysis models for determining appropriate sources of capital and effective use of long term and short term assets are discussed.</td>
<td>Practicum Seminar Requirement Group: Open to PhD students in the School of Business only (RG193).</td>
<td>Practicum Seminar Requirement Group: Open to PhD students in the School of Business only (RG193).</td>
</tr>
<tr>
<td>FNCE 5115</td>
<td>3 credits Introduction to Economic Markets</td>
<td>Provides a foundation in the economics of markets, with particular application to financial markets and the role of information. Specific topics include the following: (1) the basic principles of supply, demand, profit maximization, price determination, international trade, and exchange rates; (2) the basic structure of modern, global financial markets, as an application of the basic economic principles; (3) the use of information and information technology in financial markets, including use of the internet, Bloomberg, Dow Jones and other computerized sources of information; and (4) a review of the "efficient market hypothesis.</td>
<td>Practicum Seminar Requirement Group: Open to MBA students, others with permission. Prerequisite: undergraduate calculus course or OPIM 5602 (RG3739).</td>
<td>Practicum Seminar Requirement Group: Open to MBA students, others with permission. Prerequisite: undergraduate calculus course or OPIM 5602 (RG3739).</td>
</tr>
<tr>
<td>FNCE 5202</td>
<td>3 credits Investment and Security Analysis</td>
<td>A rigorous foundation in risk/return analysis, asset valuation, the use of derivatives, and financial engineering techniques in risk management and overall portfolio management. Information technology is applied, including computerized financial modeling and asset management software.</td>
<td>Practicum Seminar Requirement Group: Open to PhD students in the School of Business only (RG193).</td>
<td>Practicum Seminar Requirement Group: Open to PhD students in the School of Business only (RG193).</td>
</tr>
</tbody>
</table>
| FNCE 5205 | 3 credits Global Financial Management | An exploration of global finance topics such as 1) international trade, 2) balance of payments, 3) exchange rate determination, 4) currency exposure,
and 5) the cost of capital in global financial markets. Information technology is applied. Components: Lecture
Requirement Group: Open to MBA students, others with permission. Prerequisite: FNCE 5101 (RG2092).

FNCE 5206(3 credits) Financial Institutions: Management and Capital Markets
Investigation of the structure financial services companies (banks, insurance companies, securities firms, and so forth). Emphasis is on the tools used by these firms to compete to provide basic financial services like pooling resources, managing risk, transferring economic resources, pricing information and clearing and settling payments. Financial services product development and the role of information technology in financial services, including software and data. Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission. (RG2093).

FNCE 5209(3 credits) Corporate Finance
A markets-oriented approach to corporate finance issues, especially capital structure and dividend policy. Modern concepts of agency theory and asymmetric information are integrated. Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission. (RG2094).

FNCE 5311(2 credits) Program Director Consent Req'd Financial Markets and Instruments
This course introduces fixed income securities, futures and forwards, swaps and options contracts and discusses the structure of financial markets, including equity and bond markets, money markets, foreign exchange, and commodities. Components: Lecture

FNCE 5312(2 credits) Program Director Consent Req'd Financial Institutions - A Risk Management Approach Sources of risk and management of risk through diversification, hedging and gearing, Value at Risk (VAR), Risk Management System and Basel II Accord, as well as the measurement of market risk, interest rate risk, credit risk, and other risks are addressed in this course. Components: Lecture

FNCE 5313(3 credits) Program Director Consent Req'd Financial Risk Modeling I
Students of this course will learn the mathematical foundation for modeling financial risk as well as key concepts in algebra, statistics, calculus, time series and econometrics principles with applications to modeling risk management as a dynamic process over time. Components: Lecture

FNCE 5321(3 credits) Program Director Consent Req'd Financial Risk Modeling II
This course provides a background in building advanced financial models, including lattice models, numerical methods, and Monte Carlo simulation; programming techniques to value complex derivatives and portfolios; and analyses of financial risk problems with Excel, VBA, and higher level programming languages. Components: Lecture

FNCE 5322(3 credits) Program Director Consent Req'd Financial Risk Management I - Equity Markets
The objective of this course is to provide strategies for security selection and asset allocation and evidence on returns and volatility, trade-to-trade equity price behavior, trading volume and patterns, financial risks and optimal allocation of funds. Students will use pricing and equity derivatives in risk management as well as exotic options in equity-linked and interest rate-linked products and strategies. Components: Lecture

FNCE 5323(3 credits) Program Director Consent Req'd Strategies & Risk Management in Alternative Investments I
The objectives of this course are to (a) discuss the alternative investment tools (b) examine the performance of hedge funds and other alternative investments such as venture funds and private equity, and (c) present an in-depth analysis of the main hedge fund investment strategies, (d) explore the behavioral issues and human factor in risk management. The recent financial crises have exposed how risk models can fail as a result of human errors, and lack of communication. The instructors will include business professionals and rely mostly on cases which apply the concepts developed in the previous classes. This class will devote a significant amount of time on how to address the human factor in modeling risk. Components: Lecture

FNCE 5331(3 credits) Program Director Consent Req'd Financial Risk Modeling III
This course covers the application of advanced estimation and forecasting techniques including multivariate and time series models (ARIMA) and maximum likelihood estimation to risk management, and advanced VAR topics, including computing and implementing VAR management systems, extensions and limitations of VAR (IVAR, DVAR), and stress testing. Components: Lecture

FNCE 5332(3 credits) Program Director Consent Req'd Financial Risk Management II - Fixed Income Markets
This course covers: bond fundamentals and risk, models of term structure, the use of interest rate derivative in hedging interest rate risk, the use of mortgage-backed and other asset-backed securities (MBS, CMBS), and other debt instruments (CDO\(s\), CLO\(s\) etc.) to manage credit and cash flow risks, in addition to valuation and trading strategies of pooled assets and derivative bonds using Monte Carlo and option pricing techniques. Components: Lecture

FNCE 5333(3 credits) Program Director Consent Req'd Strategies & Risk Management in Alternative Investments II
The objectives of this course are to (a) discuss the alternative investment tools (b) examine the performance of hedge funds and other alternative investments such as venture funds and private equity, and (c) present an in-depth analysis of the main hedge fund investment strategies, (d) explore the behavioral issues and human factor in risk management. The recent financial crises have exposed how risk models can fail as a result of human errors, and lack of communication. The instructors will include business professionals and rely mostly on cases which apply the concepts developed in the previous classes. This class will devote a significant amount of time on how to address the human factor in modeling risk. Components: Lecture

FNCE 5341(3 credits) Program Director Consent Req'd Financial Risk Management III - Advanced Topics
Topics covered in this course include: pricing, measurement, and management of credit risk; credit risk modeling; use of credit derivatives to manage and control credit risk; building and managing portfolios, including long/short, and market neutral strategies; measurement of credit risk, including Actuarial, Merton, and Copula function; and portfolio construction, performance evaluation, asset allocation, and portfolio risk management (VAR, Hedging, Portfolio insurance). Components: Lecture

FNCE 5342(3 credits) Program Director Consent Req'd Internal Control Risk - Valuation and Analysis Issues
This course reviews the accounting requirements associated with asset valuation and income recognition of complex portfolios that utilize advanced hedging techniques. The course analyze an organization's control environment and processes within COSO and SOX frameworks and examines the control practices that organizations use to help ensure the integrity of information provided by its accounting systems. Finally tax related issues and Basel II are also discussed. Components: Lecture

FNCE 5343(3 credits) Program Director Consent Req'd Legal & Ethical Issues in Financial Risk Management
This course provides participants with an introduction to the federal laws regulating financial products and the internal controls necessary to comply with those laws. It examines the federal regulation of securities and derivatives and the market participants engaged in those businesses. Participants study safety and soundness regulation of other major financial institutions, including commercial banks, bank holding companies, and insurance underwriters. Finally, the course examines the compliance activities and internal controls that financial firms need to maintain to comply with federal law particularly the Sarbanes-Oxley Act. It closes with an overview of new developments in financial regulation and compliance. Components: Lecture

FNCE 5504(3 credits) Options and Futures
Analysis and valuation of speculative securities including options and futures with emphasis on
their use for hedging and speculative motives. Major valuation models are discussed and applications of contingent claim valuation framework to corporate finance problems are also explored.

Components: Lecture
Requirement Group: Open to MBA students, others with permission. Prerequisite: FNCE 5101 (RG195).

FNCE 5507(3 credits)
Working Capital Management
Working capital management is critical in determining whether a firm is competitive and profitable. Each component of working capital cash, marketable securities, receivables, inventories, and payables is studied and is related to the firm's operations. The course concentrates on applications and includes lectures by working capital managers from major corporations.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101 (RG196).

FNCE 5508(3 credits)
Asset Allocation and Capital Market Theory
Provides an integrative overview of issues in financial theory. Contemporary theoretical developments in corporate finance and financial markets are addressed. Major topics include agency theory, option theory, term structure theory, CAPM, APT, market efficiency, capital structure, and dividend policies under full and asymmetric information.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission (RG194).

FNCE 5512(3 credits)
Fixed Income Instruments and Markets
This course examines contemporary portfolio management of fixed income institutional investors, issuers, and broker-dealers. It assesses current practice and presents a theoretical framework for anticipating change. Coverage includes pricing, assessment of return and risk, and the development of overall strategies, for these markets: government, corporate, municipal, and international bonds; mortgage-related and other asset-backed securities; and derivative securities including futures, options, swaps, and other interest rate contracts.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission. (RG2091).

FNCE 5513(3 credits)
Advanced Corporate Finance: Capital Investment Finance
This course in dynamic capital budgeting applies corporate finance theory to the real-world problems that financial analysts face every day, integrating theory and practice, facilitated through the use of simulation analysis. These tools include both an understanding of the theoretical underpinnings of sound capital budgeting techniques and a mastery of the technology necessary to practically implement this knowledge in a real-world setting.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101 (RG3017).

FNCE 5521(3 credits)
Risk and Insurance
A study of the recognition, analysis, and treatment of pure risk from the viewpoint of the enterprise. This course considers various methods of risk management but emphasizes the role of insurance.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission (RG194).

FNCE 5532(3 credits)
Real Estate Investment and Portfolio Management
This course provides an overview of real estate investment decision-making. Topics include: risk-return analysis of alternative types of real estate investments; leases, operating costs, and tax consequences; valuation techniques, including discounted cash flow and option pricing; real estate portfolio management; and alternative forms of equity securitization such as real estate investment trusts.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission (RG194).

FNCE 5533(3 credits)
Real Estate Capital Markets
This course covers the structure and operation of the mortgage market. Topics include the identification, measurement and management of risk from the perspective of borrower, lender, and investor. The course stresses the integration of the real estate debt markets with the global capital market, and considers the role and impact of mortgage-backed securities for residential and commercial real estate lending.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission. (RG2091).

FNCE 5534(3 credits)
The Internet and Information Systems Applied to Real Estate
Specialized information technology is now available for all segments of the real estate industry. For example, investment firms are particularly interested in information technology that helps them monitor, understand, and manage risks associated with mortgage-backed securities. Database management systems and geographic information systems (GIS) give the decision-maker unprecedented power to manage data and analyze risks. The Internet opens up vast new sources of timely information. This course stresses the use of GIS and of the Internet. Students will gain hands-on experience with these tools through projects that are organized around business problems.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission (RG2091).

FNCE 5601(3 credits)
Personal Financial Planning
This course is for the professional working in the area of financial services as well as for one's personal planning. It is the application of finance theory to the individual and family. This integrated approach covers lifetime cash flows, asset accumulation and allocation, debt management, retirement planning, and risk management.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission. (RG2091).

FNCE 5611(3 credits)
Financial Modeling
This course is a "hands-on" use of computerized decision aids to analyze a variety of financial problems. Applications will be drawn from corporate financial planning, modern portfolio theory, options pricing, dynamic trading, and so forth. No computer experience is required; this course will help students develop the necessary programming skills to build fairly sophisticated models.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission. (RG2091).

FNCE 5630(3 credits)
Real Estate: A Personal Investment Perspective
Real estate is a major component of household wealth. Important household real estate decisions include, for example, where to buy a house; renting versus owning a home; choosing between alternative mortgage instruments; understanding the house purchase transaction; and the risks and returns of real estate investing. This course surveys the fundamentals of real estate from a personal investment perspective.

Components: Lecture
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission (RG194).

FNCE 5894(1 - 3 credits)
Seminar
Investigation and discussion of special topics in finance, risk and insurance and/or real estate and urban economic studies.

Components: Seminar
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission. (RG2091).

FNCE 5895(1 - 3 credits)
Instructor Consent Required Special Topics in Finance
Faculty-student interaction on a one-to-one basis involving independent study of specific areas of finance, risk and insurance, and/or real estate and urban economic studies. Emphasis, selected by the student, may be on theoretical or applied aspects. A written report is required.

Components: Independent Study
Requirement Group: Prerequisite: FNCE 5101. Open to MBA students, others with permission (RG194).

FNCE 6200(1 - 2 credits)
Investigation of Special Topics
Components: Seminar
Requirement Group: Prerequisite: FNCE 5508 (RG198).

FNCE 6201(3 credits)
Instructor Consent Required Introduction to Finance Theory and Evidence
Topics include: efficient market hypothesis, utility theory, portfolio theory, CAPM, arbitrage pricing theory, option pricing, capital structure / tax theory,
capital budgeting under uncertainty, current empirical studies.
Components: Lecture
FNCE 6202 (3 credits) Instructor Consent Required
Corporate and Institutional Finance
Topics include: information asymmetry, agency, internal capital markets, governance, market microstructure, moral hazard / adverse selection. Concepts are applied in both corporate and financial institution settings.
Components: Lecture
Requirement Group: Prerequisite: FNCE 5508 (RG198).

FNCE 6203 (3 credits) Instructor Consent Required
Theory of Financial Markets and Valuation
Topics include: fundamental pricing theorems, state preference theory, martingale pricing, dominance, spanning and arbitrage restrictions, consumption models, and continuous-time approaches to asset pricing interest rate models, and derivatives pricing.
Components: Lecture

FNCE 6204 (3 credits) Instructor Consent Required
Empirical Methods in Finance Research
Topics include: predictability of asset prices, time series models of market microstructure, event study methodology, tests of asset pricing models and derivative pricing models, market efficiency, volatility of asset returns, and term structure interest rates.
Components: Lecture
Requirement Group: Prerequisite: FNCE 5508 (RG198).

Health Systems Management

OSH 5300 (1 - 3 credits) Instructor Consent Required
Independent Study
Independent study in a topic related to the Occupational Safety and Health Certificate program as designated and approved by the instructor assigned to oversee and grade the project.
Components: Independent Study

OSH 5301 (1 - 3 credits) Instructor Consent Required
Special Topics in Occupational Safety and Health
The instructor assigned will designate the special topic(s) related to the Occupational Safety and Health Certificate program and oversee and grade students' work in the course.
Components: Lecture

OSH 5321 (3 credits) Seminar in Occupational Safety and Health Management
This course is an in-depth study of the impact of issues such as the changing demographics, and globalization of regulations, on promoting prevention of injuries and illness to workers, and protection of property and the environment in the workplace. This course is taught as a series of active seminars requiring students to research, write, and discuss papers.
Components: Seminar

OSH 5322 (3 credits) Industrial Pollution Management
This course provides students with management and applied techniques to prevent and control pollution from industrial activities. It includes legal aspects of pollution prevention and control, setting up pollution prevention programs, performing pollution prevention assessments, performing economic evaluations and management principles in controlling industrial pollution.
Components: Lecture

OSH 5325 (3 credits) Systems Safety Analysis
This course will acquaint students with empirical methods and techniques for proactively identifying, assessing, and eliminating or controlling safety-related hazards to acceptable levels.
Components: Lecture

OSH 5326 (3 credits) Managing Environmental Systems
This course will provide guidance and detailed information on developing environmental management systems with special reference to ISO 14001: measuring corporate needs, advantages and disadvantages; liability issues; and internal and external auditing.
Components: Lecture

OSH 5376 (3 credits) Occupational Safety and Health
This is a graduate course that provides the student with the rationale for providing an occupationally safe and healthy work environment for employees. These skills are needed to be able to work effectively in the area of human resources and employee development as well as industrial relations since workers have been provided by law with specific safety and health rights.
Components: Lecture

OSH 5378 (3 credits) Advanced Industrial Hygiene
This is a graduate-level course in the field of industrial hygiene. It is directed at protecting workers' health through the recognition, evaluation and control of hazards in the work environment.
Components: Lecture

OSH 5380 (3 credits) Loss Control Methods
This course offers a detailed study of loss control research methods and application techniques with emphasis on the control of hazards using safety engineering methods in a variety of industrial settings.
Components: Lecture

OSH 5381 (3 credits) Advanced Loss Control and Management Theory
This course provides students with opportunities to apply management and loss control techniques to analyze and address occupational safety and health issues. Topics in this course include: epidemiology concepts in analyzing occupational safety and health injuries and illnesses; hazard analysis; prevention and control of hazards; tools of accident prevention; safety and health training; motivating safety and health; and communicating safety.
Components: Lecture
Requirement Group: Prerequisite: OSH 5380 (RG3875)

OSH 5382 (3 credits) Analysis of Occupational Safety and Health Law and Regulations
This course provides the substance for understanding the Occupational Safety and Health laws and regulations, the regulatory process, and the research data and analyses required to promulgate or revise a law or regulations.
Components: Lecture

Management

MGMT 5138 (3 credits) Managing Organizations
Managing Organizations
Today's business climate demands that organizations and their managers be innovative, flexible, adaptive, and capable of maximizing the contributions of all their members. In addition, today's manager must possess the leadership and team skills necessary to manage the increasingly diverse work force. Knowing how to reap maximum benefit from an organization's human capital is essential for today's manager. This course examines topics such as leadership, motivation, team dynamics, organization structure, design and culture, conflict, power and politics.
Components: Lecture
Requirement Group: Open to MBA students, others with permission (RG2090).

MGMT 5222 (3 credits) Management Consulting
Management Consulting
This course introduces students to the roles individual consultants and consulting firms play in enhancing the effectiveness of their clients. The course draws on a wide range of management theory and practice to help students develop the interpersonal, analytical, and technical skills required in consulting interventions. The course will provide an overview of the consulting industry and address such topics as relationship and client management, intervention frameworks and their application, project management, ethical issues in consulting, and implementation issues.
Components: Lecture
Requirement Group: Open to MBA students, others with permission (RG2090).

MGMT 5223 (3 credits) Instructor Consent Required
Managing Innovation and Change
Students will learn both the theory and practice underlying successful organizational change, thereby providing them with the understanding necessary to become effective change agents. The course addresses such topics as assessing organizational effectiveness/performance, fundamental organizational development techniques, change methodologies, individual, group, and organizational change processes, applied research methods for analysis of change problems, process interventions, the power and politics of change, and strategic change.
Components: Lecture
Requirement Group: Prerequisite: MGMT 5138.
Open to MBA students only (RG4364)
MGMT 5224(3 credits) Instructor Consent Required
Venture Consulting Practicum
The primary goal of the venture consulting practicum is to give students the opportunity to work directly with clients (in teams, with faculty mentors) in real-time and gain additional hands-on experience. Students will be required to prepare a consulting proposal for the client (scope of work, timeline, etc.), negotiate an end-product with the client, perform the proposed intervention, and prepare a final report and present findings with recommendations to the client for evaluation and critique. (Student participation in a project at the Innovation Accelerator can be substituted for this course.)
Components: Practicum
Requirement Group: Open to MBA students, others with permission (RG2090).

MGMT 5260(3 credits)
Management of Technology and Innovation
In today's dynamic organizations, management of research, technology and change are generic processes which constitute irresistible and critical elements of the overall environment of business. Awareness of these processes can be a powerful force for an organization's management of its future. This course introduces the student to the management of innovation in several contexts, dealing with products and services, tangible and intangible outputs.
Components: Lecture
Requirement Group: Open to MBA students, others with permission (RG2090).

MGMT 5335(3 credits) Instructor Consent Required
Venture Planning, Management, and Growth
The primary goal of the venture consulting practicum is to give students the opportunity to work directly with clients (in teams, with faculty mentors) in real-time and gain additional hands-on experience. Students will be required to prepare a consulting proposal for the client (scope of work, timeline, etc.), negotiate an end-product with the client, perform the proposed intervention, and prepare a final report and present findings with recommendations to the client for evaluation and critique. (Student participation in a project at the Innovation Accelerator can be substituted for this course.)
Components: Laboratory
Requirement Group: Prerequisite: MGMT 5138. Open to MBA students only (RG4364)

MGMT 5377(3 credits)
Human Resource Information Systems
Nearly every aspect of human resource management and labor relations is or will be undergoing significant improvements via information technology. Increasingly human resource professionals are called upon to be part of a team in the design of information systems. Indeed their role is critical in insuring that the system truly supports and integrates HR needs. HR professionals must also query databases, create reports and contribute to departmental web sites. This course will prepare students for these challenges. The course will focus on future systems as well as seek to understand current configurations. It will explore the implications that systems design has for flexibility, efficiency, and effectiveness over the longer run.
Components: Lecture

MGMT 5621(3 credits)
Business and Managerial Ethics
Recent observers of the business scene have questioned whether today's modern executive has lost his/her "moral compass." Clearly all businesses and their managers must be held accountable to ethical standards. At issue then is what is ethical behavior and what problems are created in trying to exercise such behavior.
This course examines in detail the processes of policy formulation and implementation as they relate to ethical problems. Alternative responses to expressed and anticipated social needs, expectations and demands that arise in the daily conduct of business are considered.
Components: Lecture

MGMT 5629(3 credits)
Formal Corporate Planning Systems
Planning is a corporate, group, and business function whose character has changed markedly and whose importance is universally recognized. Special attention is given to particular topics: environmental forecasting, corporate vs. business planning, staff vs. line functions, cycling/rolling systems, planning's impact on results, and others. In order to emphasize the essential nature of creating a managerial system which is efficient and effective through tailoring it to the specific requirements of the organizational setting, the work of the course centers on case analyses, but it employs also, as appropriate, lectures, discussions, and field projects and reports.
Components: Lecture

MGMT 5634(3 credits) Instructor Consent Required
Opportunity Generation, Assessment, and Promotion
This course provides a hands-on experience in opportunity development, exposing students to three distinct modules. The first, creativity and innovation, stimulates the flow of ideas. The second, feasibility analysis, runs these ideas through a comprehensive assessment framework. The third module, getting the first customer, focuses on the initial sales and marketing process needed to get the idea off the ground. At the end of the course, students will be able to: Identify, evaluate, and shape new business opportunities; Effectively present and sell their ideas to critical constituents; Manage the resource constraints associated with launching new ventures.
Components: Lecture

Requirement Group: Prerequisite: MGMT 5138. Open to MBA students only (RG4364)

MGMT 5637(3 credits)
Organization Behavior
The course is divided into two major components: micro and macro organization behavior. The first component focuses on individual and group-level problems and the second focuses on organiza-

tional-level problems, as they relate to improving organizational performance. This course introduces some of the central topics in management theory, research, and practice and provides the basis for understanding and evaluating organizations and their management.
Components: Lecture
Requirement Group: Prerequisite: Open to M.B.A. and M.P.S. students.

MGMT 5639(3 credits)
Gender and Diversity in the Workplace
The demographic composition of the international labor force is changing. In the United States, the proportions of both women and people of color have steadily increased in recent years. This course chronicles and examines the transition that is taking place in the workplace due to the increased diversity in employees. It examines gender-related issues such as sex differences and sex role development, occupational choice and organizational entry, peer and manager-subordinate interactions, sexual harassment, career development, the interface between work and family, and strategies for promoting equal opportunity in organizations. It examines diversity issues stemming from differences in individual characteristics such as race, ethnicity, and national origin.
Components: Lecture

Requirement Group: Prerequisite: MGMT 5138. Open to MBA students only (RG4364)

MGMT 5640(3 credits)
International Business
The growing impact of a rapidly changing international business environment on organizations today means that few managers can afford to remain indifferent to the issues of international business. It is important to understand the changing patterns of international business, the dynamics of international competition, government-business interactions in other countries, and the organizational challenges of managing strategically across borders. This course addresses these issues through an applied approach in the discussion of cases.
Components: Lecture

Requirement Group: Prerequisite: MGMT 5138. Open to MBA students only (RG4364)

MGMT 5650(3 credits)
Managerial Communications
Designed to improve effective oral and written communication skills for managers. Topics in written communications include: organization, structure, and clarity of business communications; practice in writing formal papers and research reports; establishing style and tone in different types of written business communications. Topics in oral communications include: analysis of audiences, presentations to small and large groups, persuasion and motivation techniques, using audio-visual aids, and improving delivery and style using video feedback.
Components: Lecture

Requirement Group: Open to MBA students, others with permission (RG2090).
Mgmt 5672(1 - 3 credits)
Career Dynamics
As individuals pass through organizations, they both shape them and are shaped by them. This course looks at the issues involved in integrating the individual with the organization through the process known as career development. In particular, it focuses on the realities of entry, membership, and advancement that occur in organizations. Topics cover career stages and life stages; career stages and organizational stages; individual self-assessment including personal characteristics, interests, values and interpersonal styles; individual career mapping; and changing jobs and careers.
Components: Lecture
Requirement Group: Open to MBA students, others with permission (RG2090).

Mgmt 5673(1 - 3 credits)
Organizational Renewal Development
Organizational renewal must be a regular part of the job of every manager. This course focuses on the management skills needed to diagnose, change and develop an organization. Participants learn not only the latest concepts but also are required to engage in organizational development (OD) exercises. Topics to be covered include methods of diagnosing organizations, planning and OD effort, deciding on a change strategy, fitting the intervention to the client's needs, managing an intervention and obtaining evaluative feedback. Participants have the opportunity to practice their OD skills.
Components: Lecture

Mgmt 5674(3 credits)
Negotiation Strategies
Developing and implementing effective negotiation strategies and tactics is an increasingly important activity in a wide range of managerial positions. This course deals with negotiations both within and between organizations. Effective negotiations skills are essential for successful managers in complex contemporary organizations characterized by changing structures, temporary task forces, multiple demands on resources, and the increased importance of interdepartmental cooperation. Critical negotiation situations with other organizations range from those dealing with labor unions, purchasing, mergers, acquisitions, and joint ventures. During this course, participants plan and conduct negotiations simulations, as well as receive feedback on their performance.
Components: Lecture
Requirement Group: Prerequisite: Mgmt 5138. Open to MBA students only (RG4367)

Mgmt 5675(3 credits)
Strategic Management of Human Resources
Effective human resources management (HRM) is one of the most decisive factors in the success of any organization. This course examines how to manage human resources effectively in the dynamic legal, social, and economic environments currently constraining organizations. Among the topics included are: formulation and implementation of human resource strategy, job analysis, methods of recruitment and selection, techniques for training and management development, performance appraisal, compensation analysis and administration, and evaluation of the effectiveness of HRM systems. Attention is also given to the need for adjusting human resource strategies and tactics when applying them in a foreign setting. Emphasis is placed on integrating human resource management with other key aspects of management. A variety of teaching methods are used to help students acquire an understanding and appreciation of HRM.
Components: Lecture
Requirement Group: Mgmt 5138 (RG 4749)

Mgmt 5676(3 credits)
Business Improvement Through Training and Development
Planning, implementing, and evaluating training programs designed to meet individual and organizational needs. Training methods, techniques, and processes. Strategic and international training issues. Focuses on the process by which organizations train and develop employees. Topics include training needs assessment, program design, training evaluation, and management development practices.
Components: Lecture

Mgmt 5678(3 credits)
Compensation and Benefits
Application of compensation principles to organizational objectives. Strategic use of compensation systems for attracting, motivating, and retaining employees. Managerial aspects of paying employees at all organizational levels. Focuses on managing employee compensation in contemporary organizations. The major objectives are: to examine the current state of compensation decision making, to examine how recent theoretical and research developments inform compensation decisions, and to offer an opportunity to develop competencies in making compensation decisions.
Components: Lecture
Requirement Group: Mgmt 5138 (RG 4749)

Mgmt 5800(3 credits)
Strategy, Policy, and Planning
A firm's ability to survive and succeed in an increasingly competitive global arena depends on its ability to develop and maintain an effective strategy. This capstone course deals with the two major aspects of strategy: formulation and implementation. Strategy formulation examines such issues as environmental threats and opportunities, the values and priorities of management and societal stakeholders, and the strengths of company resources and competencies relative to principal competitors. Strategy implementation covers such topics as strategic leadership, organizational structures, resource allocation, and building a strategy-supportive culture. The course uses cases and readings to develop the knowledge and skills necessary to prepare students to deal with strategic issues.

The student must have completed basic courses in the functional areas of business in order to be ready to assume the holistic perspective required of those who address this important topic.
Components: Lecture
Requirement Group: Completion of at least 42 credits, including Mgmt 5138, and good standing in the MBA program are required (RG3925)

Mgmt 5801(3 credits)
Advanced Strategy, Policy, and Planning
This advanced strategy course offers practical tools to evaluate sources of a firm's competitive advantage. A supplement to the capstone course, this course offers an in-depth look at special strategic problems such as the implementation of strategy, corporate renewal, strategy formulation in decline contexts, and/or political elements of strategy.
Components: Lecture

Mgmt 5894(1 - 3 credits) Instructor Consent Required
Seminar
Investigation and discussion of special topics in management.
Components: Seminar
Requirement Group: Prerequisite: Mgmt 5138. Open to MBA students only (RG4364)

Mgmt 5895(1 - 3 credits) Instructor Consent Required
Special Topics in Management
Faculty-student interaction on a one-to-one basis involving independent study of specific areas of management. Emphasis, selected by the student, may be on theoretical or applied aspects. A written report is required.
Components: Independent Study

Mgmt 6200(1 - 6 credits)
Directed Readings in Special Topics
Components: Independent Study
Requirement Group: Open to PhD students in the School of Business only (RG193).

Mgmt 6201(3 credits)
Seminar in Organizational Behavior
A survey of research in organizational behavior and theory. Topics include learning and cognition in organization, attribution theory, satisfaction and performance, leadership, motivation and group dynamics.
Components: Seminar

Mgmt 6202(3 credits)
Research Methods in Strategic Management
This course is an in-depth review of the content of policy research. The course is designed to cover several "streams" of research currently popular in the strategic management literature. The course will cover the major findings within each stream.
Components: Seminar
focusses on the necessity to become a market-driven organization. Topics covered in this course include: market segmentation and target marketing, marketing research for obtaining critical customer information, development of marketing strategies, product development and the key linkage between marketing and R&D, pricing strategies and implementation, working with distribution partners, developing effective promotional programs, control and evaluation of the marketing function. These and other topics are applied in a wide range of market arenas such as global marketing, the new service economy, industrial and high technology products, consumer goods and services, financial services, and health care.

Components: Lecture Requirement Group: Open to MBA students, others with permission (RG209).

MKTG 5220(3 credits)
Customer Relationship Marketing
This course discusses the scope of interactive marketing strategies and programs and introduces business models that are suited for this purpose. It covers the concept of customer lifetime value and its linkage to various customer relationship forms including customer, partner, stakeholder, and employee relationship marketing. Cross-marketing strategies for maximizing customer lifetime value are emphasized. Brand development and brand equity management are also explored from a relationship marketing perspective. Integrated marketing communications and interactive marketing tools including digital marketing are discussed. Students obtain hands-on experience of creating detailed marketing plans with appropriate financials for typical interactive marketing situations. Case studies of actual companies are used to better illustrate the concepts.

Components: Lecture Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5230(3 credits)
New Product and Innovation Management
This course takes a "whole enterprise" approach to the management of innovation, based on the perspectives of product managers and a CEO. The course's primary objective is to develop effective conceptual frameworks and analytical tools for managing innovation throughout the firm. The analytical tools used in the course range from traditional methods for forecasting new product performance (e.g., Bases, Assessor, etc.) to more sophisticated methods that use virtual reality lab environments. Topics include the nature of innovation, new product development processes, new product sales forecasting, successful integration of marketing and R&D, and acceleration of the new product process from design to commercialization advantages. Components: Lecture Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5250(3 credits)
Marketing Research and Information Systems
This course discusses the collection and use of information on customers and their needs for designing marketing programs. The course develops skills in obtaining and using customer input for product design, communications, pricing, distribution, and customer service decisions. Some of the topics covered include: research design; use of secondary information sources; decision support systems; sampling techniques; questionnaire design; scaling and measurement; and multivariate data analysis procedures. The applications discussed in the course include the creation and use of data-warehouses; customer satisfaction measurement; customer-based brand equity measurement; and the use of the Internet as an information-gathering tool.

Components: Lecture Requirement Group: Prerequisites: MKTG 5115 and OPIM 5103 (RG205).

MKTG 5251(3 credits)
Data Analytics
Introduces students to the concepts, methods, and quantitative tools for creating and exploiting customer databases. The course will have a strong hand-on methodological orientation with emphasis on applications involving real customer data. Students will learn quantitative tools for estimation of customer lifetime value, customer response modeling (e.g., multiple regression, logit, cluster analysis, discriminant analysis, and neural network analysis) and experimentation in test markets. Applications will include prospecting, market segmentation and targeting, product customization, cross-selling, and customer loyalty programs. The applications will span several different types of businesses, such as Internet retailing, financial services, computers, and knowledge-intensive enterprises.

Components: Lecture Requirement Group: Prerequisite: MKTG 5115 and OPIM 5103 (RG204).

MKTG 5625(3 credits)
Marketing for Global Competitiveness
The United States is the largest market for consumer goods in the world, yet it is also one of the slowest growing markets. Faced with increasing competition from American, Japanese, European, and other global competitors, all companies are faced with the necessities of developing truly global marketing strategies. This course helps prepare the manager for these challenges by investigating specific success criteria in the world's major markets. Cultural, political, economic and institutional factors are discussed and their implications for marketing strategies are explored.

Components: Lecture Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5653(3 credits)
Marketing for Non-Profit Institutions
With reduced financial support from the government, non-profit organizations must adopt a marketing orientation to successfully survive in the turbulent environments which they face. This course explores techniques to analyze market needs and environmental opportunities as the basis for planning the products, services and communications of such non-profit organizations as government agencies, social action groups, universities, hospitals, religious organizations, charities, museums, public arts organizations, and civic groups. The course utilizes extensive case studies as well as field projects.
Components: Lecture
Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5640(3 credits)
Integrated Marketing Communications
The implementation of integrated marketing communications is increasingly important for an organization's competitiveness. This course covers: communications models; the communications mix; communications strategy—including setting objectives, designing and implementing communications programs, and evaluation. Emphasis upon: customer response models; interactive marketing; direct marketing; information driven marketing; measuring customer life-time value, creation and use of marketing data bases in communications strategy, the emergence of one-to-one marketing, and measurement of marketing productivity.
Components: Lecture
Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5645(3 credits)
Business and Industrial Marketing
Explores the differences between consumer markets and business-to-business or industrial markets. Organizational buying models are discussed as they apply to a variety of purchasing situations. Special consideration is given to industrial and high-technology market segmentation, industrial distribution, industrial sales practices, and requirements of cross-functional marketing.
Components: Lecture
Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5655(3 credits)
Pricing Strategies
One of the most closely scrutinized aspects of the marketing mix, pricing is a critical factor in the success of both new and old products and services. This course examines the price-setting process and the role of marketing, engineering, manufacturing, and other business functions in price determination. Students will integrate economic and behavioral aspects of customer response to pricing, legal constraints as they impact the marketing manager’s pricing flexibility, and the particular problems of pricing within the context of a global marketing strategy.
Components: Lecture
Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5660(3 credits)
Customer Behavior
The analysis of customer behavior as it informs marketing decisions -- customer relationship management, brand management, and marketing strategy. Topics: customer information search; customer responses to marketing communications; customer choice processes; post-choice experiences, including product consumption and usage, satisfaction, brand and supplier loyalty, and customer defection; internal and external influences on customer behavior; and customer behavior research methods. The course considers both online and traditional behaviors, as well as individual, household and organizational customers.
Components: Lecture
Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5662(3 credits)
Services Marketing
An examination of the application of marketing principles to the service arena. Exploration of the differences between the marketing of goods and services. Development of appropriate decision models for services in consumer and industrial market segments and the use of services as a differentiation tool for product marketers. Topics include new service development; the service-profit chain; evaluating service quality; strategic service management; and the impact of customer satisfaction and loyalty on company profits. A variety of service industries are used as points of illustration, including telecommunications; insurance and financial services; health care; and business-to-business services such as advertising, temporary employees, and accounting.
Components: Lecture
Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5665(3 credits)
New Media Marketing Strategies
This course will provide students with both an advanced understanding of the role of media in marketing strategy and how to use new media to understand and communicate with consumers using new media. Particular attention will be on how companies can and do leverage new media to develop a competitive advantage in the marketplace, and how consumers use new media to engage in and co-create marketplace experiences.
Components: Seminar
Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5894(1 - 6 credits)
Seminar
Investigation and discussion of special topics in marketing.
Components: Seminar
Requirement Group: Prerequisite: MKTG 5115. Open to MBA students, others with permission (RG204).

MKTG 5895(1 - 6 credits)
Instructor Consent Required
Special Topics in Marketing
Faculty-student interaction on a one-to-one basis involving independent study of specific areas of marketing. Emphasis, selected by the student, may be on theoretical or applied aspects. A written report is required.
Components: Independent Study

MKTG 6200(1 - 6 credits)
Instructor Consent Required
Behavioral Applications in Marketing
This survey course is designed to provide a strong foundation of theory and research in the area of consumer behavior. Topics are subject to change at the discretion of the instructor, but would typically cover: theory development and testing, validity and reliability, relationships among conceptual, methodological and substantive domains, attitude theory, affect, branding, information processing, individual difference variables, advertising, and cultural meaning of goods. Both quantitative and interpretive methods are explored.
Components: Seminar

MKTG 6203(3 credits)
Instructor Consent Required
Quantitative Applications in Marketing
This survey course acquaints students with the state of the art in mathematical marketing models. Topics are subject to change at the discretion of the instructor, but would typically cover: validity and reliability, diffusion models, managerial models of advertising allocations, channel design, sales force allocations, sales promotion, pricing, product design, test markets, and competitive positioning, models of consumer and market behavior, for example, utility theory, discrete choice models, stochastic models, hazard rate models, multi-dimensional scaling, and hierarchical decision making.
Components: Seminar

MKTG 6210(3 credits)
Instructor Consent Required
Strategic Applications in Marketing
This course will present an overview of various multivariate statistical methods. Topics are subject to change at the discretion of the instructor, but would typically cover: discriminant, canonical, cluster, and factor analysis; multidimensional scaling; and conjoint, logit, probit and tobit analysis. Hands on experience in use of these methods will be provided; the primary focus will be on marketing applications.
Components: Seminar

MKTG 6211(3 credits)
Multivariate Analysis in Marketing
This course will present an overview of various multivariate statistical methods. Topics are subject to change at the discretion of the instructor, but would typically cover: discriminant, canonical, cluster, and factor analysis; multidimensional scaling; and conjoint, logit, probit and tobit analysis. Hands on experience in use of these methods will be provided; the primary focus will be on marketing applications.
Components: Seminar

MKTG 6296(3 credits)
Special Topics: Progress Toward Qualifying Paper
Open only to students in the Marketing doctoral program. Independent study under faculty supervision in an area chosen for doctoral student's qualifying paper. Satisfactory progress on qualifying paper (including literature review and research conceptualization) is required. Student can also develop research design, conduct pilot studies, refine questionnaires and measures, or develop a framework for model specification and model estimation. A written report is required.
Components: Independent Study
Requirement Group: Open only to students in the Marketing doctoral program (RG710).

Operations and Information Management
OPIM 5103(3 credits)
Managerial Statistics
A manager is concerned with recognizing and formulating statistical problems in business decision-
Introduction to Project Management
Business objectives are increasingly solved by projects. Many projects fail to produce the expected results, are over budget, or not completed on time. Good project management significantly improves the likelihood of a successful project. This course will examine the project management process and the management of a portfolio of projects, with focus on techniques to overcome the pitfalls and obstacles that frequently occur during a typical project. It is designed for business leaders responsible for implementing projects, as well as beginning and intermediate project managers.

Components: Lecture

Requirement Group: Open to MBA students, others with permission. Prerequisite: OPIM 5103 (RG2094).

OPIM 5671(3 credits)
Data Mining and Business Intelligence
Discusses data mining techniques that can be utilized to effectively sift through large volumes of operational data and extract actionable information and knowledge (meaningful patterns, trends, and anomalies) to help optimize businesses and significantly improve bottom lines. The course is practically oriented with a focus on applying various data analytical techniques in various business domains such as customer profiling and segmentation, database marketing, credit rating, fraud detection, click-stream web mining, and component failure predictions.

Components: Lecture

Requirement Group: Prerequisite: OPIM 5604 Open to MBA students, others with permission. (RG 4505)

OPIM 5894(1 - 6 credits)
Seminar
Introduces many of the most exciting concepts emerging in the field of consumer oriented Internet-working, including high speed access, cable modems, and digital subscriber lines (DSL), and infrastructure developments such as gigabyte networking, asynchronous transfer mode (ATM). Evaluates the emerging directions in EC that are expected to shape both consumer and business applications in the coming decade. A "macro perspective" is used to examine the technical and managerial aspects of electronic commerce. Focus is on questions such as: What are or will be the key attributes of current and future digital products, payment systems, online retailing, and banking? How are these systems designed and implemented? What are the different mercantile processes and tradeoffs associated with these processes? What
impact has global connectivity made on traditional supply-chain(s)?
Components: Seminar
Requirement Group: Open to MBA students, others with permission. Prerequisite: OPIM 5103 (RG2094).

OPIM 5895(1 - 3 credits) Instructor Consent Required
Special Topics in Information Management
Faculty-student interaction on a one-to-one basis involving independent study of specific areas of operations management, operations research and/or information management. Emphasis, selected by the student, may be on theoretical or applied aspects. A written report is required.
Components: Independent Study

OPIM 6201(3 credits)
Research Methods for Operations and Information Management
Several advanced analytical methods that are relevant to students' areas of research will be studied in depth in this seminar. Topics may include special mathematical programming; complex decision making; linear models; advanced statistical analysis; and stochastic processes.
Components: Seminar

OPIM 6202(3 credits)
Seminar in Operations Management
Introduces doctoral students to the current research concerns in the field of Operations Management. The course will also acquaint students with the variety of research tools used in the field, enable them to critically evaluate the research of other scholars in the field as well as to develop research skills in identifying potential research problems to be analyzed.
Components: Seminar

OPIM 6203(3 credits)
Seminar in Management Information Systems
A topic on a significant applied or theoretical aspect of information systems will be chosen. Broadly, these aspects will encompass modeling, design, implementation, testing, and operation of computer information systems, and the implications of information technologies for the organization.
Components: Seminar

n
All Sections
†GRAD 5930. Full-Time Directed Studies (Master's Level) (GRAD 397) 3 credits.
†GRAD 5950. Master's Thesis Research (GRAD 395) 1 - 9 credits.
†GRAD 5960. Full-Time Master's Research (GRAD 396) 3 credits.
GRAD 5998. Special Readings (Master's) (GRAD 398) Non-credit.
GRAD 5999. Thesis Preparation (GRAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level) (GRAD 497) 3 credits.
†GRAD 6950. Doctoral Dissertation Research (GRAD 495) 1 - 9 credits.
†GRAD 6960. Full-Time Doctoral Research (GRAD 496) 3 credits.
GRAD 6998. Special Readings (Doctoral) (GRAD 498) Non-credit.
GRAD 6999. Dissertation Preparation (GRAD 498) Non-credit.

CHEMICAL ENGINEERING

Department Head: Professor C. Barry Carter
Professors: Cooper, Laucenin, M. Shaw, and Weiss
Associate Professors: Parnas, Srivistava, Willis, and Zhu
Assistant Professors: Lei, McCutcheon, Mustain, Smirnova, Srivastava, Wang, and Wilhite

Study and research programs leading to the degrees of Doctor of Philosophy and Master of Science in chemical engineering are offered. Areas of special interest include: environmental engineering, electrochemical engineering, biochemical engineering, polymer science and engineering, nanomaterials engineering, kinetics, catalysis and reaction engineering, computer simulation of chemical processes, process optimization, and process dynamics and control.

Requirements for the Ph.D. Degree. Ph.D. candidates must pass both written and oral qualifying examinations taken after the first semester of graduate study. The written exam covers the areas of thermodynamics, transport phenomena, and kinetics (CHEG 5301, 5315 and 5321 are required preparation for this exam). The oral exam involves the critique and discussion of a paper from the literature assigned to the student after passing the written exam. The doctoral plan of study developed jointly by the student and his/her advisory committee usually includes one year of full-time course work beyond the master's degree. Doctoral students also must fulfill a foreign language requirement of the Graduate School (which may be satisfied by courses in a related or supporting area such as math or computer science). In addition to the qualifying exams, the student must complete a General Examination and the writing of a Ph.D. dissertation proposal, which is defended orally. The Ph.D. dissertation must contain the results of original research in chemical engineering. An oral defense of the dissertation is required.

Special Facilities. Available are large, well-equipped laboratories. Facilities and research opportunities are available through a number of other departments and University Institutes as well, including Chemistry, the Institute of Materials Science, the Center for Environmental Science and Engineering, the Connecticut Global Fuel Cell Center, the Biotechnology Center, Booth Research Center and the Advanced Technology Institute. Examples of equipment available in these research laboratories include: clean room for surface and interface research, polymer preparation and characterization instrumentation, electron microscopes, atomic-force microscopes, surface analysis equipment, a wide variety of analytical and visualization equipment, electrochemical instrumentation and reactors, electrodialysis units, fuel cell lab, injection molding machine, and a variety of biological reactors. Computing resources are widely available, including those in the University Computer Center and the Booth Computer Applications and Research Center. Machine, glass and electronics shops provide services for the construction of specialized equipment.
CHEG 301. Chemical Engineering Thermodynamics I
(CHEG 301) 3 credits. Lecture.
An advanced study of classical thermodynamics with emphasis on phase and chemical equilibria and applications to the chemical process industries. Kinetic theory and statistical thermodynamics with emphasis on the prediction and correlation of physical and chemical properties of gases and liquids, including mixtures. Theory and application of flames, plasmas, and shock waves.

CHEG 302. Chemical Engineering Thermodynamics II
(CHEG 302) 3 credits. Lecture.
An advanced study of classical thermodynamics with emphasis on phase and chemical equilibria and applications to the chemical process industries. Kinetic theory and statistical thermodynamics with emphasis on the prediction and correlation of physical and chemical properties of gases and liquids, including mixtures. Theory and application of flames, plasmas, and shock waves.

CHEG 311. Transport Phenomena
(CHEG 311) 3 credits. Lecture.
An advanced study of transport phenomena and rate processes with emphasis on a differential balance approach. Designed for non-chemical engineers and chemical engineers with an inadequate background in differential balances.

CHEG 315. Transfer Operations I
(CHEG 315) 3 credits. Lecture.

CHEG 316. Transfer Operations II
(CHEG 316) 3 credits. Lecture.

CHEG 321. Reaction Kinetics I
(CHEG 321) 3 credits. Lecture.
Chemical kinetics and reactor design. An advanced study of chemical reaction engineering with emphasis on catalysis. Applications to stirred-tanks, fixed-bed, and fluidized bed reactors.

CHEG 331. Process Engineering
(CHEG 331) 3 credits. Lecture.
Applications of thermodynamics, kinetics, unit operations, mechanics, and economics to the design of process plant equipment and complete plant design.

CHEG 355. Polymer Structure and Morphology
(CHEG 355) 3 credits. Lecture.
A fundamental study of the various levels of structure and morphology in polymers from the molecular to the macroscopic level, and how this structure influences the overall material properties. The principle methods used to characterize morphology are described for the analysis of amorphous and crystalline homopolymers, polymer blends, and copolymers.

CHEG 356. Adhesion
(CHEG 356) 3 credits. Lecture.
Prerequisite: CHEG 351.

CHEG 358. Composite Materials
(CHEG 358) 3 credits. Lecture.
An introduction to the mechanical properties of fiber reinforced composite materials. Included are discussions of the behavior of unidirectional composites, short fiber composites and laminates. Special topics such as fatigue, fracture and environmental effects are also included.

CHEG 363. Optimization
(CHEG 347) 3 credits. Lecture.
Advanced topics in optimization such as linear and nonlinear programming, mixed-integer linear and non-linear programming, deterministic and stochastic global optimization, and interval global optimization. Example applications drawn from engineering.

CHEG 345. Chemical Engineering Analysis I
(CHEG 345) 3 credits. Lecture.
Techniques for the solution of chemical engineering problems including the solution of ordinary and partial differential equations, numerical analysis, and computer simulation.

CHEG 347. Process Dynamics and Control I
(CHEG 336) 3 credits. Lecture.

CHEG 351. Polymer Physics
(CHEG 351) 3 credits. Lecture.
Modern concepts relating to glassy, rubbery and organized states of bulk polymers. Considers rubber elasticity, glass-to-rubber transitions, networks, elements of crystallization, blends and interfacial phenomena.

CHEG 352. Polymer Properties
(CHEG 352) 3 credits. Lecture.
Interrelationships between solid state structure, dynamics, and mechanical properties of non-crystalline and semi-crystalline polymers. Considers polymer viscoelasticity, diffusion, failure mechanism, and elementary polymer rheology.

CHEG 355. Polymer Structure and Morphology
(CHEG 355) 3 credits. Lecture.
A prerequisite: CHEM 5381.
A fundamental study of the various levels of structure and morphology in polymers from the molecular to the macroscopic level, and how this structure influences the overall material properties. The principle methods used to characterize morphology are described for the analysis of amorphous and crystalline homopolymers, polymer blends, and copolymers.

CHEG 367. Polymer Rheology and Processing Laboratory
(CHEG 368) 3 credits. Lecture/Laboratory.
Prerequisite: CHEG 356.
Advanced topics in polymer rheology and processing. Application to fermentation and other biological processes.

CHEG 373. Biochemical Engineering
(CHEG 373) 3 credits. Lecture.
Principles and design of processes involving biochemical reactions. Nature of biological materials, biochemical kinetics, heat and mass transfer, application to fermentation and other biological processes.

CHEG 374. Bioremediation
(CHEG 374) 3 credits. Lecture.

CHEG 375. Fermentation and Separation Technology Laboratory
(CHEG 375) 3 credits. Laboratory. Also offered as MCB 5684.
Introduction to techniques used for industrial mass culture of prokaryotic and eukaryotic cells, and methods used to extract useful products from these cultures. Metabolic processes, energetics, growth kinetics and nutrition of microorganisms. Synthesis of cellular material and end products. Heat exchange, oxygen transfer, pH control, sterilization and design of fermentors. Culture of eukaryotic cell mass. Immobilized enzyme and cell reactors. Product recovery methods of precipitation centrifugation, extraction filtration and chromatography.

CHEG 381. Water Purification Principles
(CHEG 381) 3 credits. Lecture.
An advanced study of the application of thermo-
CHEMISTRY
Department Head: Professor Steven L. Suib
Professors: W. Bailey, Basu, Birge, Bohn, David, Frank, Howell, Kumar, Mason, Michel, Papadimitrakopoulos, Rusling, M. Smith, Stwalley, and Sung
Associate Professors: Adamson, Brueckner, Fenteany, Seery, Sotzing, and B. Shaw
Assistant Professors: Asanedi, Burdette, Gascon, Kasi, Leadbeater, Lin, T. Miller, Peczuh, Vlahos, and Yao

The Department of Chemistry offers course work and research in the areas of analytical, biological, chemical education, environmental, inorganic, organic, physical, and polymer chemistry leading to M.S. and Ph.D. degrees in Chemistry. Research projects within these areas include: Analytical – atomic spectroscopy, biomedicalsensors and microarrays, proteomics, separations and mass spectrometry; Biological – bio-analytical, bio-inorganic, bio-organic, bio-physical, bio-polymer, and bio-materials; Inorganic – bioinorganic and coordination chemistry, catalysis, crystal growth and structure, organometallic and transition metal chemistry, physical methods, solid state chemistry, structure determination, synthesis and characterization, and surface analysis; Organic – bioorganic, medicinal and toxicological chemistry, natural products, synthetic and physical organic chemistry, and organic polymer chemistry; Physical – kinetics, biophysical chemistry, spectroscopy, physical methods, theoretical and computational chemistry, thermodynamics, x-ray crystal structure; and Polymer – organic and inorganic polymers, and synthesis and characterization of materials; and Chemical Education. A detailed description of the research programs of individual faculty members is available on the departmental website <http://chemistry.uconn.edu/>.

In addition to the basic requirements for admission to the Graduate School, an applicant should submit scores from the General and the Advanced Test in Chemistry of the Graduate Record Examinations at the time of application. All entering graduate students must take comprehensive proficiency examinations in analytical, inorganic, organic, and physical chemistry at the advanced undergraduate level. The results of these examinations are used to determine the appropriate course level for the student.

For the Ph.D. program the student must qualify in the four areas listed above, either by passing the proficiency examinations upon entry, or by earning a grade of B or higher (not B-) in a graduate course in the discipline(s) in which the examination was not passed. Students lacking undergraduate background in an area may elect to take an undergraduate course or sequence and retake the proficiency examination. Students who do not qualify in the four areas within the first two years may be allowed to continue towards a master’s degree.

Requirements for the Ph.D. Degree. There are no specific course requirements for the Ph.D. degree in chemistry beyond those established by the student’s advisory committee. Students should confer with their advisory committees concerning those courses which are recommended as preparation for the doctoral General Examination in the various divisions. Ordinarily, students also are expected to demonstrate reasonable competence in an area or areas outside their major program emphasis.

After the successful completion of the qualification requirements (see above), the student must pass the General Examination for the Ph.D. degree, consisting of a written and an oral portion as determined by the student’s chosen Division (analytical, biological, chemical education, environmental, inorganic, organic, physical and polymer). The General Examination (see the department’s Graduate Student Handbook for details) usually is completed during the second or third year of graduate study.

The Ph.D. dissertation must contain the results of original research in chemistry and make a substantial contribution to the particular field. Upon completion of the dissertation, the student takes an oral examination in its defense.

Special Facilities. In addition to the standard equipment found in chemistry departments, the facilities available for research include: electrochemical instrumentation, electron spin resonance spectrometers, FT-IR and Raman spectrometers, high field NMR facility, gas and liquid chromatographs, flash photolysis apparatus, laser spectroscopy instrumentation (atomic and molecular), Mössbauer instruments, magnetic susceptibility balances, microscopes (including fluorescence and scanning electron microscopes), UV/visible and fluorescence plate readers, multimode digital imaging systems, nanocalorimeters, polymer preparation and characterization instrumentation, high-resolution mass spectrometry (MS facility for GC-MS and LC-MS with state-of-the-art mass spectrometers (QqTOF, QqQ, QqLIT) with various ionization sources, surface analysis equipment (Auger, SAM, XPS, ISS-SIMS), high throughput synthesis and screening facility, thermal analysis equipment, ultra-high temperature and pressure equipment, UV/visible spectrophotometers, spectrofluorimeters, and powder X-ray diffraction equipment. Advanced computing facilities and access to supercomputers are available within the department and university; computer services are also available at the University of Connecticut Computer Center on campus. Some faculty members are also members of the University’s Institute of Materials Science (IMS) or the Center for Environmental Science and Engineering (CESE) where additional research facilities are available, especially for polymer synthesis, characterization, and processing, or environmental analysis and research, respectively.
Courses of Study

CHEM 5300(1 - 3) Course ID:002727 05-FEB-2008
Instructor Consent Required
Independent Study
Components: Independent Study

CHEM 5310(1) Course ID:002729 05-FEB-2008
Seminar
Reports and discussion of topics of current interest in a variety of fields of chemistry.
Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).
Components: Seminar

CHEM 5324(3) Course ID:002736 05-FEB-2008
Advanced Inorganic Chemistry I
Synthetic methods in inorganic chemistry; the application of physical methods to the investigation of inorganic compounds.
Components: Lecture

CHEM 5325(3) Course ID:002737 05-FEB-2008
Advanced Inorganic Chemistry II
In depth study of general principles of inorganic chemistry; the structure of the elements and of inorganic compounds; group theory; different approaches to understanding the chemical bond.
Components: Lecture
Requirement Group:Prerequisite: CHEM 5324 (RG218).

CHEM 5326(3) Course ID:002738 05-FEB-2008
Advanced Inorganic Chemistry III
Main group and transition metal compounds with inorganic and organic ligands; the study of the transition metals is in preparation for Chemistry 327.
Components: Lecture
Requirement Group:Prerequisite: CHEM 5325 (RG219).

CHEM 5327(3) Course ID:002739 05-FEB-2008
Advanced Inorganic Chemistry IV
Transition metal chemistry; organometallic and coordination compounds of the transition elements, including the lanthanides and actinides; selected topics in bioinorganic chemistry.
Components: Lecture
Requirement Group:Prerequisite: CHEM 5326 (RG220).

CHEM 5335(3) Course ID:002740 05-FEB-2008
Theoretical Analytical Chemistry
A problem oriented course, involving hands on computer use, which incorporates modern methods of analyzing data obtained from the various analytical techniques. Use of theoretical and empirical models and chemometrics is stressed.
Components: Lecture

CHEM 5336(3) Course ID:002741 05-FEB-2008
Electroanalytical Chemistry
A study of the theoretical and practical basis for electroanalytical methods. Topics include voltammetric methods of analysis (including polarography, cyclic voltammetry, rotating disk voltammetry, pulse and square-wave methods, and stripping analysis), coulometric, and chronoamperometric methods. Recent advances using micro- and modified electrodes, thin-layer and flow cells, electrochemical sensors and detectors, and bioelectrochemistry may be included.
Components: Lecture

CHEM 5337(3) Course ID:002742 05-FEB-2008
Optical Methods of Analysis
Adiscussion of fundamental principles, instrumentation and applications of some spectroscopic techniques of analytical chemistry including Raman spectroscopy, molecular fluorescence spectroscopy, atomic spectroscopy.
Components: Lecture

CHEM 5338(3) Course ID:002743 05-FEB-2008
Separation Methods
A study of the theoretical and practical basis for modern separation methods. Topics to be discussed include the various methods dealing with gas-liquid, liquid-liquid, liquid-solid, gas-solid, ion-exchange, size exclusion, chromatography, electrophoresis, and mass spectrometry.
Components: Lecture

CHEM 5340(1) Course ID:002744 05-FEB-2008
Electronic Interpretation of Organic Chemistry
Approaches to writing organic reaction mechanisms.
Components: Lecture

CHEM 5341(3) Course ID:002745 05-FEB-2008
Adv Organic Chem
This course will review the fundamentals of bonding, stereochemistry and conformations and basic reactions from undergraduate organic chemistry. These fundamental principles will then be elaborated to include more advanced concepts of reactions and reactivity.
Components: Lecture

CHEM 5343(4) Course ID:002746 05-FEB-2008
Organic Reactions
Nomenclature. Classes of compounds. A focus upon those reactions in which C-C bonds are formed. Emphasis on the fundamentals of each reaction, their utility and applications. A background of functional group exchanges; reaction control by steric, electronic, and topological considerations.
Components: Lecture

CHEM 5344(3) Course ID:002747 05-FEB-2008
Concepts in Organic Chemistry
Structure and mechanism. Such topics as chemical bonding, stereochemistry, conformation, molecular orbital theory and applications, acids and bases, and study of organic reaction mechanisms, including kinetics, substitutions, rearrangements and photochemical reactions.
Components: Lecture
Requirement Group:Prerequisite: CHEM 5343 (RG221).

CHEM 5345(3) Course ID:002748 05-FEB-2008
Determination of Organic Structures
Structural problem solving using fundamental data including spectroscopic and wet chemical techniques.
Components: Lecture
Requirement Group:Prerequisite: CHEM 5343 (RG221).

CHEM 5347(3) Course ID:002750 05-FEB-2008
Chemical Kinetics
Components: Lecture

CHEM 5350(1) Course ID:012225 05-FEB-2008
Research Methods in Chemistry
Recent advances in understanding the mechanisms of chemical processes in biological systems. Chemical perspectives or problems of biological significance at the interfaces of the various divisions of chemistry.
Components: Lecture

CHEM 5361(1 - 3) Course ID:002763 05-FEB-2008
Research Methods in Chemistry
Components: Lecture

Chemistry 5370(3) Course ID:002767 05-FEB-2008
Environmental Chemistry I

Recent advances in studies of sources, reactions, transport, effects and fate of chemical species in air, water and soil environments. Emphasis on analytical methods for studying environmental phenomena and sampling methods.

Components: Lecture

Chemistry 5371(3) Course ID:002768 05-FEB-2008
Environmental Chemistry II

Environmental sampling and methods of chemical contaminant analyses, sources and types of chemical pollution, pollution prevention, waste management, waste reduction, recycling, and ultimate chemical destruction.

Components: Lecture

Requirement Group: Prerequisite: CHEM 5370 (R225).

Chemistry 5380(3) Course ID:002773 05-FEB-2008
Polymer Synthesis

Chemistry of the formation of high polymers, including kinetics, mechanisms, and stereochemistry of step growth and addition polymerization. Recent advances in polymer synthesis.

Components: Lecture

Chemistry 5381(3) Course ID:002774 05-FEB-2008
Polymer Physical Chemistry

A molecular description of the fundamental physico-chemical aspects of polymer solutions and solids. Considers thermodynamics, chain statistics, dynamics, and structure of polymer molecules.

Components: Lecture

Chemistry 5382(3) Course ID:002775 05-FEB-2008
Polymer Characterization I

Experimental techniques for characterizing polymers on a molecular level, with emphasis on the provision of a working knowledge of instrumental analysis. Experiments include dilute solution viscosity, vapor pressure osmetry, gel permeation chromatography, chemical and spectroscopic analysis.

Components: Lecture, Practicum

Chemistry 5384(3) Course ID:002777 05-FEB-2008
Polymer Characterization II

Experimental techniques for characterizing polymers on a macroscopic scale, with emphasis on provision of a working knowledge of instrumental analysis. Experiments include calorimetry, mechanical analysis, surface characterization, and structure determination.

Components: Lecture, Practicum

Chemistry 5385(3) Course ID:002778 05-FEB-2008
Reactions of Polymers

A comprehensive coverage of theories of reactions of high polymers, as applied to reaction mechanisms and the relationships of structure with physical properties and reactivity. Topics include modification of polymers, degradation of polymers, polymer reagents and polymer catalysis.

Components: Lecture

Chemistry 5388(3) Course ID:002781 05-FEB-2008
Infrared Spectroscopy of Polymers

The nature of the interaction of IR radiation with molecules, modern spectrometer design, non-conventional sampling techniques, and applications to polymer-related problems.

Components: Lecture

Chemistry 5391(1 - 3) Course ID:002782 05-FEB-2008
Instructor Consent Required

Special Topics in Physical Chemistry

Components: Lecture

Chemistry 5394(1 - 3) Course ID:002783 05-FEB-2008
Instructor Consent Required

Special Topics in Polymer Chemistry

Components: Lecture

Chemistry 5395(1 - 3) Course ID:002784 05-FEB-2008
Special Topics in Analytical Chemistry

Components: Lecture

Chemistry 5396(1 - 3) Course ID:002785 05-FEB-2008
Special Topics in Inorganic Chemistry

Components: Lecture

Chemistry 5397(1 - 3) Course ID:002786 05-FEB-2008
Special Topics in Organic Chemistry

Components: Lecture

Requirement Group: Prerequisite: CHEM 5343 (RG221)

Associated Grad School Courses

†GRAD 5930. Full-Time Directed Studies (Master's Level)

(Grad 397) 3 credits.

†GRAD 5950. Master's Thesis Research

(Grad 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research

(Grad 396) 3 credits.

GRAD 5998. Special Readings (Master's)

(Grad 398) Non-credit.

GRAD 5999. Thesis Preparation

(Grad 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)

(Grad 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research

(Grad 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research

(Grad 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)

(Grad 498) Non-credit.

GRAD 6999. Dissertation Preparation

(Grad 499) Non-credit.

Civil Engineering

Department Head: Professor Amvrossios C. Bagtzoglou
Associate Department Head & Graduate Program Director: Professor John N. Ivan
Professors: Accorsi, Epstein, and Frantz
Associate Professors: Aboud, Anagnostou, Garrick, Liu, Mackay, and Malla
Assistant Professors: Basu, Bushey, Christenson, Chrysoschoou, Gebremichael, Kim, Li, Lownes, and Zofka

The Department of Civil and Environmental Engineering offers graduate courses and research opportunities for students seeking the M.S. or Ph.D. Research areas include environmental, geotechnical, structural, and transportation engineering. In addition, the Department participates in interdisciplinary programs in applied mechanics, environmental engineering and fluid dynamics.

Special Requirements for the Master's Degree

Master's degrees may be earned under either of two plans. Plan A requires not fewer than 21 credits of graduate program course work and the writing of a Thesis, while Plan B requires not fewer than 30 credits of graduate program course work and a final examination (but no thesis). For outstanding students who have completed six credits of approved graduate-level course work (5000's level or higher) as part of an undergraduate program (as electives and/or as professional requirements) prior to entry to the master's degree program (with grades of B+ or higher in all such courses) the advisory committee may reduce the course work to 15 credits for Plan A and to 24 credits for Plan B.

Special Requirements for the Ph.D. Program

By the end of the first year of study, the Ph.D. student must have passed a qualifying examination and have submitted evidence of his or her capacity for independent study in the form of a master's thesis or a comparable achievement. In many cases the final examination of the student's M.S. program serves as the qualifying examination (See also "Applied Mechanics" and "Fluid Dynamics").

Special Facilities

The Department has fully-equipped, state-of-the-art laboratories for graduate research in applied mechanics, environmental, geotechnical, structural and transportation engineering. In addition to the typical laboratories, special departmental facilities include a 40' x 65' fully-equipped structures testing floor, state-of-the-art computer lab for computer aided design (CAD) and geographical information systems (GIS) laboratory, specialized asphaltic and bituminous materials laboratories and controlled environment rooms for both environmental and geotechnical research laboratories. Equipment is also available for conducting experimental research in the field. Specialized laboratories of the Center for Environmental Sciences and Engineering (CESI) are also available for research in
Courses of Study

NOTE -- The following courses are part of the interdisciplinary Applied Mechanics program: CE 5122, 5124, 5126, 5128, 5160, 5164, 5166, 6810, and 6811.

CE 5010(1 credits)
Civil Engineering Graduate Seminar
May be taken up to three times for credit. Presentation and discussion of advanced civil engineering problems.
Components: Lecture

CE 5020(1 - 6 credits) Instructor Consent Required
Independent Graduate Study in Civil Engineering
Special problems in civil engineering as arranged by the student with a supervisory instructor of his or her choice.
Components: Independent Study

CE 5030(0 credits)
Seminar in Transportation and Urban Engineering
Extended discussions on presentations contributed by staff, students and outside speakers. Required every semester for all full-time students in the Transportation and Urban Engineering Area of Concentration in the Civil Engineering Field of Study.
Components: Seminar

CE 5090(1 - 3 credits) Instructor Consent Required
Advanced Topics in Civil Engineering
Classroom or laboratory courses as announced for each semester. For independent study see Civil Engineering 300.
Components: Lecture

CE 5122(3 credits)
Advanced Mechanics of Materials
Components: Lecture

CE 5124(3 credits)
Applied Elasticity
Theory of elasticity; two-dimensional solutions of beams, wedges, disks, and rings under load; stress concentrations; strain-energy methods; torsion of bars; stresses in bodies of revolution.
Components: Lecture

CE 5126(3 credits)
Plates and Shells
Stresses and deformations in flat plates and curved shells; bending of circular and rectangular plates; energy methods; buckling; shells of revolution.
Components: Lecture

CE 5128(3 credits)
Elastic Stability
Buckling of elastic and inelastic columns; lateral buckling of beams; buckling of plates, rings and tubes; stability of frames.
Components: Lecture

CE 5130(3 credits)
Numerical Methods in Civil Engineering
Components: Lecture

CE 5140(3 credits)
Classical Structural Analysis
Classical indeterminate analysis, displacement analysis, consistent deformations, energy methods, elastic center and column analogy, slope-deflection, moment and shear distribution, second order effects.
Components: Lecture

CE 5150(3)
Structural Vibrations
Vibrating systems; application to design; discrete and continuous systems, free and forced vibrations; response to periodic and non-periodic loads; analytical and numerical techniques; earthquake loading; response spectra.
Components: Lecture

CE 5151(3 credits)
Experimental Structural Dynamics
Characteristics of random data; vibration test hardware; data acquisition and analysis; and experimental modal analysis and system identification. Laboratory experiments will be used to enhance understanding of taught concepts.
Components: Lecture

CE 5160(3 credits)
Matrix Analysis of Structures
Matrix methods; force and displacement methods; energy principles; analysis of indeterminate structures, rigid frames, trusses and grids; settlement of supports, lack of fit, and temperature stresses; computer programming.
Components: Lecture

CE 5162(3 credits)
Applied Finite Element Analysis
This course and CE 366 may not both be taken for credit.
Structural engineering applications using plane stress, plane strain, plate and solid finite elements. Applications using available programs.
Components: Lecture

CE 5163(3 credits)
Fracture Mechanics
This course focuses on fundamental concepts and applications of fracture mechanics. Topics include linear elastic fracture mechanics, elastic-plastic fracture mechanics, computational fracture mechanics, fracture mechanisms in metals and non-metals, fracture testing, dynamic and time-dependent fracture, fatigue crack growth, interfacial fracture, fracture in advanced materials, and engineering applications.
Components: Lecture

CE 5164(3 credits)
Finite Element Methods in Applied Mechanics I
This course and CE 363 may not both be taken for credit. Formulation of finite elements methods for linear static analysis. Development of two and three dimensional continuum elements, axisymmetric elements, plate and shell elements, and heat transfer elements. Evaluation of basic modeling principles including convergence and element distortion. Applications using commercial finite element programs. Also offered as ME 380.
Components: Lecture
Course Equivalents: ME 5520

CE 5166(3 credits)
Finite Element Methods in Applied Mechanics II
Components: Lecture
Course Equivalents: ME 5521

CE 5210(3 credits)
Environmental Engineering Chemistry I
Quantitative variables governing chemical behavior in environmental systems. Thermodynamics and kinetics of acid/base coordination, precipitation/dissolution, and redox reactions. Also offered as ENVE 300.
Components: Lecture
Course Equivalents: ENVE 5210

CE 5211(3 credits)
Environmental Engineering Chemistry II
Environmental organic chemistry: ideal and regular solution thermodynamics; linear free energy relations; estimation of vapor pressure, solubility, and partitioning behavior, abiotic organic compound transformations; chemical fate modeling. Also offered as ENVE 301.
Components: Lecture
Course Equivalents: ENVE 5211

CE 5212(3 credits)
Transportation & Air Quality
Components: Lecture
Course Equivalents: ENVE 5220

CE 5220(3 credits)
Transportation & Air Quality
Components: Lecture
Course Equivalents: ENVE 5221
Requirement Group: Prerequisite: CE 5210 or ENVE 5210 (RG 241).

CE 5240(3 credits)
Biodegradation and Bioremediation
Biochemical basis of the transformation of key organic and inorganic pollutants; quantitative description of kinetics and thermodynamics of pollutant transformation; impact of physicochemical and ecological factors on biotransformation. Also offered as ENVE 306.
Components: Lecture
Course Equivalents: ENVE 5240

Requirement Group: Prerequisite: CE 5210 or ENVE 5210, and CE 5211 or ENVE 5211 (RG237).

CE 5250(3 credits)
Environmental Physicochemical Processes
Reactor dynamics, applications of interfacial phenomena and surface chemistry, processes for separation and destruction of dissolved and particulate contaminants. Scholarly reviews. Also offered as ENVE 321.
Components: Lecture
Course Equivalents: ENVE 5251

CE 5251(3 credits)
Environmental Biochemical Processes
Major biochemical reactions; stoichiometric and kinetic description; suspended and attached growth modeling; engineered biotreatment systems for contaminant removal from aqueous, gaseous, and solid streams; process design. Also offered as ENVE 322.
Components: Lecture
Course Equivalents: ENVE 5311

CE 5252(3 credits)
Contaminant Source Remediation
Regulatory framework. Soil clean-up criteria. Treatment technologies: soil vapor extraction, solidification - stabilization, soil washing - chemical extraction, hydrolysis - dehalogenation, thermal processes, bioremediation. Risk analysis. Also offered as ENVE 5252.
Components: Lecture
Course Equivalents: ENVE 5252

Requirement Group: Prerequisite: CE 5250 or ENVE 5231, and CE 5251 or ENVE 5311 (RG236).

CE 5253(3 credits)
Ground Water Assessment and Remediation
Quantitative evaluation of field data in assessing nature and extent of groundwater contamination. Subsurface control and remediation. Case studies. Also offered as ENVE 320.
Components: Lecture
Course Equivalents: ENVE 5250

CE 5301(3 credits)
Environmental Transport Phenomena
Movement and fate of chemicals; interfacial processes and exchange rates in environmental matrices. Also offered as ENVE 310.
Components: Lecture
Course Equivalents: ENVE 5310

CE 5320(3 credits)
Environmental Quantitative Methods
Also offered as ENVE 432. This course and NRME 432 may not both be taken for credit.
Topics on natural resources and environmental data analysis: random variables and probability distributions, parameter estimation and Monte Carlo simulation, hypothesis testing, simple regression and curve fitting, wavelet analysis, factor analysis; formulation and classification of optimization problems with/without constraints, linear programming; models for time series; solution of ordinary differential equations with Laplace transforms and Euler integration; solution of partial differential equations with finite differences; basics of modeling.
Components: Lecture
Course Equivalents: ENVE 5320

CE 5330(3 credits)
Probabilistic Methods in Engineering Systems
Common probabilistic models used in engineering and physical science design, prediction, and operation problems; derived distributions, multivariate stochastic models, and estimation of model parameters; analysis of data, model building and hypothesis testing; uncertainty analysis. Also offered as ENVE 304.
Components: Lecture
Course Equivalents: ENVE 5330

CE 5340(3 credits)
Environmental Systems Modeling
Modeling pollutants in natural surface waters. Advection-dissipative, and advective-dissipative systems. Modeling water quality, toxic organic and heavy metal pollution. Also offered as ENVE 311.
Components: Lecture
Course Equivalents: ENVE 5340

CE 5370(3 credits)
Environmental Monitoring
Also offered as ENVE 314. Introduction to complexities and challenges associated with acquisition of information on environmental processes and characteristics of natural systems. Hands-on experience with selection of measurement strategy and sensing technology; sampling network and protocol design; and deployment, acquisition and interpretation of measurements in natural systems.
Components: Lecture
Course Equivalents: ENVE 5370

CE 5380(3 credits)
Bridge Structures
Steel, reinforced concrete, prestressed concrete, and girder, box girder bridges; curved bridges; loadings; durability; fatigue; vibrations. Design project.
Components: Lecture

CE 5381(3 credits)
Subsurface Contaminant Transport Modeling
Also offered as ENVE 5381. Fate and transport of contaminants in groundwater. Convection, dispersion, adsorption, and biological and radioactive decay. Field scale modeling, Galerkin finite elements. Application to field sites.
Components: Lecture
Course Equivalents: ENVE 5381

CE 5394(0 credits)
Seminar in Environmental Sciences and Engineering
Extended discussions on presentations contributed by staff, students and outside speakers. A certificate of completion will be issued from the Environmental Engineering Program. Also offered as ENVE 400.
Components: Seminar
Course Equivalents: ENVE 5094

CE 5541(3 credits)
Advanced Soil Mechanics
Introduction of soil as a multi-phase material, brief overview of origin and mineralogy of soil; stress and strain analysis in soil; soil compression and consolidation, soil shear strength; common laboratory and in situ tests pertaining to soil strength and stiffness; introduction to critical state soil mechanics; discussion and analysis of relevant case histories.
Components: Lecture

CE 5543(3 credits)
Advanced Foundation Design
Soil behavior in retaining systems, shallow foundations, deep foundations.
Components: Lecture

CE 5544(3 credits)
Geosynthetics in Geotechnical Design
The properties of geotextiles, geomembranes, geocomposites, and geogrids and their use in road construction, retaining structures, drainage, hazardous waste sites, etc. Design, testing and selection.
Components: Lecture

CE 5545(3 credits)
Earth Structures
Embarkments, earth dams, earth and rock slopes, consolidation, vertical drains, soft deposits, landslides, subsurface investigations.
Components: Lecture

CE 5546(3 credits)
Ground Water Flow and Drainage
Permeability, flow nets, ground water flow and filter design, excavation dewatering, foundation drains, slope stabilization, highway drainage.
Components: Lecture

CE 5547(3 credits)
Soil Behavior
Clay mineralogy and interfacial properties, electro-osmosis, thixotropy, shear strength, consolidation, permeability, frost heave, and swelling.
Components: Lecture

CE 5548(3 credits)
Soil Settlement and Consolidation
Settlement predictions, theories of consolidation, secondary compression, numerical solutions, analysis of field data.
Components: Lecture

CE 5549(3 credits)
Soil Shear Strength
Failure theories for particulate media, plastic equilibrium, laboratory testing and interpretation.
Components: Lecture

CE 5570(3 credits)
Bituminous Materials
Properties, performance and design of bituminous materials for highway and airport paving; physical and chemical properties of binders; testing methods; specifications; production and construction.
Components: Lecture

Course Equivalents: ENVE 5094
CE 5580 (3 credits)
Pavement Design
Analysis and design of flexible and rigid pavements; testing and characterization of paving materials. Components: Lecture

CE 5610 (3 credits)
Advanced Reinforced Concrete Structures
Behavior and design of reinforced concrete for flexure, shear, torsion, bond, and axial loads; two way slabs; beam-column joints; general flexure theory; seismic considerations; review of design specifications. Components: Lecture

CE 5620 (3 credits)
Advanced Steel Structures
Behavior, stability and design of steel columns, beams, beam-columns, plates, bracing, frames; torsional behavior; fatigue and brittle fracture; review of design specifications. Components: Lecture

CE 5630 (3 credits)
Wood Design
Physical and mechanical properties of wood. Behavior of wood beams, columns, beam columns, connectors and fasteners; introduction to plywood and glued-laminated members; analysis and design of structural diaphragms and shear walls. Components: Lecture

CE 5640 (3 credits)
Prestressed Concrete Structures
Analysis, design, and behavior of pretensioned and post-tensioned concrete: simple and continuous span structures; time dependent behavior; review of design specifications. Components: Lecture

CE 5710 (3 credits) Program Director Consent Req'd
Case Studies in Transportation Engineering
Analysis of transportation case studies in transportation design, and transportation and land use planning. Application of transportation engineering and planning skills. Oral and written group reports, group discussions, individual papers. Not open to students who have passed CE 255. Components: Lecture Requirement Group: Not open to students who have passed CE 4710 (RG655).

CE 5720 (3 credits)
Highway Engineering - Design
Urban street and highway design: vertical and horizontal alignment, cross-section elements, traffic barriers, interchanges and intersections, pedestrian and bike facilities, traffic calming, community and roadside elements. Components: Lecture

CE 5730 (3 credits)
Transportation Planning
Transportation economics, urban transportation planning process, local area traffic management, evaluation of transportation improvements, land use and transportation interaction. Components: Lecture

CE 5740 (3 credits)
Traffic Engineering Characteristics
Relationships among traffic flow characteristics; microscopic and macroscopic representations of traffic flow; capacity of highways; traffic stream models; shock wave analysis; queueing analysis; traffic simulation. Components: Lecture

CE 5810 (3 credits)
Hydrometeorology
Global dynamics of aquatic distribution and circulation. Hydrologic cycle, atmospheric circulation, precipitation, interception, storage, infiltration, overland flow, distributed hydrologic modeling, and stream routing. Also offered as ENVE 385. Components: Lecture Course Equivalents: ENVE 5810

CE 5811 (3 credits)
Hydroclimatology
Also offered as ENVE 313. This course focuses on the physical principles underlying the spatial and temporal variability of hydrologic processes. Topics include atmospheric physics and dynamics controlling the water/energy budgets; global water cycle, its dynamics, and causes of variability/changes; occurrence of drought and flood; climate teleconnections and their hydrological application; hydrological impact of global changes; quantitative methods in hydroclimatic analysis. Components: Lecture Course Equivalents: ENVE 5811

CE 5812 (3 credits)
Ecohydrology
Also offered as ENVE 5812. This course focuses on the interactions between ecological processes and the water cycle, emphasizing the hydrological mechanisms underlying various terrestrial ecological patterns and the ecological properties controlling the hydrologic and climatic regimes. Topics include conceptual understanding of hydrological cycle over vegetated land, quantifying and modeling flux exchanges in the soil-vegetation-atmosphere continuum, case studies on the hydrological impact of land use land cover changes, ecosystem response to environmental changes, and vegetation-climate feedback at the regional and global scales. Components: Lecture Course Equivalents: ENVE 5812

CE 5820 (3 credits)
Unsaturated Flow and Transport
Also offered as ENVE 315. Modern approaches to water flow and solute transport in partially-saturated porous media including media characterization (review); unsaturated flow in porous media (governing equations, hydraulic functions, numerical and analytical solution methods); solute transport in unsaturated media (convection dispersion, transfer functions, solutions); modeling and observational scales; coupled water flow and solute transport (model applications); special topics (preferential flow, effects of spatial variability, stochastic aspects of flow and transport, gas exchange and transport measurement methods). Components: Lecture Course Equivalents: ENVE 5820

CE 5821 (3 credits)
Vadose Zone Hydrology
Also offered as ENVE 316. Theoretical and experimental elements of primary physical and hydrological properties of porous media and processes occurring in partially-saturated soils. Practical experience in measurement and interpretation of hydrological information and methods of analysis for vadose-zone related environmental problems. Components: Lecture Course Equivalents: ENVE 5821

CE 5830 (3 credits) Groundwater Flow Modeling

CE 5840 (3 credits)
Open Channel Hydraulics
Unsteady, nonuniform flow; energy and momentum concepts; flow control; de St. Venant equations; unsteady flow modeling of channels and natural rivers. Also offered as ENVE 384. Components: Lecture Course Equivalents: ENVE 5840

CE 5841 (3 credits)
River Mechanics
Erosion and sedimentation, physical properties of sediment, dimensional analysis, mechanics of sediment laden flows, particle motion, incipient motion, bedforms, bed load, suspended load. Components: Lecture

CE 6730 (3 credits)
Travel Demand Forecasting
Alternative formulations and calibration of trip generation, trip distribution and travel mode choice prediction models. Traffic network equilibrium and assignment. Components: Lecture

CE 6740 (3 credits)
Traffic Engineering Operations

CE 6810 (3 credits)
Advanced Fluid Mechanics I
Dimensional analysis; vector analysis; circulation and vorticity; irrotational motion and velocity potential; two-dimensional flow and stream function; complex variable theory; conformal mapping; airfoils; sources and sinks; free streamline flow; water waves; three-dimensional flow. Also offered as ENVE 382.
Components: Lecture
Course Equivalents: ENVE 6810

CE 6811(3 credits)
Advanced Fluid Mechanics II
Components: Lecture
Course Equivalents: ENVE 6810

CE 6820(3 credits)
Hydraulic Machinery and Transients
Pumps and turbines. Surging, water hammer, cavitation, hydraulic machinery for hydroelectric plants, water supply, irrigation, and river navigation. Also offered as ENVE 386.
Components: Lecture
Course Equivalents: ENVE 6820

CE 6821(3 credits)
Hydraulic Structures
River regulation and development. Hydroelectric plants, storage and turbines, canals, locks, and penstocks, dams, regulation of power, flood control, navigation and irrigation. Also offered as ENVE 387.
Components: Lecture
Course Equivalents: ENVE 6821

CE 6830(3 credits)
The Flood Problem
Components: Lecture

Associated Grad School Courses

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(Grad 397) 3 credits.

†GRAD 5950. Master’s Thesis Research
(Grad 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master’s Research
(Grad 396) 3 credits.

Grad 5998. Special Readings (Master’s)
(Grad 398) Non-credit.

Grad 5999. Thesis Preparation
(Grad 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(Grad 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(Grad 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(Grad 496) 3 credits.

Grad 6998. Special Readings (Doctoral)
(Grad 498) Non-credit.

Grad 6999. Dissertation Preparation
(Grad 499) Non-credit.

Clinical and Translational Research

Program Directors: Associate Professor Anne Kenny and Professor Peter Snyder
Professors: Kranzler, Kuchel, Raisz, Snyder, and Tennen
Associate Professors: Brewer, Kenny, LaSala, and Pendry
Assistant Professors: Lalla, Tannenbaum, and Uribe
Adjunct Professor: Zucker
Adjunct Associate Professor: Hagstrom
Adjunct Assistant Professor: Orsey

The M.S. program in Clinical and Translational Research is designed to prepare health care professionals with the academic and research skills needed to be competitive for independent research. The program focuses on the preparation of individuals with established, terminal degrees in a health related field (M.D., Ph.D., Pharm.D., D.D.S. or D.M.D.) to conduct independent research in translation of information from the basic sciences to the community as researchers, teachers, public health administrators, clinicians, and industry employees competent to carry out the broad health mission of the State of Connecticut.

The M.S. Program.

The Master of Science degree program in Clinical and Translational Research is administered in the Department of Medicine. The program stresses clinical research methods and research practicum. The program is offered to individuals with a health related terminal degree (M.D., D.M.D. or Ph.D.) to provide practical research training to be prepared for independent research. The Master Program is based on both course work and research experience, but no research thesis is required. Students will be required to sit for a final examination, which may entail the oral defense of a grant application and a manuscript.

Entering students should have a terminal degree (M.D., D.M.D. or Ph.D. in a health-related field) or be involved in an M.D., D.M.D. or Ph.D. program in a health-related field and in good standing. A complete description of the program with recommended preparation and instructions for applying may be obtained from Ms. Lisa Godin, General Clinical Research Center, University of Connecticut Health Center, Farmington, CT 06030-3805; (860) 679-4145; e-mail <godin@nso.uchc.edu>.

Courses of Study

CLTR 5000(3 credits) Program Director Consent Req’d
Graduate Seminar in Clinical and Translational Research
The Introduction to Clinical Research Course, utilizing lecture, the textbook Designing Clinical Research by Hulley and Cummings, et al. (Third Edition) and practical application writing a research proposal, provides training in the methods of clinical investigation to physicians and other health professionals.
Components: Discussion, Lecture
CLTR 5020 (3 credits) Program Director Consent Req'd
Statistical Methods in Healthcare
Quantitative procedures including descriptive and inferential statistics, non-parametric approaches to data, and parametric analyses through factorial analysis of variance. Cross listed with NURS 5020.
Components: Lecture
Course Equivalents: NURS 5020

CLTR 5022 (1 credits) Program Director Consent Req'd
Graduate Seminar in Clinical and Translational Research
Reading and discussion of methodological and statistical developments in various areas of clinical and translational research
Components: Discussion

CLTR 5357 (3 credits)
Principles of Clinical and Translational Research I
This is the first core course in research methods, biostatistics and topics in clinical and translational research. In the methods section, the topics covered include Defining a Research Question, Cross-Sectional Studies, and Case-Control Studies. The biostatistics section covers Probability Distributions, Sample Size Calculations, Hypothesis Testing, Odds Ratios and Logistic Regression. The major other topic is ethical issues in research, including specifically those related to the conduct of research with human beings.
Components: Lecture

CLTR 5358 (3 credits)
Principles of Clinical and Translational Research II
This is the second core course in research methods, biostatistics and topics in clinical and translational research. The methods section covers Observational Perspective Studies, Randomized Controlled Trials, and Information Synthesis. The biostatistics section covers Analysis of Variance, Survival Analysis, Analysis of Randomized Controlled Trials, and Methods of Meta-Analysis. The major other topics are data management and other informatics.
Components: Lecture

CLTR 5359 (3 credits)
Principles of Clinical and Translational Research III
This is the third core course in research methods, biostatistics and topics in clinical and translational research. The methods section includes Instrument Development, Cross Cultural Adaptation of Research Instruments, Genetic Epidemiology, Pharmacopidemiology, Pharmacogenomics, and Secondary Data Analysis. The biostatistics section includes Handling Missing Data, Analysis of Genetic Epidemiologic Studies, Structural Equation Modeling, and Economic Analyses. The other topics include writing and presenting scientific information.
Components: Lecture

CLTR 5407 (1 - 12 credits) Program Director Consent Req'd
Clinical and Translational Research Practicum
This course seeks to provide practical training in the formulation and conduct of clinical and translational research. Specific aspects that will be covered during the 9-12 total hours of the practicum will be: the identification of a specific research question and its specification as one or more aims, review of the relevant literature, and specification of the methods to be employed in the conduct of the study, including experience in recruitment and retention of subjects, an IRB application and HIPAA documents preparation. The student will initiate a research project and participate in data collection and analysis, culminating in a report of the findings. These activities will be monitored and mentored by a research advisor who is a member of the Graduate Faculty.
Components: Practicum
Requirement Group: Open to M.S. students in Clinical and Translational Research (RG 4373).

INTS 5000 (3 credits) Instructor Consent Required Seminar in International Studies
This seminar combines the various disciplines that constitute International Studies into three core units: (1) Social sciences; (2) Humanities; and (3) Development Studies (development economics and administration). Area Studies faculty from relevant departments will conduct the individual seminar sessions. The seminar has three goals: (1) to introduce concepts and theoretical issues of the fields in each of the core units; (2) to introduce research approaches and the formulation of research questions in each of the core units; and (3) to help students develop analytical thinking and writing skills in an interdisciplinary context. These goals form the basic structure of the three units and will be met through a combination of reading, discussion, short papers, presentations, and research exercises. Library research and on-line resources are also covered.
Components: Seminar

INTS 5110 (1 - 6 credits) Instructor Consent Required Independent Study
Instructor consent required. May be repeated to a maximum of 15 credits with a change of content.
Components: Independent Study†GRAD 5930. Full-Time Directed Studies (Master’s Level) (GRAD 397) 3 credits.
†GRAD 5950. Master’s Thesis Research
(1 - 9 credits).
†GRAD 5960. Full-Time Master’s Research
(3 credits).
GRAD 5998. Special Readings (Master’s)
(3 credits).
GRAD 5999. Thesis Preparation
(3 credits).

COMMUNICATION SCIENCES

Department Head: Professor Carl A. Coelho
Professors: Atkin, Buck, Gilbert, Lin, Musiek, and Snyder
Associate Professors: Cienkowski, D’Alessio, Grela, Hamilton, Jabbert, Nowak, Rios, VanLear, and Wang
Assistant Professors: Myers, Ramanathan, Gaztambide-Geigel, Spaulding, Tafoya, and Tufts

The field of communication sciences deals with the process and analysis of human communication. The Department of Communication Sciences has two major sections: Communication Disorders and Communication, each of which offer graduate degree programs. The Communication Disorders Section offers M.A., Au.D., and Ph.D. concentrations in Speech, Language, and Hearing. The Communication Section offers an M.A. concentration in Communication and a Ph.D. concentration in Communication Processes and Marketing Communication.

Communication Disorders

The mission of this section is to develop a theoretical perspective on human communication disorders and their clinical management. Two distinct areas of study are offered in this section which lead to either professional or research degrees:

Audiology - The Doctor of Audiology (Au.D.) is a professional degree which prepares students for clinical certification in Audiology.

Speech-Language Pathology - The M.A. in Speech-Language Pathology, is a professional degree which also prepares students for clinical certification. Speech-language pathologists who work in the Connecticut public schools must have school certification. Through an arrangement with the School of Education, students enrolled in the M.A. program in Speech, Language and Hearing can fulfill requirements leading to certification as an SLP for employment in Connecticut’s public schools. requirements include course work in Special Education, Regular Education, Human Development or Psychology, Classroom Instruction and Management.

Both of these degree programs are accredited by the American Speech, Language, Hearing Association’s (ASHA) Council on Academic Accreditation (CAA).

Five areas of emphasis are offered for the Ph.D. degree: (1) speech pathology, (2) language, (3) audiology, (4) speech science, and (5) hearing science. The curriculum involves broad-based coursework and independent experimental investigations followed by dissertation research.

Admission Requirements

Requirements for admission to the professional degree programs (Au.D., M.A.) include completion of pre-professional background coursework (approximately 25 credits) as well as basic courses in math/statistics, physics, and biology or a Bachelor’s Degree in Communication Disorders. Requirements for admission to the Ph.D. programs require a
B.A./B.S. in a related field of study. Applicants for all programs must also submit scores from the Graduate Record Examination. The application deadline for the professional degree programs is February 1. The application form and instructions for applying are available at: http://grad.uconn.edu. For questions regarding the Communication Disorders graduate programs call (860) 486-2628, or send an email to comsci3@uconn.edu.

Communication.

The mission of this section is to study and teach about communication with areas of specialization that include interpersonal communication, persuasion, communication technology, nonverbal communication, and media effects. Our goal is to pursue theoretically grounded research and to disseminate knowledge by publishing our research and through teaching. Ample experimental and survey research facilities are available.

M.A. in Communication.

Graduate work in the M.A. program emphasizes the empirical investigation of human communication. Students receive a basic foundation in communication theory and research methodology. Those pursuing the M.A. in communication prepare to carry out independent research in communication and to evaluate communication programs, either at institutions offering doctoral-level work in communication or in business or government. Areas of emphasis include: general communication theory; organizational communication; mass communication; interpersonal communication; marketing communication; and new communication technology (12-month course of study).

Ph.D. in Communication Processes and Marketing Communication.

Graduate work in the Ph.D. program provides the student with strong theoretical and research skills to prepare for an academic career or professional research position. Areas of emphasis include: media effects, persuasion, emotional, intercultural, international, nonverbal, organizational, political, relational, and small group communication; public opinion, health communication campaigns, new communication technology, advertising, social marketing, and consumer research.

Admission Requirements.

Applicants to both the M.A. and Ph.D. programs must present scores on the three parts of the general Graduate Record Examination. Applicants for the Ph.D. program must have an M.A. degree to be considered. The application form and instructions for applying are available at: www.grad.uconn.edu.

The application deadline for Communication is January 1. For questions regarding the Communication graduate programs, please visit our website: <www.coms.uconn.edu>, call (860) 486-2628, or send an e-mail message to comsci3@uconn.edu.

COURSES OF STUDY

Communication

COMM 5001(3)
Introduction to Graduate Communication Research
An introduction to quantitative research methods and statistics. Issues of measurement and design of communication studies as well as basic descriptive and inferential statistics are covered.
Components: Lecture

COMM 5002(3 credits)
Research Methods
Integrative approach to modeling theory, research design, and statistical analysis, including mathematical models, scale construction, measurement issues, correlation, regression, and analysis of variance. Formerly offered as COMS 302.
Components: Lecture

COMM 5003(3 credits)
Advanced Communication Research Methods
Research techniques and procedures for the study of communication. Research design, multivariate statistics, and structural modeling. Formerly offered as COMS 306.
Components: Lecture

Requirement Group: Prerequisite: COMM 5002 (RG242).

COMM 5010(3 credits)
Theory Construction and Research Design
Conceptualization, theory construction, and review of communication methodologies. Students will write a proposal for independent research, thesis, or dissertation. Formerly COMS 325.
Components: Lecture

Requirement Group: Prerequisite: COMM 5002 (RG242).

COMM 5100(3 credits)
Persuasion Theory and Research
Evaluation of current and traditional theories of persuasion and attitude change from communication, social psychology, and related disciplines. Formerly COMS 319
Components: Lecture

COMM 5101(3 credits)
Motivation
Theories of motivation considered in relation to their supporting data. Also offered as PSYC 340. Formerly COMS 340.
Components: Lecture

Course Equivalents: PSYC 5101

COMM 5120(3 credits)
Communication Campaigns
Campaign theory and planning. Students learn how to conduct interviews and focus groups with members of a target audience, and work with non-profit organizations to design a campaign. Formerly offered as COMS 301.
Components: Lecture

COMM 5200(3 credits)
Interpersonal Communication
Cognitive, emotional and behavioral interactions in specific contexts, including interpersonal relationships, groups, and work. Formerly COMS 308.
Components: Lecture

COMM 5220(3 credits)
Group Communication Research
The group communication process with emphasis upon research methodologies for the study of interactions in a group setting. Formerly COMS 313.
Components: Lecture

COMM 5230(3 credits)Organizational Communication: Theory and Research
Relationship of prescribed and informal communication networks to organizational goal achievement and individual integration. Emphasis on frequently used research methodologies. Formerly COMS 322.
Components: Lecture

COMM 5300(3 credits)
Mass Communication Theory
Introduction to major theories, with emphasis on the structure, function, and effects of mass media. Formerly COMS 309.
Components: Lecture

COMM 5310(3 credits)
Seminars in Mass Communication Research
Recent theories of social and political effects of mass communication, and the cognitive processing of media messages. Formerly COMS 371.
Components: Seminar

COMM 5500(3 credits)
Nonverbal Communication
The study of metacommunication: Kinesics, space, time and other concomitants of verbal messages. How the non-verbal band helps in the interpretation of verbal messages. Formerly COMS 312.
Components: Lecture

COMM 5501(3 credits)
Nonverbal Communication
Seminars in Nonverbal Communication and Persuasion
Role of media nonverbal communication in persuasion and media preferences. Affective and analytic communications in attitude formation, structure, and change. Formerly COMS 374.
Components: Lecture

COMM 5560(3 credits)
Communication Technology and Society: Theory and Research
Theory and research associated with the study of emerging communication technologies. Provides a comprehensive foundation in the scholarly literature addressing the content, adoption, uses and effects of new media.
Components: Seminar
COMM 5660 (3 credits)
Computer Mediated Communication
Communication networks, human-computer interaction and interface design, social and collaborative communication via computer. Formerly COMS 314.
Components: Lecture

COMM 5670 (3 credits)
Computer Modeling in Communication Research History, basic concepts, and minimal skills of computer simulation and mathematical modeling. Formerly COMS 321.
Components: Lecture

COMM 5680 (3 credits)
Seminar in Message Systems Analysis
Selected topics in information and communication; analysis of message elements in human communication; discussion of message factors as related to behavioral effects. Formerly COMS 307.
Components: Lecture

COMM 5770 (3 credits)
Health Communication
Overview of health communication, including health behavior change interventions, emergency communication, risk assessment, media influences, provider-patient communication, socialization and identity, stereotyping, social support, diverse populations, and new communication technologies.
Components: Seminar

COMM 5892 (1 - 6 credits)
Practicum in Research
May be repeated for credit. Formerly COMS 319.
Components: Practicum

COMM 5895 (1 - 3 credits) Instructor Consent Required
Variable Topics in Communication
Instructor consent required. May be repeated for credit with a change in topic.
Components: Lecture

COMM 5899 (1 - 6 credits)
Independent Study in Communication Science
This course is an independent study course in which periodic conferences with the instructor are required. Formerly COMS 300.
Components: Independent Study

COMM 6001 (3 credits)
Proseminar in Communication Research
Advanced topics in communication research presented by faculty and specialists. Topics include information theory, survey of sampling and data collection, time series analysis (time-domain and panel design), physiological measurement, interaction analysis, and meta analysis. Formerly COMS 401.
Components: Seminar
Requirement Group: Prerequisite: COMM 5002, COMM 5003, and COMM 5010 (RG247).

COMM 6800 (1 - 6 credits)
Seminar and Directed Research in Communication
Open to graduate students in the Marketing Communication Program. May be repeated for credit for a maximum of 12 credits. Formerly COMS 404.
Components: Seminar
Requirement Group: Open to graduate students in the Marketing Communication Program (RG248).

COMM 6850 (3 credits)
Seminar in Marketing Communication Research
Theories of emotional and cognitive processing of communications; cognitive mapping and message construction; design, implementation and evaluation of information campaigns. Formerly COMS 405.
Components: Seminar

COMM 6895 (3 credits)
Topics in Applied Communication Research
Investigation of special research techniques and findings in selected areas of applied communication research. Formerly COMS 402.
Components: Seminar

Communication Disorders

CDIS 5320 (1 - 3 credits)
Directed Observation in Hearing
Directed observation of diagnostic and rehabilitative procedures in audiology for pediatric and adult populations. Effects of etiology considered. Credits and hours by arrangement. Lecture. May be repeated for credit.
Components: Lecture

CDIS 5321 (3 credits)
Otologic Basis of Hearing Loss
Basic and advanced principles of medical audiology including anatomy and physiology of the system, disorders of the auditory system, genetics, radiology, and functional brain imaging.
Components: Lecture

CDIS 5322 (4 credits)
Electrophysiology Techniques and Interpretation
Review of clinical applications of otoacoustic emissions, auditory brainstem response, electrocochleography, and auditory steady state potentials with emphasis on diagnostic issues. Four credits, three class periods and one 1-hour laboratory period.
Components: Laboratory, Lecture

CDIS 5323 (3 credits)
Geriatric Audiology
The physical effects of aging on the auditory peripheral and central nervous system, as well as the consequences of aging on diagnostic and rehabilitative services to older clients.
Components: Lecture

CDIS 5324 (3 credits)
Psychosocial Issues of Hearing Loss
Contemporary counseling issues related to working with individuals with hearing disorders. Emphasis on family systems and the impact of a hearing disorder.
Components: Lecture

CDIS 5325 (3 credits)
Adult Aural Rehabilitation
The provision of aural rehabilitation services to adults with hearing loss including auditory training, speechreading, auditory-visual integration, effective communication strategies, and Deaf culture.
Components: Lecture
Requirement Group: Prerequisite: CDIS 5356 (RG3366)

CDIS 5326 (3 credits)
Professional Issues in Audiology
Issues related to ethics and practice in the field of audiology, multicultural sensitivity, legal rights and responsibilities.
Components: Lecture

CDIS 5335 (3 credits)
Fluency Disorders
Research data and theoretical models regarding the etiology and characteristics of fluency disorders primarily stuttering are integrated to form the foundation for clinical management. Treatment approaches for children and adults are presented.
Components: Lecture

CDIS 5336 (1 credit)
Clinical Practicum in Speech Disorders
Components: Discussion, Practicum

CDIS 5337 (1 - 6 credits)
Clinical Practicum in Hearing
Discussion. May be repeated for credit. Formerly COMS 337. Components: Discussion, Practicum client’s clinical intervention. The clinical project must be successfully completed to graduate with an M.A. in speech-language pathology via the non-thesis track.
Components: Independent Study

CDIS 5375 (3 credits) Instructor Consent Required
Auditory System: Anatomy and Physiology
Review of the structure and function of the human auditory system, with emphasis on the clinical/applied aspects of anatomy and physiology. Oriented towards relationships to various auditory disorders.
Components: Lecture

CDIS 5376 (3 credits) Instructor Consent Required
Language Impairments and Literacy
A research seminar covering the theories, assessment, and treatment of children with reading disabilities from a language-based perspective. Open to graduate students in Communication Disorders, others with permission. Recommended preparation: a course in normal language development and language disorders in preschool and school-age children.
Components: Seminar

CDIS 5377 (3 credits) Instructor Consent Required
Introduction to Research
Introduction to research, experimental design, and statistics. Includes ethics in research, publishing, grant writing, general research skills, and computerized statistics. Open to graduate students in Communication Disorders, others with permission. Components: Lecture

CDIS 6300 (1 - 6 credits)
Independent Study in Communication Disorders
This course is an independent study course in which periodic conferences with the instructor are required. May be repeated for credit. Components: Independent Study

CDIS 6319 (1 - 6 credits)
Practicum in Research
Practicum. May be repeated for credit. Components: Practicum

CDIS 6363 (1 - 6 credits)
Seminar in Speech Pathology
1-6 credits. Seminar. May be repeated for credit with a change in content. Formerly COMS 363. Components: Seminar

CDIS 6364 (1 - 6 credits)
Seminar in Audiology
1-6 credits. Seminar. May be repeated for credit with a change in content. Formerly COMS 364. Components: Seminar

CDIS 6365 (1 - 6 credits)
Seminar in Audiology
1-6 credits. Seminar. May be repeated for credit with a change in content. Formerly COMS 365. Components: Seminar

CDIS 6366 (1 - 6 credits)
Seminar in Hearing Science
1-6 credits. Seminar. May be repeated for credit with a change in content. Formerly COMS 366. Components: Seminar

CDIS 6367 (1 - 3 credits)
Topics in Hearing and Speech Science
1-3 credits. Lecture. May be repeated for credit with a change in content. Formerly COMS 367. Components: Lecture

CDIS 6368 (1 - 3 credits)
Topics in Speech Pathology
1-3 credits. Lecture. May be repeated for credit with a change in content. Components: Lecture

CDIS 6369 (1 - 3 credits)
Topics in Audiology
1-3 credits. Lecture. May be repeated for credit with a change in content. Formerly COMS 369. Components: Lecture

CDIS 6370 (3 credits)
Seminar in Psycholinguistics
Reports and discussion of current research on a selected topic each semester. May be repeated for credit with a change in content. Formerly COMS 370. Components: Seminar

CDIS 6401 (3 credits)
Amplification of Residual Hearing II
Theoretical and clinical issues related to hearing aid candidacy and fitting with an emphasis on advanced signal processing strategies. Components: Lecture Requirement Group: Prerequisite: CDIS 5351 (RG3367)

CDIS 6402 (3 credits)
Hearing Conservation / Industrial Audiology
Effects of noise on the structure and function of the auditory system. Elements of noise measurements, otoprotection, and key issues in establishment and maintenance of a hearing conservation program. Components: Lecture

CDIS 6410 (4 credits) Instructor Consent Required
Vestibular System: Clinical Aspects
Anatomy, physiology and functional assessment of the vestibular system including instrumentation, procedures, and interpretation of clinical tests. Hands-on laboratory exercises included. Components: Laboratory, Lecture Requirement Group: Open to graduate students in Audiology; others with permission (RG 4102).

CDIS 6422 (4 credits)
Electrophysiologic Techniques and Interpretation II
Methods of acquiring, averaging and analyzing cortical evoked and event-related potentials following auditory input. Emphasis on utilization of multi-channel recording devices for research and clinical purposes. Four credits. Lecture. Three class periods and one 1-hour laboratory period. Components: Laboratory, Lecture Requirement Group: Prerequisite: CDIS 5322 (RG3368)

All Sections

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(GRAD 397) 3 credits.

†GRAD 5950. Master’s Thesis Research
(GRAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master’s Research
(GRAD 396) 3 credits.

GRAD 598. Special Readings (Master’s)
(GRAD 398) Non-credit.

GRAD 599. Thesis Preparation
(GRAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GRAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(GRAD 495) 1 - 9 credits.
COMPARATIVE LITERARY AND CULTURAL STUDIES

The Program in Comparative Literary and Cultural Studies offers work leading to the M.A. and Ph.D. degrees, encouraging intercultural and interdisciplinary approaches to the study of literature and culture. Students are prepared in such areas as literary theory, discourse analysis, the history and methods of literary and cultural criticism, and in the comparative study of literary texts in relation to other cultural productions. The program's curriculum reflects changing relations among the literatures and cultures of Europe, the Middle East, Africa, Asia, the Americas and other regions of the world.

The Master's degree student chooses one literature other than English for major emphasis and a second for minor emphasis; the Ph.D. candidate chooses in addition a third literature or related area of study such as music or philosophy.

Admission to Degree Programs.

A prospective student should be able to do graduate study in at least two different fields when applying for admission to the master's program and in three fields when applying to the doctoral program. An undergraduate major in one of these fields is not required. In special cases students may be required to make up lacunae in their background by taking additional courses. Also, the student's committee may require changes in the student's program in view of his or her particular needs.

The M.A. Program.

The M.A. ordinarily requires a minimum of 24 credits of course work beyond the baccalaureate, including a course in literary theory and methodology; a course in at least one non-Western literature and culture; and a course from at least two of the following periods – ancient, medieval/Renaissance, modern. The course work must include studies in at least two genres. Proficiency is required in three languages, one of them English. Students are responsible for two periods in one literature and for one period in another. Students must successfully complete the M.A. qualifying exams, or, with the approval of the committee, have the option to prepare a Masters' project, a 50-page comparative work on a topic not previously submitted for a course and applying a critical apparatus.

The Ph.D. Program.

The Ph.D. ordinarily requires 24 credits beyond the satisfaction of the requirements for the master's degree listed above, drawn from courses in theory and criticism, studies in at least two courses in literature and cultures drawing on non-western traditions, work in more than one discipline (e.g., anthropology, architecture, history, film, and sociology); a course involving the period before 1700 A.D.; proficiency in three languages, one of them English, and a reading knowledge of an ancient language; Ph.D. qualifying exams, written and oral; a Ph.D. dissertation that reflects appropriate use of bibliographic materials in foreign languages, the application of a critical apparatus upon a genuinely comparative topic, successful teacher training and practice supervised by members of the committee in a workshop series.

All students are expected to develop proficiency in a national language and literature to increase their options when entering the professional job market.

Language Requirements.

These may be satisfied either by scoring a B or above in a 200-level literature or culture course in the target language or by obtaining a respectable score on a proficiency examination. The reading exams require translations of materials chosen by the faculty, to be completed before the final semester of studies.

Foreign Study.

The program offers the possibility of studying in a variety of foreign countries for graduate credit. Universities now open to our students are located in Canada, Europe, Latin America, North Africa and Sub-Saharan Africa.

Information about the program and admissions may be obtained by writing to the Chairperson of the Program (Associate Professor Norwa Bouchard and Paiko) and Department Head (Associate Professor Rosa Chinellita).

Advisors from the fields of study participating include:

English: Professors Benson, Higonnet, Hogan, R. Miller, Peterson
Associate Professor Coundouriotos and Philips
Assistant Professors Sanchez

Classics: Professors Travis and Johnson

French: Professors Berthelot and Celestin

German: Assistant Professor Wogenstein

Italian: Professor Masiando
Associate Professor Bouchard
Assistant Professor Balma

Spanish: Professors Miguel Sowes
Associate Professors Loss, Paiolo, Urios-Aparis
Assistant Professors Gustavo Nanclares

COURSES OF STUDY

CLCS 5301(3 credits) Instructor Consent Required
Variable Topics
Possible topics include literature and the other arts, the sociology of literature, literature and psychology, and themes. May be repeated for up to nine credits with a change of topic.
Components: Lecture

CLCS 5301(3 credits) Instructor Consent Required
Critical Theory
Modern literary theories and critical approaches, such as structuralism, semiotics, archetypal, or Marxist criticism.
Components: Seminar

CLCS 5302(3 credits) Instructor Consent Required

Possible topics include literature and the other arts, the sociology of literature, literature and psychology, and themes. May be repeated for up to nine credits with a change of topic.
Components: Lecture

CLCS 5304(3 credits) Instructor Consent Required

Critical Theory
Modern literary theories and critical approaches, such as structuralism, semiotics, archetypal, or Marxist criticism.
Components: Seminar

CLCS 5303(3 credits) Comparative Studies in the Novel

The novel as a modern literary form, its relation to society, its epistemological strategies; European and American texts, including detective fiction.
Components: Seminar

CLCS 5305(3 credits) Comparative Studies in Romanticism

West European Romanticism, the Bildungsroman, the quest, stories of the fantastic, and the greater Romantic lyric. Includes works of Goethe, Coleridge, Poe, Hugo and Leopoldi.
Components: Lecture

CLCS 5306(3 credits) Studies in Form and Genre

Aspects of epic, drama, poetry, or narrative, such as the classical epic, the historical drama, the pastoral poem, or the picaresque novel.
Components: Seminar

CLCS 5307(3 credits) Literature and Science

The impact of science on literary imagination and style.
Components: Lecture

CLCS 5308(3 credits) Marxist Literary Criticism

Introduction and survey of Marxist texts from Marx and Engels to Gramsci, Lukacs, Frankfurt School theoreticians, and contemporary theorists, feminists, and third-world practitioners.
Components: Lecture

CLCS 5310(3 credits) Psychoanalysis and Literature

Introduction to the literary and cultural application of psychoanalytic theory to the reading of literary texts; psychoanalytic interpretation from Freud to Lacan and feminist Lacanians.
Components: Lecture

CLCS 5311(3 credits) Instructor Consent Required
Introduction to Semiotics

Historical development and fundamentals of semiotics. Classical and structural models. Varying emphasis on a particular theory and its development.
Components: Lecture

CLCS 5312(3 credits) Third-World Narratives

The study of creative and critical writings from developing nations in Latin America, Africa, and Asia including works of minorities in America.
Components: Seminar
CLCS 5313 (3 credits)
Theory and Practice of Translation
Components: Lecture

CLCS 5315 (3 credits)
Third-World Cinema
The cinema of developing countries studied as art and as cultural document; its relation to political and social realities and to film produced in the industrialized world.
Components: Seminar

CLCS 5316 (3 credits)
Literature and Linguistics
Literary texts studied in the light of modern linguistic theory.
Components: Lecture

CLCS 5317 (3 credits) Instructor Consent Required
Studies in Comparative Culture
The intersection of ideas concerning urbanization and modernism through the medium of literature, architecture, fine arts, and film.
Components: Seminar

CLCS 5318 (1 - 6 credits)
Special Studies
Components: Practicum

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(Grad 397) 3 credits.

†GRAD 5950. Master’s Thesis Research
(Grad 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master’s Research
(Grad 396) 3 credits.

GRAD 5998. Special Readings (Master’s)
(Grad 398) Non-credit.

GRAD 5999. Thesis Preparation
(Grad 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(Grad 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(Grad 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(Grad 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(Grad 498) Non-credit.

GRAD 6999. Dissertation Preparation
(Grad 499) Non-credit.

Computer Science and Engineering
Department Head: Professor Reda Ammar
Professors: Barker, Cooper, Demurjian, Peters, Rajasekaran, Shi, and Shvartsman
Associate Professors: Cui, Gokhale, Greenshields, Huang, Mandoiu, McCartney, Michel, and Russell
Assistant Professors: Kiayias, Kim, Shi, Wang, and Wu

Study leading to the Master of Science and Doctor of Philosophy degrees in Computer Science and Engineering is offered. This study can involve courses selected from the fields of computer science, engineering, mathematics, statistics and the natural sciences. Current research activities are in the areas of software engineering, reusability, databases, data mining, programming languages, artificial intelligence, decision support, robotics, security, cryptography, theory of computing, algorithms, distributed computing, quantum computing, computer networks, parallel computing, cluster computing, grid computing, performance modeling, queueing theory, bioinformatics, scientific computing, pattern recognition, image processing, computer graphics, computational geometry, and optimization.

Admission to the M.S. Program.

Normally it is expected that an applicant has a B.S. in Computer Science, Computer Engineering or a closely related field. Students with a degree in another area, but with a strong background in mathematics through calculus, extensive experience with one or more computer languages, and course work involving digital network design, computer organization, and programming systems also will be considered for admission. Students with little or no previous experience in the computer area will not be considered until they have acquired an adequate background. The following courses or their equivalents normally are expected:

(A) MATH 1131, 1132, 2110 (calculus), MATH 2410 (differential equations), MATH 2210 (linear algebra), STAT 3025 (statistical methods);
(B) CSE 2100 (computing), CSE 2363 (digital systems organization), CSE 220 (microprocessor assembly language), CSE 4302 (computer organization), CSE 2102 (software engineering), CSE 3502 (automata);
(C) CSE 3504 (probabilistic performance analysis), CSE 4100 (compilers), CSE 4500 (parallel systems), CSE 2500 (mathematics of discrete systems), CSE 4300 (operating systems), CSE 3500 (algorithms).

Outstanding students who are missing some of this background may be admitted before all of it is acquired but the first 2 calculus courses and all of (B) MUST be completed before acceptance. Students admitted to the program without an undergraduate degree in the computer area normally must take a number of undergraduate courses as background before starting their graduate studies. Some of these courses may be available during the summer session. These additional courses will lengthen the period of study necessary to earn the M.S. degree.

Requirements of the Ph.D. Program.

Decision for acceptance to the Doctor of Philosophy program is made by the graduate admissions committee in consultation with an advisor selected (if feasible) by the applicant. Admitted students must also submit evidence of capacity for independent study in the form of a master's thesis or comparable achievement.

Special Facilities.

Graduate Computing Facilities -- The Computer Science & Engineering Department maintains several computing labs for graduate training and research. These include labs consisting of Sun Workstations running Unix and Pentium platforms running a mixture of Linux, Solaris for Intel, and Windows operating systems. The facilities are managed by the department and used for various research projects. This is in addition to 10 specialized research labs located in the Information Technology Engineering building, maintained by individual faculty members supporting different projects in the department.

Additional Research Facilities

The Taylor L. Booth Engineering Center for Advanced Technologies maintains a modern set of networked laboratory facilities available to Computer Science and Engineering faculty and graduate students conducting research. Facilities available include several high performance supercomputing systems (an Altix 3700 BK2 with 64 nodes and an Altix 350 with 8 nodes) and a 24-node cluster. In addition, there are numerous computing workstations which are available for small-scale and prototype research projects using platforms that range from Solaris to Windows to Linux.

For specific information with regard to the Computer Science and Engineering Program, fellowships, assistantships, and part-time instructorships, students should write to:
Chair, Computer Science Graduate Admissions Committee
Department of Computer Science and Engineering, Unit 2155
Storrs, Connecticut 06269-2155

Information concerning assistantships in the University Computer Center should be addressed to the Executive Director.

Courses of Study

CSE 5095 (3 credits)
Special Topics in Computer Science and Engineering Classroom courses in special topics as announced in advance for each semester.
Components: Lecture

CSE 5097 (1 credits)
Seminar
Presentation and discussion of advanced computer science problems. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).
Components: Seminar
CSE 5099 (1-6 credits) Instructor Consent Required
Independent Study in Computer Science and Engineering
Individual exploration of special topics as arranged by the student with an instructor.
Components: Independent Study

CSE 5101(3 credits)
Advanced Software Engineering
An in-depth study of methodologies for the specification, design, implementation, verification, testing, and documentation of large complex software systems. Special attention is given to the impact of programming language constructs on the quality of complex software. Recommended preparation: CSE 230 and CSE 244 and CSE 258, or the equivalent.
Components: Lecture

CSE 5102(3 credits)
Advanced Programming Languages
This course covers the theory and pragmatics of modern programming languages. Topics include syntax, semantics, type systems and control mechanisms. Key contributions from Functional and Logic Programming including first-order functions, closures, continuations, non-determinism and unification are studied. Study of declarative and operational semantics of recent entries in the field like Constraint Programming and Aspect Oriented Programming. Recommended preparation: CSE 233 and CSE 237 or the equivalent.
Components: Lecture

CSE 5103(3 credits)
Software Performance Engineering
Study of performance engineering techniques for the development of software systems to meet performance objectives. Software performance principles, hierarchical performance modeling, and current research trends related to Software Performance Engineering. Methods for computer performance evaluation and analysis with emphasis on direct measurement and analytical modeling, including queuing networks, computation structure models, state charts, probabilistic languages, and Petri-nets. Case studies for the evaluation and analysis of software architecture and design alternatives. Recommended preparation: CSE 221 and CSE 228 or the equivalent.
Components: Lecture

CSE 5105(3 credits)
Software Reliability Engineering
State-of-the-art as well as emerging reliability assessment techniques. Topics covered will include reliability modeling paradigms, software reliability growth models, software metrics and reliability, software testing and reliability, and architecture-based reliability assessment. Hands-on experience in the application of these techniques. Recommended preparation: CSE 221 and CSE 230 or the equivalent.
Components: Lecture

CSE 5107(3 credits)
Distributed Component Systems
This course examines the methodologies, techniques, and tools that can be utilized to design, construct, and prototype a distributed application using a combined object- and component-based approach. Topics that are covered include object-oriented modeling, reusable components, software architectures, security, software agents, interoperation techniques, and deployment strategies. The role of emerging technologies in support of these topics will also be considered. Recommended preparation: CSE 244 and CSE 258 or the equivalent.
Components: Lecture

CSE 5300(3 credits)
Advanced Computer Networks
This course covers advanced fundamental principles of computer networks. Topics include network design and optimization, protocol design and implementation, network algorithms, advanced network architectures, network simulation, performance evaluation, and network measurement. Recommended Preparation: CSE 245 and CSE 221. This course and ECE 335 may not both be taken for credit.
Components: Lecture
Course Equivalents: ECE 6431
Requirement Group: This course and ECE 335 may not both be taken for credit (RG582).

CSE 5302(3 credits)
Computer Architecture
This course provides an in-depth understanding of the inner workings of computers. This course provides an in-depth understanding of the inner workings of modern digital computer systems. Traditional topics on uniprocessor systems such as performance analysis, instruction set architecture, hardware/software pipelining, memory hierarchy design and input-output systems will be discussed. Modern features of parallel computer systems such as memory consistency models, cache coherence protocols, and latency reducing/hiding techniques will also be addressed. Some experimental and commercially available parallel systems will be presented as case studies. Recommended preparation: CSE 249 or the equivalent.
Components: Lecture

CSE 5303(3 credits)
Instructor Consent Required
Introduction to High-Performance Computing
The course is an introduction to High-Performance Computing (HPC) with programming in SMP and Cluster Architectures using middleware such as MPI and OpenMP, for science and engineering. The course selects from the following areas: Simulation and Modeling in Engineering and Science; Relevant Issues in Sequential Algorithm Design; Performance Models; HPC Architectures: SMP, Vector, Distributed and Petascale Systems; Grids and Cloud Computing; Relevant Issues in Parallel Algorithm Design; and, Parallel Programming Models, including PVM/ MPI and OpenMP Specific Parallel Algorithms (Linear Algebra; Graph Theory; Handling of Data Structures in Parallel) will be explored.
Components: Lecture

CSE 5304(3 credits)
High-Performance Parallel Computing
Models of parallel computations, fundamental parallel algorithms and applications, scalable parallel/distributed programming paradigms on clusters and grids, performance measures and analysis of parallel computers, data flow/pipelined/multi-threaded/object-oriented processor design in parallel architectures. Recommended preparation: CSE249 and CSE 228 or the equivalent.
Components: Lecture

CSE 5306(3 credits)
Advanced Operating Systems
Topics in modern operating systems with the focus on distributed computing, communication, and concurrency. Selected topics from current research in the theory, design, implementation, and verification of operating systems. Recommended preparation: CSE 4300 or the equivalent.
Components: Lecture

CSE 5500(3 credits)
Advanced Sequential and Parallel Algorithms
Computational complexity measures. Survey of major techniques used to design an efficient algorithm. These include divide and conquer, greedy, dynamic programming, and branch and bound techniques. Randomized algorithms. General characteristics of parallel computation models. General structure of parallel algorithms. Development techniques of efficient parallel algorithms. Recommended preparation: CSE 4500 or the equivalent.
Components: Lecture

CSE 5502(3 credits)
Fundamentals of Automata
A rigorous treatment of automata and formal language theory. Emphasis placed upon finite state automata, regular languages, context-free languages, push-down automata, and Turing machines.
Components: Lecture

CSE 5504(3 credits)
Probabilistic Methods in Digital Systems
Probabilistic methods used to describe random processes and queuing theory and their application to such areas as computer performance, scheduling algorithms, error correcting codes, and stochastic machines. Recommended preparation: CSE 3504 or the equivalent.
Components: Lecture

CSE 5514(3 credits)
Computational Geometry
Curve and surface definitions emphasizing the interplay between those mathematical properties and efficient graphical display. Topics may include Bezier curves and surfaces, nonuniform rational B-spline (NURBS) curves and surfaces, Coons patches, Gordon surfaces, superquadrics, shape preservation, continuity/smoothness, differentiability, twist estimation, the convex hull property, and the treatment of supporting algorithms. Experimental projects are required. Recommended preparation: MATH 2110Q and MATH 2210Q or the equivalent.
Components: Lecture
CSE 5600 (3 credits)
Computer Science and Engineering Research Laboratory Experimental investigation of current research topics in computer science. May be repeated for credit with a change in content.
Components: Lecture

CSE 5701 (3 credits)
Advanced Database Topics
Data models/languages including entity-relationship, functional, semantic, and object oriented. Database components including the different building blocks of a database system, concurrency, control, recovery, security, access methods, query optimization, and views. Database architectures including database machines, text-database systems, distributed database systems, multimedia systems, and performance metrics and methodologies. Database applications including CAD/CAM and CASE. Recommended preparation: CSE 255 and CSE 258 or equivalent.
Components: Lecture

CSE 5703 (3 credits)
Advanced Computer Graphics
Components: Lecture

CSE 5705 (3 credits)
Advanced Artificial Intelligence
Design and implementation of intelligent systems. Topics covered will include automated reasoning, natural language, learning, agents, probabilistic reasoning, and robotics. The course will include a substantial design project, and advanced independent study of at least one of the above topics. This course and CSE 282 may not both be taken for credit.
Components: Lecture

CSE 5709 (3 credits)
Image Processing
A formal approach to continuous variable and discrete variable imaging. Continuous and discrete transforms. Image enhancement. Image analysis including multidimensional edge-primitive theories, shape analysis. Multispectral imaging and applications. Image modelling. Syntactical analysis, aspects of image database theories. The course involves exposure to multispectral and extraterrestrial imagery. A substantial programming project is assigned. Recommended preparation MATH 227 or the equivalent.
Components: Lecture

CSE 5711 (3 credits)
Distributed Database Systems
Architecture of distributed database systems and their major design problems. Topics include efficient data distribution, distributed views, query processing and optimization, and distributed synchronization. Particular attention is paid to the issue of concurrency control and reliability for distributed transaction processing. Backend database processors and database servers for local area networks are also discussed. Recommended preparation: CSE 255 and CSE 258 or the equivalent.
Components: Lecture

CSE 5713 (3 credits)
Data Mining
An introduction to data mining algorithms and their analysis. Application of and experimentation with data mining algorithms on real-world problems and domains, with a dual focus on addressing the solution quality use and the time efficiency issues.
Components: Lecture

CSE 5715 (3 credits)
Semantic Data Models
Conceptual data models, semantic and object-oriented data base systems, formal representation methods for data and knowledge, models of active and passive information. Recommended preparation: CSE 3502 and CSE 4701.
Components: Lecture

CSE 5800 (3 credits)
Bioinformatics
Advanced mathematical models and computational techniques in bioinformatics. Topics covered include genome mapping and sequencing, sequence alignment, database search, gene prediction, genome rearrangements, phylogenetic trees, and computational proteomics.
Components: Lecture

CSE 5850 (3 credits)
Information and Data Security
Recommended preparation: CSE 255 and CSE 258 or the equivalent.
Components: Lecture

CSE 5852 (3 credits)
Modern Cryptography: Foundations
This course covers the foundations of modern cryptography introducing basic topics such as computational hardness, one-way functions, computational indistinguishability, trapdoor permutations and interactive proof systems. The course will cover fundamental cryptographic constructions such as hard-core predicates, security amplification, and pseudorandom generators; these are applied to develop generic, secure public-key encryption schemes and zero-knowledge proof systems. Recommended preparation: CSE 3500, CSE 3502, and CSE 3504, or the equivalent.
Components: Lecture

CSE 5854 (3 credits)
Modern Cryptography: Primitives and Protocols
This course covers modern cryptography emphasizing provable security and concrete constructions based on the hardness of specific computational problems. The cryptographic primitives that will be covered include various public and private key encryption schemes, hash functions and digital signature algorithms. The protocols include identification and key-exchange schemes, distributed key generation, e-cash, blind signatures and electronic voting systems. Recommended Preparation: CSE 3500, CSE 3502, and CSE 3504, or the equivalent.
Components: Lecture

CSE 6300 (3 credits)
Research Topics in Computer Networks
Current research issues in the Internet, wireless and mobile networks, as well as emerging concepts such as sensor networks. Overview of the fundamental design principles underlying these networks. Discussion and exploration of the advanced research topics in these and other areas.
Components: Lecture

CSE 6500 (3 credits)
Linear Algebraic Queueing Theory
Brief survey of Markov Chains, and their application to simple queues, with some emphasis on their transient behavior. Matrix operators are then introduced to represent the behavior of non-exponential servers. This algebraic structure is applied to the steady-state and non-steady-state behavior of both open and closed M/G/1 queues. Then G/M/1 queues are examined in detail. As time permits additional advanced topics will be covered. Applications to computer and telecommunications system performance modeling will be studied.
Components: Lecture

CSE 6510 (3 credits)
Fault-Tolerant Parallel Computing
Advanced topics in fault-tolerant parallel algorithms. Shared memory and message-passing models of computation. Models of failure. Formal treatment of complexity measures, such as time, space, communication, work, and speedup. Lower bounds for parallel fault-tolerant computation. Design and analysis of efficient fault-tolerant algo-
rithms. Combining efficiency and fault-tolerance in parallel and distributed algorithms.
Components: Lecture
Requirement Group: Prerequisite: CSE 5304 (RG253).

CSE 6512(3 credits) Instructor Consent Required Randomization in Computing
Introduction to the theory and practice of randomization and randomized algorithms as a technique for science and engineering problem solving. Topics to be covered include: probability theory, types of randomization, sorting and selection, hashing and skip list, finger-printing, packet routing, geometry and linear programming, graph algorithms, combinatorial optimization, and external memory algorithms.
Components: Components
Requirement Group: Prerequisite: CSE 6600 (377) or

CSE 6514(3 credits) Computational Topology
Topology has traditionally generalized concepts of real analysis to metric spaces and set axioms. The new field of computational topology has great potential for encompassing abstractions to unify domain-specific techniques now used in computational geometry, geometric modeling, visualization, image processing, engineering analyses and molecular simulation. The course will include perspectives from traditional topology and show how these need to be modified for realistic use in modern computing environments. Topics and emphases will vary.
Components: Components
Requirement Group: Prerequisite: MATH 5310 and 5311 (RG3085).

CSE 6705(3 credits) Natural Language Processing
An artificial-intelligence approach to computational linguistics. Representations of meaning and knowledge in computer Usable form. Understanding and generation of natural-language sentences and text. Theories of inference and application of world knowledge. Optimization of large knowledge-based text-processing systems for applications in summary and paraphrase, question-answering, machine translation, conversation and computer-aided instruction. "Real" text-processing systems are demonstrated, and a term project is required.
Components: Components
Requirement Group: Prerequisite: CSE 5705 (RG 3087).

CSE 6800(3 credits) Instructor Consent Required Computational Genomics
Advanced computational methods for genomic data analysis. Topics covered include motif finding, gene expression analysis, regulatory network inference, comparative genomics, genomic sequence variation and linkage analysis
Components: Lecture
Course Equivalents: BME 6160
Requirement Group: Prerequisite: CSE 5800 (377) or BME 5800 (380) (RG3876)

Associated Grad School Courses

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(GRAD 397) 3 credits.
†GRAD 5950. Master’s Thesis Research
(GRAD 395) 1 - 9 credits.
†GRAD 5960. Full-Time Master’s Research
(GRAD 396) 3 credits.
GRAD 5998. Special Readings (Master’s)
(GRAD 398) Non-credit.
GRAD 5999. Thesis Preparation
(GRAD 399) Non-credit.
†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GRAD 497) 3 credits.
†GRAD 6950. Doctoral Dissertation Research
(GRAD 495) 1 - 9 credits.
†GRAD 6960. Full-Time Doctoral Research
(GRAD 496) 3 credits.
GRAD 6998. Special Readings (Doctoral)
(GRAD 498) Non-credit.
GRAD 6999. Dissertation Preparation
(GRAD 499) Non-credit.

DENTAL SCIENCE
Program Director: Professor Arthur Hand
Professors: Agar, Beazoglou, Cone, E. Eisenberg, Frank, Freilich, Goldberg, Gronowicz, Hand, Kreutzer, Lurie, MacNeil, Meiers, Mina, Nanda, Nichols, Pilbeam, Resine, Rossomando, Safavi, J. Tanzer, Taylor, and Upholt
Associate Professors: D'Ambrosio, Dealy, Dean, Dongari-Bagtzoglou, Duncan, Kazemi, Kuhlberg, Pendry, Wagner, and Zhu
Assistant Professors: Chun-Hsi, Diao, Ioannidou, Jenkins, Jiang, Kalajzik, Kaufman, Kuhn, Mallya, Reichenberger, Rogina, Rungruangamut, Schincaglia, Thibodeau, Uribe, and Wadhwa

Master of Dental Science Degree Program.

Students in residency and specialty training in the School of Dental Medicine may also pursue a Master of Dental Science degree in the Graduate School. This program offers an opportunity for study and research in dental science, the basic life sciences, and the allied health fields and leads to the degree of Master of Dental Science. It is designed to fill the gap between the Ph.D. program in Biomedical Science and the various residency and specialty training programs provided by the School of Dental Medicine. A major objective of the Master of Dental Science program is to provide instruction in dental science that will enhance the student’s ability to instruct and undertake research in dental schools. Courses of study are flexible with major emphasis on the accomplishment of research. Possibilities for interdisciplinary research are enhanced by cooperative activities with several university departments. Students may combine their work in this program with advanced training in Endodontics, Oral and Maxillofacial Radiology, Oral Medicine, Orthodontics, Pediatric Dentistry, Periodontics, and Prosthodontics. Further information and an application may be obtained from the School of Dental Medicine, Office of Admissions, Room AG030, University of Connecticut Health Center, Farmington, Connecticut 06030-3905.

M.P.H. and M.S. in Clinical and Translational Research Degree Programs.

As an alternative to the Master of Dental Science degree, students in residency and specialty training in the School of Dental Medicine may pursue either the Master of Public Health degree or the Master of Science degree in Clinical and Translational Research in the Graduate School. For further information, see the descriptions of these programs in the this catalog.

Dual D.M.D./Ph.D. in Biomedical Science Degree Program.

Program Director: Professor A. Lurie.

This program leads to the awarding of dual D.M.D. and Ph.D. degrees. It is designed for a small number of outstanding students who have clearly defined career goals of research and teaching in the general area of the biological and biomedical sciences and who have the motivation and ability to pursue a rigorous training program in this area. The program
provides basic science and research training as well as the standard dental curriculum and is designed to produce individuals who are likely to make important contributions to the solution of problems of significance to the health sciences. The overall program is administered by the Graduate Programs Committee of the Health Center. The student applies as a dual-degree applicant to the Dual D.M.D./Ph.D. Committee of the Office of Admissions of the School of Dental Medicine. The Dual D.M.D./Ph.D. Committee operating in conjunction with the admission committee of the School of Dental Medicine reviews the application and admits the student. The student normally completes both programs, including the dissertation in a period of approximately eight academic years, including summers.

Ph.D. in Biomedical Science Degree Program.

This is a rigorous academic program designed for students who have chosen career paths in research and teaching. The degree may be pursued independently or in conjunction with residency/specialty training in the School of Dental Medicine. For further information, see Biomedical Sciences.

Ph.D. Degree Program in Materials Science: Dental Materials.

Students with research interests in the field of dental materials may pursue a Ph.D. degree in Materials Science. Similar to other special interdisciplinary programs in Materials Science, students study the broad areas of thermodynamics, kinetics, analysis and structure/property relations. The program also provides overviews of the structure of dental and oral tissues; the epidemiology, etiology and manifestations of dental diseases; and the treatment of dental diseases. These overviews are obtained in the formal course work at the Health Center. A primary objective of the program is to help the student develop an understanding of the manner in which the prevention and clinical treatment of dental disease is integrated with the limitations of the materials employed. The dissertation may involve study of any materials-related problem, but normally addresses a particular dental material or material-oral tissue interaction. Applicants would typically have backgrounds in materials science, metallurgy, polymer science or a related field and specific career goals in dentistry. For further information, see Materials Science.

COURSES OF STUDY

DENT 5414(3 credits) Introduction to Biomaterials and Tissue Engineering
A broad introduction to the field of biomaterials and tissue engineering. Presents basic principles of biological, medical, and material science as applied to implantable medical devices, drug delivery systems and artificial organs.
Components: Lecture

DENT 5430(2 credits) Instructor Consent Required Advanced Oral Histology
Oral tissues, their embryological origin, histology and function. Structure of developing teeth, alveolar bone, temporomandibular joint, oral mucosa, gingiva and salivary glands. Lecture, slide review, and student-led discussions of papers from the research literature.
Components: Lecture

DENT 5431(2 credits) Instructor Consent Required Adv Oral Path & Diag
Seminars on current developments in oral disease processes, with an emphasis on the clinical. Student presentations and lectures covering principles of Oral Diagnosis.
Components: Seminar

DENT 5432(2 credits) Instructor Consent Required Biomaterials for Dental Graduates
Literature review/seminar covering various subjects of current interest in dental materials. Some prior knowledge of dental materials or of materials science is assumed.
Components: Lecture

DENT 5433(2 credits) Instructor Consent Required Functional Oral Anatomy
Anatomic structures and relationships of the head and neck emphasizing surgical anatomy for oral, periodontal and endodontic surgery. Lectures and dissections.
Components: Lecture

DENT 5435(2 credits) Instructor Consent Required General Pathology
General Pathology
Components: Lecture

DENT 5437(2 credits) Instructor Consent Required Principles of Oral Microbiology & Infections Oral flora with emphasis on recent research developments. Ecology of the oral cavity, dental caries and periodontal disease, viral and yeast infections. Prior knowledge of microbiology and biochemistry assumed.
Lectures and discussions, term paper required
Components: Lecture

DENT 5438(2 credits) Instructor Consent Required Craniofacial Growth and Development
Part of a core series in the postgraduate program of orthodontics. Provides systematic coverage of basics in growth and development of the human face. Review and critique of selected articles from the research literature of the following areas: Physiology of facial growth, theories in growth mechanisms, pre- and postnatal growth of the face, normal and abnormal courses of the facial growth.
Components: Lecture

DENT 5439(1 credits) Research Methods in Epidemiology and Behavioral Sciences
This course is intended to provide students with an applied understanding of behavioral science research methods, building off of concepts introduced in Biostatistics D456. Featured topics include: theoretical and methodological issues in research design; data collection strategies, focusing on survey measurement and the design and evaluation of survey questions; population sampling; data entry and variable construction; strategies for analyzing quantitative data, focusing in particular on regression analysis with dichotomous outcomes; and issues in analyzing longitudinal data. Prerequisite: DENT 456 or equivalent.
Components: Lecture

DENT 5440(3 credits) Instructor Consent Required Biodontics: Integrating Biotechnology with Clinical Dentistry
The goal of the Biodontics educational program is to explore the process of introduction of biotechnology based innovations into clinical dentistry. The course will focus on a variety of innovations, including those considered "disruptive", and explore the laboratory and clinical studies underlying their translation from the bench to chairside. The course will also consider the process of "diffusion" of innovations into dental practice and examine the barriers to acceptance by dental office personnel. Students, working in teams, will be required to present a business plan for the development and marketing of a new dental product.
Components: Lecture

DENT 5441(4 credits) Instructor Consent Required Biomechanics in Dental Science
Components: Lecture

DENT 5442(1 credits) Instructor Consent Required Biomechanics in Dental Science
History and critical review of orthodontic appliance systems. The relationship between treatment planning and therapy is explored. Detailed biomechanical analysis of appliance therapy. Lectures, seminars and demonstrations.
Components: Lecture

DENT 5443(1 credits) Instructor Consent Required Biology of Tooth Movement
Hard and soft tissue responses to tooth movement caused by orthodontic appliances; theory of related bone resorption and apposition from a morphological and biochemical standpoint. Seminars. Components: Lecture

DENT 5444(2 credits) Program Director Consent Req'd Epidemiology of Oral Diseases: Interpreting the Literature
The goal of this course is to provide the student with a basic understanding of epidemiologic principles to enable the critical review of the literature and to provide a methodological framework with
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructors</th>
<th>Prerequisites</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENT 5448</td>
<td>Periodontal Pathobiology I</td>
<td>3</td>
<td>Consent Required</td>
<td></td>
<td>The first of a two-part course spanning the full year covering the structure and function of the periodontal tissues and the pathogenesis of diseases affecting these tissues. Special emphasis is placed on the role of oral bacteria and the host response to these bacteria in the initiation and progression of inflammatory periodontal disease. Lectures and seminars. Components: Lecture</td>
</tr>
<tr>
<td>DENT 5449</td>
<td>Periodontal Pathobiology II</td>
<td>3</td>
<td>Consent Required</td>
<td></td>
<td>The second of a two-part course spanning the full year covering the epidemiology, natural history, diagnosis, prevention, treatment planning, and treatment of periodontal diseases. Components: Lecture</td>
</tr>
<tr>
<td>DENT 5452</td>
<td>Oral Maxillofacial Diagnostic Imaging and Interpretation</td>
<td>4</td>
<td>Consent Required</td>
<td></td>
<td>A seminar course examining interpretation of images produced by various techniques used in diagnosis of diseases involving the oral maxillofacial complex. Components: Lecture</td>
</tr>
<tr>
<td>DENT 5455</td>
<td>Scientific Writing</td>
<td>2</td>
<td>Consent Required</td>
<td></td>
<td>This course consists of three parts. The first reviews syntax and the elements of clear written expression. The second deals with the forms and functions of manuscripts, review articles, grant applications, and dissertations. The final component addresses rewriting, abstracting, and editing to improve clarity and conciseness. Components: Lecture</td>
</tr>
<tr>
<td>DENT 5456</td>
<td>Biostatistics</td>
<td>2</td>
<td></td>
<td></td>
<td>This course is intended to provide an introduction to biostatistics and overview of key concepts. The student is introduced to concepts of data measurement and summarization, probability, populations & samples, drawing inferences, and specific statistical analyses for testing differences in means and proportions, correlation, regression, multivariate analysis, and survival analysis. Special attention is placed upon understanding how to evaluate the appropriateness of and best interpret specific statistical tests and measures. An introduction to study design and the critical review of the literature is provided with emphasis on interpretation of presented statistics. Components: Lecture</td>
</tr>
<tr>
<td>DENT 6461</td>
<td>Clinical Radiation Sciences: Physics and Biology I</td>
<td>12</td>
<td>Consent Required</td>
<td></td>
<td>A continuous pair of semester lecture/seminar courses which examine the physical and biological principles underlying the uses of radiation and allied radiation sciences in clinical diagnosis and therapy. Characteristics of imaging systems, Nuclear Medicine, Radiation Therapy, biological effects of ionizing radiation, radiation measurement and dosimetry and quality assurance will be covered through critical readings in texts and the literature. Components: Lecture, Seminar</td>
</tr>
<tr>
<td>DENT 6462</td>
<td>Clinical Radiation Sciences: Physics and Biology II</td>
<td>12</td>
<td>Consent Required</td>
<td></td>
<td>A continuous pair of semester lecture/seminar courses which examine the physical and biological principles underlying the uses of radiation and allied radiation sciences in clinical diagnosis and therapy. Characteristics of imaging systems, Nuclear Medicine, Radiation Therapy, biological effects of ionizing radiation, radiation measurement and dosimetry and quality assurance will be covered through critical readings in texts and the literature. Components: Lecture, Seminar</td>
</tr>
<tr>
<td>DENT 6456</td>
<td>Biostatistics</td>
<td>2</td>
<td>Consent Required</td>
<td></td>
<td>A seminar course examining interpretation of images produced by various techniques used in diagnosis of diseases involving the oral maxillofacial complex. Components: Lecture</td>
</tr>
<tr>
<td>GRAD 5930</td>
<td>Full-Time Directed Studies (Master's Level)</td>
<td>1 - 9</td>
<td></td>
<td></td>
<td>A continuous pair of semester lecture/seminar courses which examine the physical and biological principles underlying the uses of radiation and allied radiation sciences in clinical diagnosis and therapy. Characteristics of imaging systems, Nuclear Medicine, Radiation Therapy, biological effects of ionizing radiation, radiation measurement and dosimetry and quality assurance will be covered through critical readings in texts and the literature. Components: Lecture, Seminar</td>
</tr>
<tr>
<td>GRAD 5940</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>Pursuit of the MA in production (with either the Puppetry or the Costuming emphasis) requires fulfillment of the admission requirements of the Graduate School and three letters of recommendation. All applicants for the MA (which requires a minimum of 30 credits) should consult the Department concerning program availability, personal interview with the program director, and portfolio review. Further information may be obtained by contacting the Department of Dramatic Arts.</td>
</tr>
<tr>
<td>GRAD 5945</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 5949</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Master of Arts degree generally is considered a preparatory program for an advanced degree at a level between baccalaureate study and a terminal degree in Dramatic Arts. Our department offers the Master of Arts degree in Production, an applied study program with two areas of emphasis: Puppetry and Costuming.</td>
</tr>
<tr>
<td>GRAD 5950</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>Pursuit of the MA in production (with either the Puppetry or the Costuming emphasis) requires fulfillment of the admission requirements of the Graduate School and three letters of recommendation. All applicants for the MA (which requires a minimum of 30 credits) should consult the Department concerning program availability, personal interview with the program director, and portfolio review. Further information may be obtained by contacting the Department of Dramatic Arts.</td>
</tr>
<tr>
<td>GRAD 5955</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 5959</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Master of Arts degree generally is considered a preparatory program for an advanced degree at a level between baccalaureate study and a terminal degree in Dramatic Arts. Our department offers the Master of Arts degree in Production, an applied study program with two areas of emphasis: Puppetry and Costuming.</td>
</tr>
<tr>
<td>GRAD 5960</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>Pursuit of the MA in production (with either the Puppetry or the Costuming emphasis) requires fulfillment of the admission requirements of the Graduate School and three letters of recommendation. All applicants for the MA (which requires a minimum of 30 credits) should consult the Department concerning program availability, personal interview with the program director, and portfolio review. Further information may be obtained by contacting the Department of Dramatic Arts.</td>
</tr>
<tr>
<td>GRAD 5970</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 5980</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Master of Arts degree generally is considered a preparatory program for an advanced degree at a level between baccalaureate study and a terminal degree in Dramatic Arts. Our department offers the Master of Arts degree in Production, an applied study program with two areas of emphasis: Puppetry and Costuming.</td>
</tr>
<tr>
<td>GRAD 5990</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Master of Arts degree generally is considered a preparatory program for an advanced degree at a level between baccalaureate study and a terminal degree in Dramatic Arts. Our department offers the Master of Arts degree in Production, an applied study program with two areas of emphasis: Puppetry and Costuming.</td>
</tr>
<tr>
<td>GRAD 5995</td>
<td>Master's Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 5998</td>
<td>Special Readings (Master's)</td>
<td>3</td>
<td></td>
<td></td>
<td>Pursuit of the MA in production (with either the Puppetry or the Costuming emphasis) requires fulfillment of the admission requirements of the Graduate School and three letters of recommendation. All applicants for the MA (which requires a minimum of 30 credits) should consult the Department concerning program availability, personal interview with the program director, and portfolio review. Further information may be obtained by contacting the Department of Dramatic Arts.</td>
</tr>
<tr>
<td>GRAD 5999</td>
<td>Thesis Preparation</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6940</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6945</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6950</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6955</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6960</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6970</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6980</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6990</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6998</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
<tr>
<td>GRAD 6999</td>
<td>Full-Time Thesis Research</td>
<td>3</td>
<td></td>
<td></td>
<td>The Department of Dramatic Arts offers two graduate degree programs: the Master of Arts and the Master of Fine Arts.</td>
</tr>
</tbody>
</table>
grams to act, direct, design and technically produce are available in various facilities. Opportunities also are offered for original creative work.

The Department has at its disposal three well-equipped theatres. The Harriet S. Jorgensen and the Nafe Katter Theatres, seating 493 and 237 respectively, house the Main Stage Series productions. Both are air-conditioned. The Studio Works Series is presented in the Studio/Mobius Theatre, a 116 seat space, that also provides additional opportunities for theatrical experimentation. In addition, there are facilities for film and television production work.

COURSES OF STUDY

DRAM 5000(3 credits) Instructor Consent Required
Studies in Voice and Diction
Voice-related topics and skills not included in DRAM 5001-5007. May include work in specialized areas of applied speech such as (but not limited to) analysis of heightened text, spoken choral performance, and oral interpretation of poetry or narrative prose.
Components: Laboratory

DRAM 5001(3 credits) Instructor Consent Required
Voice and Diction I
Development of breath support, vocal expressiveness, and basic diction, articulation, and phonetics skills.
Components: Laboratory

DRAM 5002(3 credits) Instructor Consent Required
Voice and Diction II
Developing vocal range and intelligibility with text and emotional content. Continued work with consonant and vowel sounds.
Components: Laboratory

DRAM 5003(3 credits) Instructor Consent Required
Voice and Diction III
Developing analytical and performance skills in heightened language and poetic text to be applied primarily to the works of Shakespeare and other classical playwrights.
Components: Laboratory

DRAM 5004(3 credits) Instructor Consent Required
Voice and Diction IV
Applying diction and phonetics skills to specialized speech styles including accents and dialects.
Components: Laboratory

DRAM 5005(3 credits) Instructor Consent Required
Voice and Diction V
Applying voice and diction skills to additional classical and contemporary dramatic forms.
Components: Laboratory

DRAM 5006(3 credits) Instructor Consent Required
Voice and DictionVI
Exploring additional vocal skills and resources required for professional acting.
Components: Laboratory

DRAM 5007(1 credits) Instructor Consent Required
Singing for Actors
Developing singing skills required for performance in musical theatre productions.
Components: Laboratory

DRAM 5130(1 - 3 credits) Instructor Consent Required
Introduction to Graduate Studies in Stage Design
Projects in scenery, lighting and costume design for first-year graduate students in stage design and puppetry. Reading and discussion of various 20th century works on design theory for the theatre.
Components: Laboratory

DRAM 5131(1 - 3 credits) Instructor Consent Required
Studies in Theatre History
Components: Lecture

DRAM 5134(1 - 3 credits) Instructor Consent Required
Design Drawing
Studio course in figure drawing and perspective drawing as foundation for students in theatre costume, scenic, and lighting design and puppetry arts.
Components: Laboratory

DRAM 5159(1 - 3 credits) Instructor Consent Required
Practicum in Theatre Studies
Special projects in Theatre Studies, usually related to a production of the Department of Dramatic Arts/Connecticut Repertory Theatre.
Components: Practicum

DRAM 5189(1 - 6 credits) Instructor Consent Required
Field Studies Internship in Design/Technical Theatre
Supervised practical experience in professional/regional theatres or academic institutions.
Components: Independent Study

DRAM 5190(0 credits) Instructor Consent Required
Internship in Dramatic Arts
Internships in acting, costuming, lighting, management, media, puppetry, pedagogy and technical theatre.
Components: Practicum
Requirement Group: Open only to Dramatic Arts graduate students holding a dramatic arts graduate assistantship (RG602).

DRAM 5192(1 - 3 credits) Instructor Consent Required
Independent Study in Theatre Studies
Independent study under the direction of an appropriate faculty member.
Components: Independent Study

DRAM 5197(1 - 3 credits) Instructor Consent Required
Special Topics in Theatre Studies
A reading course under the direction of an appropriate staff member.
Components: Independent Study

DRAM 5200(1 - 3 credits) Instructor Consent Required
Studies in Technical Production
Study of any topics in in Stagecraft, Technical Production, or sound not included in DRAM 5201-5213.
Components: Laboratory

DRAM 5201(3 credits) Instructor Consent Required
Production Drafting
Emphasis on preparation of plans appropriate for scenic studio bidding procedures.
Components: Lecture

DRAM 5202(3 credits) Instructor Consent Required
Technical Direction
A study of the planning, management and execution of all technical aspects of production.
Components: Lecture

DRAM 5204(3 credits) Instructor Consent Required
Technical Analysis
Analysis of scenic structures and materials, including stress and vector analysis, static and dynamic loading of beams and battens, truss design, and time/cost studies.
Components: Lecture

DRAM 5205(3 credits) Instructor Consent Required
Audio Production
Audio recording and playback techniques used in the preparation of theatrical sound scores.
Components: Lecture

DRAM 5206(3 credits) Instructor Consent Required
Sound Technology
Application of signal processing devices and signal modification for specialized audio effects for production.
Components: Lecture

DRAM 5207(3 credits) Instructor Consent Required
Electricity and Electronics for the Theatre
Study of current electrical technology and applications, including AC theory and codes.
Components: Lecture

DRAM 5208(3 credits) Instructor Consent Required
Computer Applications
Survey of current software available for application to production management and technical design and production.
Components: Lecture

DRAM 5209(3 credits) Instructor Consent Required
Studies in Theatre Design
Investigates the physical problems and codes involved in integrating theatre technology into the architectural requirements of a performance facility.
Components: Lecture

DRAM 5210(3 credits) Instructor Consent Required
Properties Construction
Fabrication of unusual stage properties and study of the application of experimental materials.
Components: Lecture
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor Consent Required</th>
<th>Mode</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM 5211</td>
<td>Instructor Consent Required Advanced Rigging Techniques</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Technology and materials used in conventional and specialized rigging systems. Components: Lecture</td>
</tr>
<tr>
<td>DRAM 5212</td>
<td>Instructor Consent Required Shop Technology</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Use of materials, equipment and processes required in special fabrication techniques. Components: Lecture</td>
</tr>
<tr>
<td>DRAM 5213</td>
<td>Instructor Consent Required Stage Technology</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Power sources and drive mechanisms for stage machinery including electro-mechanical, hydraulic and pneumatic systems. Components: Lecture</td>
</tr>
<tr>
<td>DRAM 5292</td>
<td>Instructor Consent Required Independent Study</td>
<td>1-3</td>
<td>Yes</td>
<td>Independent Study</td>
<td>A reading course under the direction of an appropriate staff member. Components: Independent Study</td>
</tr>
<tr>
<td>DRAM 5300</td>
<td>Instructor Consent Required Studies in Scenic Design</td>
<td>1-3</td>
<td>Yes</td>
<td>Independent Study</td>
<td>Study of any topics in Scenic Design not included in DRAM 5301-5320. Components: Lecture</td>
</tr>
<tr>
<td>DRAM 5301</td>
<td>Instructor Consent Required Scenic Design: Single Set Plays</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Exploration of the various methods of solving the scenic design for plays requiring only one location. Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5302</td>
<td>Instructor Consent Required Scenic Design: Multi-Set Play</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Investigating the range of methods of solving the scenic design for plays with several locations. Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5303</td>
<td>Instructor Consent Required Scenic Design: The Musical I</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Solutions for designing scenery for the Traditional American Musical. This topic will be looked at from both historical and contemporary points of view. Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5304</td>
<td>Instructor Consent Required Scenic Design: The Musical II</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>The examination and study of scenery-design solutions for complex musicals in unconventional spaces. Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5310</td>
<td>Instructor Consent Required Scenic Design: Event Planning</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Examining approaches to designing special events for unique spaces. Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5311</td>
<td>Instructor Consent Required Scenic Design: Design Drafting</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>The study of hand-drafting styles and conventions as they apply to American Scenographic Techniques. Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5312</td>
<td>Instructor Consent Required Scenic Design: Perspective Drawing and the Pencil Sketch</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>A study of one point, two point, three point and measured perspective in order to create pencil sketches for the theatre. Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5313</td>
<td>Instructor Consent Required Scenic Design: The Color Sketch Techniques and skills for building a scale model for a scenic design using a variety of materials and methods</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5315</td>
<td>Instructor Consent Required Scenic Design: Rendering with Watercolor The study of how to use watercolor to create the theatrical sketch.</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5316</td>
<td>Instructor Consent Required Scenic Design: Computer Rendering for the Theatre The use of mainstream computer programs to create digital renderings and media for the theatre.</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5317</td>
<td>Instructor Consent Required Scenic Design: 3D Computer Rendering for the Theatre The use of mainstream 3D programs to render and draft scenic designs for the theatre.</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5318</td>
<td>Instructor Consent Required Scenic Design: Creating a Portfolio On and Off Line Students will create a dynamic, interesting portfolio for off-line presentations and then turn that portfolio into a web site.</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5319</td>
<td>Instructor Consent Required Scenic Design: Styles of Ornamentation An exploration of architecture and period style from the earliest times to the present.</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5320</td>
<td>Instructor Consent Required Scene Painting Scene painting using a variety of media and techniques. The student also explores a number of faux finish techniques.</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td>DRAM 5397</td>
<td>Instructor Consent Required Independent Study in Scenic Design</td>
<td>1-3</td>
<td>Yes</td>
<td>Independent Study</td>
<td>Independent study under the direction of an appropriate faculty member. Components: Independent Study</td>
</tr>
<tr>
<td>DRAM 5396</td>
<td>Instructor Consent Required MFA Project in Scenic Design The design of costumes for a production in the Department of Dramatic Arts/Connecticut Repertory Theatre.</td>
<td>3-6</td>
<td>Yes</td>
<td>Independent Study</td>
<td>Components: Independent Study</td>
</tr>
<tr>
<td>DRAM 5391</td>
<td>Instructor Consent Required Special Topics in Scenic Design A reading course under the direction of an appropriate staff member.</td>
<td>1-3</td>
<td>Yes</td>
<td>Independent Study</td>
<td>Components: Independent Study</td>
</tr>
<tr>
<td>DRAM 5401</td>
<td>Instructor Consent Required Costume Design: Poetic Realism Focusing on a design style developed in NYC during the 70s and 80s. Applying the principles of realism</td>
<td>3</td>
<td>Yes</td>
<td>Laboratory</td>
<td>Components: Lecture</td>
</tr>
<tr>
<td>DRAM 5400</td>
<td>Instructor Consent Required Studies in Costume Design Study of any topics in Costume Design art and theory not included in DRAM 5401-5407. May be repeated with a change in topic.</td>
<td>3</td>
<td>Yes</td>
<td>Independent Study</td>
<td>Components: Lecture</td>
</tr>
<tr>
<td>DRAM 5255</td>
<td>Instructor Consent Required Independent Study in technical theatre Excursions in special fabrication techniques. Use of materials, equipment and processes required in special fabrication techniques. Components: Independent Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM 5219</td>
<td>Instructor Consent Required Independent Study in scenic Design The design of costumes for a production in the Department of Dramatic Arts/Connecticut Repertory Theatre. Components: Independent Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM 5287</td>
<td>Instructor Consent Required Independent Study in scenic Design The design of costumes for a production in the Department of Dramatic Arts/Connecticut Repertory Theatre. Components: Independent Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM 5297</td>
<td>Instructor Consent Required Independent Study in scenic Design The design of costumes for a production in the Department of Dramatic Arts/Connecticut Repertory Theatre. Components: Independent Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
with expanded color control and heightened poetic choices to the plays of Chekhov, Strindberg and O'Neill.

Components: Laboratory

DRAM 5402(3 credits) Instructor Consent Required
Costume Design: Comic Exaggearation
Design dealing with the comedic effects of body shape and exaggerated proportions, generating wit and whimsy using styles from Commedia to Vaudeville to Modern Dress.

Components: Laboratory

DRAM 5403(3 credits) Instructor Consent Required
Costume Design: Tragedy and Post Modernism
Focusing on light, shadow, and texture to create dramatic tragedy. Emphasis is specific to the post-modern form and character rather than being specific to any given period.

Components: Laboratory

DRAM 5404(3 credits) Instructor Consent Required
Costume Design: Fantasy and Opera
Focusing on line and silhouette to enhance height and exaggeration when using the proportion and scale required for the opera stage and other very large theatre or coliseum spaces.

Components: Laboratory

DRAM 5405(3 credits) Instructor Consent Required
Costume Design: Comic Exaggeration
Using costume colors and shapes to pull focus to one figure among many. Balancing the musical stage with color groups.

Components: Laboratory

DRAM 5406(3 credits) Instructor Consent Required
Costume Design: Performance Art
Exploring the role of the designer/director. Learning to conceive of non-scripted performance in terms of installation & design with human bodies and space.

Components: Laboratory

DRAM 5407(3 credits) Instructor Consent Required
Costume Design: Film
Developing group plates and collages for large scenes and details of the costume, accessories and hair for close-ups. Additional focus on the terminology of the set, the shops, and jobs relating to Costume Design.

Components: Laboratory

DRAM 5410(1 - 3 credits) Instructor Consent Required
Studies in Applied Costume Craft
Study of any topic in applied costume craft not included in DRAM 5411-5421. May be repeated with change in topic.

Components: Laboratory

DRAM 5411(3 credits) Instructor Consent Required
Color Theory / Light & Fabric
Using the qualities of different fabrics for period and drape. Exploring color theory and the interaction of colored light on fabrics of varying colors and textures.

Components: Laboratory

DRAM 5412(3 credits) Instructor Consent Required
Dyeing and Fabric Modification
Focusing on dyes and their interaction with various fabrics and selecting the correct dyes and the colors to achieve the desired effects. Investigating new fiber-modification technology.

Components: Laboratory

DRAM 5413(3 credits) Instructor Consent Required
Computer Costume Rendering and Web-site Design
The use of mainstream computer programs to create digital renderings as part of the costume-design process. Learning how to use those images along with computer manipulated production photos for presentation on the web.

Components: Laboratory

DRAM 5414(3 credits) Instructor Consent Required
Costume Design: Period Costume Rendering
Exploring rendering techniques with pencil, ink, and gouache while learning to describe period fabrics and styles using primary source images for research and inspiration.

Components: Laboratory

DRAM 5415(3 credits) Instructor Consent Required
Advanced Make-up: Prosthetics and Wigs
Acquiring techniques for creating period effects in make-up and hairstyles. Learning proper wig ventilation and safe casting practices for gelatin and latex prosthetics.

Components: Laboratory

DRAM 5416(3 credits) Instructor Consent Required
Costume Design: Millinery Techniques
Acquiring techniques for designing and constructing a different type and styles of men's and women's hats from various historic periods.

Components: Laboratory

DRAM 5417(3 credits) Instructor Consent Required
Costume Design: Flat Pattern Costume Drafting
Focusing on the art and mathematical formulas that create a basic sloper for patterning garments. Understanding shaping through dart manipulation, curved seams, and inserted panels or shapes.

Components: Laboratory

DRAM 5418(3 credits) Instructor Consent Required
Costume Design: Draping Patterns
Developing techniques, for draping shapes and patterns over a dress-maker's mannequin, using the drape of various fabrics and the straight of the grain (versus the bias) to create specific effects.

Components: Laboratory

DRAM 5419(3 credits) Instructor Consent Required
Tailoring Period Costumes for the Theatre
Exploring the traditional art of tailoring and various patterning techniques for constructing garments from the major historical periods often depicted on the stage or screen.

Components: Laboratory

DRAM 5492(1 - 3 credits) Instructor Consent Required
Independent Study in Costume Design
Independent study under the direction of an appropriate faculty member.

Components: Independent Study

DRAM 5496(3 - 6 credits) Instructor Consent Required
MFA Project in Costume Design
The design of costumes for a production in the Department of Dramatic Arts/Connecticut Repertory Theatre.

Components: Independent Study

DRAM 5497(1 - 3 credits) Instructor Consent Required
Special Topics in Costume Design
A reading course under the direction of an appropriate staff member.

Components: Independent Study

DRAM 5500(1 - 3 credits) Instructor Consent Required
Studies in Lighting Design
Study of any topics in Lighting Design not included in DRAM 5501-5514. Course may be repeated with change in topic.

Components: Laboratory

DRAM 5501(3 credits) Instructor Consent Required
Lighting Design: The Single Set Play
The development of lighting designs for single set dramas and musicals.

Components: Laboratory

DRAM 5502(3 credits) Instructor Consent Required
Lighting Design: Opera
The design process for Operatic Theatre, emphasizing concepts and visual metaphors for the lighting of Opera.

Components: Laboratory

DRAM 5503(3 credits) Instructor Consent Required
Lighting Design: Dance
The methods and process of creating a dance lighting design while learning how to document and communicate ideas, analyze movement, and understand the vocabulary of the dance world.

Components: Laboratory

DRAM 5504(3 credits) Instructor Consent Required
Lighting Design: The Broadway Musical
The design process for Musical Theatre productions; developing concepts and visual metaphors to be used in lighting Musicals.

Components: Laboratory

DRAM 5505(3 credits) Instructor Consent Required
Lighting Design: Non-Proscenium Spaces
The design process for productions within Non-Proscenium and Non-Traditional spaces, emphasizing
production concepts and visual metaphors for lighting thrust stages, black box spaces, hotel ballrooms, arenas, public spaces, and outdoor venues.

Components: Laboratory

DRAM 5506 (3 credits) Instructor Consent Required
Lighting Design: Angles and Systems
Tracing how, from initial concept to final plot, Lighting Concept and Visual Metaphor influence lighting angles, textures, and the positioning of fixtures.
Using side light, back light, booms, ladders, box booms, coves, & cyc lighting to realize the range of designer choices.
Components: Laboratory

DRAM 5508 (3 credits) Instructor Consent Required
Lighting Design: From Concept to Opening Night
Following a lighting design from its conception through to its opening night. Exploration of multiple genres of theatre including drama, musicals, dance, opera, events and concerts.
Components: Laboratory

DRAM 5509 (3 credits) Instructor Consent Required
Lighting Design: Concept Development
Importance of lighting concept and visual metaphor in developing a show's design. Tools and strategies (scene break-down, mood boards, concept statement, concept presentation, and others) for communicating with the director and other production personnel.
Components: Laboratory

DRAM 5510 (3 credits) Instructor Consent Required
Color Theory and Light
Examining the characteristics of color: hue, value, saturation, color perception, and the psychology of color to aid in the artistic choice of colors for theatrical productions.
Components: Laboratory

DRAM 5511 (3 credits) Instructor Consent Required
Digital Design for Projection and LED
Exploring the emerging world of digital media, video projection design and LED system design with emphasis on the philosophy, software, hardware and technology used to create digital imagery.
Components: Laboratory

DRAM 5512 (3 credits) Instructor Consent Required
Lighting Technology
Applying the technologies for lighting, dimming, video projection, and LED imaging design to the protocols used in contemporary lighting and projection design for theatre, live events, and architecture.
Components: Laboratory

DRAM 5513 (3 credits) Instructor Consent Required
Lighting Computer Applications
Developing skills in 2D and 3D digital animation using current media programs for theatrical, concert, corporate and architectural projection.
Components: Laboratory

DRAM 5514 (3 credits) Instructor Consent Required
Production Lighting Design and Business Practices
Advanced study of a lighting designer's role and the design process from interview through completed design. Additional focus on the marketing, financial, and personnel elements of the lighting-design business.
Components: Lecture

DRAM 5530 (1-3 credits) Instructor Consent Required
Studies in Digital Media
Study of any topics in visual Digital Media not included in DRAM 5531-5535. Course may be repeated with a change in topic.
Components: Lecture

DRAM 5531 (3 credits) Instructor Consent Required
Digital Design for Projections I
Advanced exploration of the philosophy, software, hardware, and technology used to create digital imagery, including video-projection and LED system designs. Special emphasis is on the aesthetics of media design and the systems for displaying digital imagery.
Components: Laboratory

DRAM 5532 (3 credits) Instructor Consent Required
Digital Design for Projections II
Building on "Projections I," students conceive, design, and produce digital media for video projection using LED systems; particular emphasis on exploring and developing aesthetics of digital media design.
Components: Laboratory

DRAM 5533 (3 credits) Instructor Consent Required
2D Digital Animation I
With 2D animation and compositing programs currently used in film, television, commercial and corporate production, students will explore digital media development and design; beginning with principles of composition, design, and production and moving on to the composition of 2D graphic elements.
Components: Laboratory

DRAM 5534 (3 credits) Instructor Consent Required
2D Digital Animation II
Expanding on 2D Animation I, students will explore 3D space (or the "Z dimension"), learning to manipulate the camera around objects in space. This study will focus on the basics of the digital camera, virtual lighting, and the value of shadow relative to image development and recognition.
Components: Laboratory

DRAM 5535 (3 credits) Instructor Consent Required
3D Digital Animation I
Using professionally current 3D computer-animation programs, this study begins with virtual scene development. Students will then construct a 3-dimensional space, model 3D objects within that space, create and map textures and finishes onto that object, and then animate it.
Components: Laboratory

DRAM 5592 (1-3 credits) Instructor Consent Required
Independent Study in Lighting Design
Independent study under the direction of an appropriate faculty member.
Components: Independent Study

DRAM 5596 (3-6 credits) Instructor Consent Required
MFA Project in Lighting Design
The lighting design for a production in the Department of Dramatic Arts/Connecticut Repertory Theatre.
Components: Independent Study

DRAM 5597 (1-3 credits) Instructor Consent Required
Special Topics in Lighting Design
A reading course under the direction of an appropriate faculty member.
Components: Independent Study

DRAM 5600 (1-3 credits) Instructor Consent Required
Studies in Puppet Arts
Study of any topics in puppet design, construction, or performance not covered in DRAM 5601-5618. May be repeated for credit with a change in topic.
Components: Laboratory

DRAM 5601 (3 credits) Instructor Consent Required
Advanced Mask
Study of Mask design, construction and performance through practical work with face casting, neutral masks, exaggerated masks, and Commedia dell'Arte masks.
Components: Laboratory

DRAM 5602 (3 credits) Instructor Consent Required
Advanced Paper Sculpture
Practice in design, sculpting, patterning, and finishing techniques using the "Roser Papier Methode" for Puppetry leading to full realization and performance of the sculptures as puppets.
Components: Laboratory

DRAM 5603 (3 credits) Instructor Consent Required
Puppet Theatre Production
Strategies for developing and executing the skills involved in mounting Puppet Productions, including planning, scripting, designing, scheduling, budgeting, and identifying appropriate personnel.
Components: Laboratory

DRAM 5604 (3 credits) Instructor Consent Required
Advanced Rod Puppet Theatre
Consideration of a world-wide range of design, construction, and manipulation techniques for several
forms of Rod Puppets, with emphasis on Chinese performance skill development.
Components: Laboratory

DRAM 5605(3 credits) Instructor Consent Required
Advanced Puppetry in Television
Research and practical exploration of techniques for presenting Puppet Arts on television; includes planning, design, construction and performance of a short program and development using current video editing software.
Components: Laboratory

DRAM 5607(3 credits) Instructor Consent Required
Advanced Materials Techniques
Puppet Character design using a full range of fabrication techniques (including sculpting, molding, casting, painting, and carving) to design and fully realize a puppet character.
Components: Laboratory

DRAM 5608(3 credits) Instructor Consent Required
Marionette Performance
Exploration and skill development with the pendular attributes of a string puppet using several different performance figures.
Components: Laboratory

DRAM 5609(3 credits) Instructor Consent Required
Marionette Construction
Design, construction and performance of a full figure string puppet.
Components: Laboratory

DRAM 5610(3 credits) Instructor Consent Required
Advanced Hand Puppet Theatre
Consideration of a world-wide range of design, construction, and manipulation methods for Hand Puppetry, Glove Puppetry, and mouth-moving skills.
Components: Laboratory

DRAM 5611(3 credits) Instructor Consent Required
Advanced Ultraviolet Light/Czech Black Theatre
Exploration of U.S. applications of UV (Black Light) and Czech Black Theatre (Curtain of Light) and its practical application to Puppet Theatre.
Components: Laboratory

DRAM 5612(3 credits) Instructor Consent Required
ISM 25: Art Movements of the Early 20th Century
Examination of Puppet Arts; contributions to the Art Movements of the Early 20th Century, including the production of a Puppet Arts event within a selected ISM 25 course.
Components: Laboratory

DRAM 5613(3 credits) Instructor Consent Required
Advanced Shadow Theatre
Research and study of all design, story, construction, and performance elements within worldwide Shadow Theatre for both direct-screen and projected presentations.
Components: Laboratory

DRAM 5614(3 credits) Instructor Consent Required
Puppet Production Seminar
Dramaturgical, directorial and design research and study related to current department productions using Puppetry.
Components: Laboratory

DRAM 5615(3 credits) Instructor Consent Required
Puppet Arts Aesthetics
Research and study of the myriad forms of Puppet Arts expression and the aesthetics that guide them.
Components: Laboratory

DRAM 5616(3 credits) Instructor Consent Required
Practical Handbook: Elements of Puppet Theatre
An in-depth study of Puppetry as it has been practiced in North America from pre-colonial days to the present.
Components: Lecture

DRAM 5617(3 credits) Instructor Consent Required
World Puppet Theatre
A worldwide survey of the Puppet Arts as they are practiced in religious expression, societal commentary, cultural celebration, and public entertainment.
Components: Lecture

DRAM 5618(1-3 credits) Instructor Consent Required
Production Planning & Development
Students independently research, conceptualize, and prepare preliminary scripts or designs for future performance projects.
Components: Independent Study

DRAM 5619(1-3 credits) Instructor Consent Required
Production Management
Independent study under the direction of an appropriate faculty member.
Components: Independent Study

DRAM 5696(3 - 6 credits) Instructor Consent Required
MFA Project in Puppetry
Major artistic contribution(s), (writing, designing, building, directing) to a puppetry production or related theatre or film project in the Department of Dramatic Arts/Connecticut Repertory Theatre.
Components: Independent Study

DRAM 5697(1 - 3 credits) Instructor Consent Required
Special Topics in Puppetry
A reading course under the direction of an appropriate faculty member.
Components: Independent Study

DRAM 5700(1 - 3 credits) Instructor Consent Required
Studies in Professional Acting
Topics and skills not taught in DRAM 5701-5706. May include work with the techniques of specific master acting teachers such as (but not limited to) Sanford Meisner, Stella Adler, Tadashi Suzuki, and Utah Hagan.
Components: Laboratory
Alexander technique for the Actor

DrAm 5806 (1 credits) Instructor Consent Required
Independent Study in Performance
Independent study under the direction of an appropriate faculty member.
Components: Independent Study

DrAm 5806 (3 - 6 credits) Instructor Consent Required
MFA Project in Performance
Research and preparation for an assigned MFA performance project, usually acting a major role in a production of the Department of Dramatic Arts/Connecticut Repertory Theatre.
Components: Independent Study

DrAm 5801 (1 - 3 credits) Instructor Consent Required
Studies in Movement for the Actor
Topics and skills not normally included in DRAM 5801-5807. Content may include (but is not limited to) stage violence, armed or unarmed combat, gymnastics, and Tai Chi. May be repeated with changes in topic.
Components: Laboratory

DrAm 5802 (3 credits) Instructor Consent Required
Movement for the Actor I
Exploration of the actor's physical instrument.
Components: Laboratory

DrAm 5803 (3 credits) Instructor Consent Required
Movement for the Actor II
Physical conditioning and techniques of characterization.
Components: Laboratory

DrAm 5804 (3 credits) Instructor Consent Required
Movement for the Actor III
Exploration of theatrical styles in the dramatic space, including work in the Commedia form.
Components: Laboratory

DrAm 5805 (3 credits) Instructor Consent Required
Movement for the Actor V
Developing styles of comedic physical movement, including the art of clowning.
Components: Laboratory

DrAm 5806 (3 credits) Instructor Consent Required
Movement for the Actor VI
Continued development of styles and techniques for expressive movement and their application to the world of Physical Theatre.
Components: Laboratory

DrAm 5806 (1 credits) Instructor Consent Required
Alexander Technique for the Actor
Body alignment, release, and constructive rest techniques developed by F. M. Alexander are applied to actors' posture, movement, and breathing.
Components: Laboratory

†GRAD 5930. Full-Time Directed Studies (Master's Level)
(OWN 397) 3 credits.

†GRAD 5950. Master's Thesis Research
(GRAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research
(GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master's)
(OWN 398) Non-credit.

GRAD 5999. Thesis Preparation
(OWN 399) Non-credit.

ECOLOGY AND EVOLUTIONARY BIOLOGY

Department Head: Professor Kentwood Wells

Associate Professors: Bush, Coe, Crespi, Jockusch, L. Lewis, Elphick, P. Lewis, Rubega, Schultz,

Assistant Professors: Urban

Ecology and Evolutionary Biology emphasizes Ecology and Evolutionary Biology emphasizes the diversity and evolution of animals and plants; as well as their interactions with the environment. Research in the department covers a wide range of fields, including behavioral ecology of vertebrates and invertebrates, systematics and evolution of plants and animals, population and community ecology, functional morphology and development, and conservation biology. Faculty members and graduate students work on nearly all of the major group of organisms, including algae, mosses and lichens, aquatic plants, desert plants, tropical and temperate forest trees, the parasites of sharks and rays, insects, spiders, fish, amphibians, reptiles, birds, and mammals. Current research projects span the globe, with investigators working throughout North America, Costa Rica, Panama, Nicaragua, Brazil, Borneo, Madagascar, South Africa, Australia, New Zealand, Japan and many other countries.

Biodiversity and Conservation Biology

Biodiversity refers to the variation in life's forms, from genes to ecosystems. Conservation biology is the science of understanding and protecting the earth's biodiversity. Practitioners in this field require a solid grounding in ecology and evolutionary biology, combined with an understanding of the societal factors that influence ecological systems.

The B.S./M.S. Program.

The Master of Science degree in Biodiversity and Conservation Biology is administered by the Department of Ecology and Evolutionary Biology. The Biodiversity and Conservation Biology M.S. is a Plan B degree, based primarily on coursework. Students are required to participate in a vocational internship and a research project as part of their plan of study, but no research thesis is required. The M.S. is designed to be earned jointly with the EEB B.S. degree, with M.S. level classes integrated into a student's plan of study during their final two years. Students who have already completed an equivalent B.S. degree may confuse their study to the M.S. portion of the degree program. Coursework combines education in ecology, evolution, systematics, and natural history, with relevant training in public policy, economics, and ethics.
Students are prepared for a diversity of career tracks, ranging from conservation planning to endangered species management, environmental education to museum curation, ecological consultancy to environmental law.

Potential employers include non-governmental organizations, state and federal agencies, and environmental industries. More detailed information about the program is available at the EEBS department's web site http://hydrodictyon.eeb.uconn.edu/department/BSMS/.

Interdisciplinary Study

Plant Biology.

Course work and research opportunities in plant biology are offered in three separate departments. Plant systematics and evolution, plant ecology, plant physiological ecology, plant morphology, and plant molecular systematics and evolution are offered in the Department of Ecology and Evolutionary Biology. Plant physiology, cellular and molecular biology are offered in the Department of Molecular and Cell Biology. Additional course offerings in plant biology are available in the Department of Plant Science.

Marine Sciences.

Research and teaching facilities for marine sciences are located at the Avery Point campus of the University of Connecticut, and on the main campus in Storrs. Major areas of research include the ecology, physiology, behavior, and systematics of marine organisms; physical and chemical oceanography; sedimentology; and climatology. Recirculating sea water systems are available for maintaining marine organisms over extended periods for research. Direct inquiries to: Department Head, Marine Sciences, University of Connecticut at Avery Point, Groton, Connecticut 06340-6043.

Organization for Tropical Studies.

The University of Connecticut is a member of the Organization for Tropical Studies, which offers graduate courses on tropical ecology in Costa Rica. Qualified graduate students in biology and related areas are eligible to participate in the February-March and July-August sessions. For information, write to Director of Graduate Studies, Department of Ecology and Evolutionary Biology, Unit 3043, Storrs, Connecticut 06269-3043.

COURSES OF STUDY

EEB 5204(4 credits)
Aquatic Plant Biology
Field and laboratory-oriented study of the anatomy, morphology, ecology, physiology, systematics and evolution of vascular aquatic and wetland plants. A research paper and class presentation are required on a topic pre-approved by the instructor.
Components: Laboratory, Lecture

EEB 5209(3 credits)
Soil Degradation and Conservation
Causes and consequences of soil degradation in agricultural and natural ecosystems, including salinization, erosion, nutrient impoverishment, acidification, and biodiversity loss. Historical perspectives and current strategies for soil conservation. Readings in original literature will be emphasized.
Components: Lecture

EEB 5220(3 credits)
Evolution of Green Plants
Introduction to morphological, ultrastructural, and molecular characters used for inferring evolutionary relationships of green plants, from the green algae to the flowering plants, with emphasis on evolutionary changes involved in the transition from aquatic to terrestrial habitats.
Components: Lecture

EEB 5221(1 credits) Instructor Consent Required
Evolution of Green Plants Laboratory
Study of morphological and anatomical characters of extant and fossil plants. Phylogenetic inferences from morphological and molecular characters. Discussion of primacy literature.
Components: Laboratory

EEB 5240(4 credits)
Biology of Bryophytes and Lichens
Diversity, evolution, ecology, development and taxonomy of the bryophytes (mosses, liverworts, and hornworts) and lichen-forming fungi.
Components: Laboratory, Lecture

EEB 5250(4 credits)
Biology of the Algae
Laboratory and field-oriented study of the major groups of algae, emphasizing structure, function, systematics, and ecology.
Components: Laboratory, Lecture

EEB 5254(4 credits)
Mammalogy
Lectures cover diversity, natural history (including behavior, ecology, reproduction, etc.), and evolution of mammals; readings from original literature are included. Laboratories cover anatomy, systematics, and distribution of major groups of mammals.
Components: Laboratory, Lecture

EEB 5265(4 credits) Instructor Consent Required
Herpetology
Lectures cover environmental physiology, ecology, and behavior of amphibians and reptiles. Emphasis is on readings from the original literature.

EEB 5269(3 credits) Course ID:002433 05-FEB-2008
Social Insects
Behavior, ecology, and evolution of social insects (especially wasps, bees, ants, and termites) with an emphasis on the evolution of social behavior and on the ecological impact of social insects.
Components: Discussion, Lecture

EEB 5271(4 credits) Instructor Consent Required
Systematic Botany
Classification, identification, economic importance, evolution and nomenclature of flowering plants. Laboratory compares vegetative and reproductive characteristics of major families. A research paper and class presentation are required on a topic pre-approved by the instructor.
Components: Laboratory, Lecture

EEB 5301(3 credits)
Population and Community Ecology
Overview of population and community ecology, including population regulation and dynamics, metapopulations, species interactions, biodiversity, community structure, and evolutionary ecology. Theoretical and case-history approaches, emphasizing plants, invertibrates, and vertebrates. Lecture, discussion, and exercises in analysis and modeling.
Components: Lecture

EEB 5302(3 credits)
Organisms and Ecosystems
Overview of organismal and ecosystem ecology, including biophysical basics, resource utilization and allocation, life history patterns, energetics, matter and energy flow in ecosystems, and temporal and spatial dynamics at ecosystem and landscape scales. Theory, experiments, and computer modeling.
Components: Lecture

EEB 5307(4 credits)
African Field Ecology and Renewable Resources-Management
An intensive, field oriented methods course conducted primarily in South Africa at the Basil Kent Field Station, Great Fish River Reserve in collaboration with the University of Fort Hare. An introduction to South Africa culture and history, ecology, and natural resources is provided in weekly meetings during the semester. This is followed by 3 weeks in South Africa. Topics covered include vegetation and faunal surveys, data collection and analysis, biodiversity monitoring, and conservation management. A research paper relating to an independent study conducted by the student in the field is required.
Components: Field Studies
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Description</th>
<th>Credit Hours</th>
<th>Instructor Consent Required</th>
<th>Co-requisites</th>
<th>Course Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEB 5310</td>
<td>Conservation Biology</td>
<td>Case studies and theoretical approaches to conservation of biological diversity, genetic resources, plant and animal communities, and ecosystem functions. Topics emphasize ecological and evolutionary principles that form the scientific basis of this emerging, interdisciplinary field, as well as socio-political, legal, economic, and ethical aspects of conservation.</td>
<td>3 credits</td>
<td></td>
<td></td>
<td>Lecture, Laboratory</td>
</tr>
<tr>
<td>EEB 5333</td>
<td>Evolutionary Developmental Biology</td>
<td>An advanced course in evolutionary biology, emphasizing the underlying developmental bases of evolutionary change. Concepts of homology, constraint, and heterochrony, with examples from both animal and plant systems.</td>
<td>3 credits</td>
<td></td>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td>EEB 535W</td>
<td>Vertebrate Social Behavior</td>
<td>Lectures and discussions dealing with various aspects of vertebrate social behavior, including territoriality, mating systems, sexual selection, and group behavior. The emphasis is on reading and critical analysis of original literature.</td>
<td>3 credits</td>
<td></td>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td>EEB 5347</td>
<td>Principles and Methods of Systematic Biology</td>
<td>The basic concepts and modern procedures employed in systematic biology: literature retrieval, species description, phylogenetic inference, nomenclature, and current conceptual issues. Laboratories include computer techniques in phylogenetic analysis.</td>
<td>4 credits</td>
<td>Instructor Consent Required</td>
<td></td>
<td>Lecture, Laboratory</td>
</tr>
<tr>
<td>EEB 5348</td>
<td>Population Genetics</td>
<td>This course is designed to provide a theoretical background for studies in evolution. Emphasis is placed on understanding the conceptual foundations of the field and on the application of these concepts to an understanding of the roles of mutation, evolution of populations.</td>
<td>3 credits</td>
<td></td>
<td></td>
<td>Lecture, Laboratory</td>
</tr>
<tr>
<td>EEB 5349</td>
<td>Phylogenetics</td>
<td>Estimation of genealogies at the level of species and above, and their application and relevance to various biological disciplines, including systematics, ecology, and morphological and molecular evolution. Surveys both parsimony and model-based methods, but emphasizes maximum likelihood and Bayesian approaches.</td>
<td>4 credits</td>
<td></td>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td>EEB 5350</td>
<td>Molecular Systematics</td>
<td>Exploration of key literature focusing on the practical aspects of incorporating knowledge of DNA sequence evolution into phylogenetic tree construction. Laboratory methods for collection of molecular data including management, extraction, amplification, and sequencing.</td>
<td>2 credits</td>
<td>Instructor Consent Required</td>
<td></td>
<td>Laboratory, Lecture</td>
</tr>
<tr>
<td>EEB 5360</td>
<td>Functional Ecology of Plants</td>
<td>Physiological, morphological, and structural responses of plants to the physical and biotic environment and to environmental change. Readings, lectures and discussions emphasize plant responses at all levels of organization, from cells to whole plants. Themes include: organismal integration, consequences and constraints in plant adaptation, and the functioning of plants within communities and ecosystems.</td>
<td>3 credits</td>
<td></td>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td>EEB 5369</td>
<td>Current Topics in Biodiversity</td>
<td>Analysis and discussion of current literature on biodiversity.</td>
<td>1 credit</td>
<td></td>
<td></td>
<td>Seminar</td>
</tr>
<tr>
<td>EEB 5370</td>
<td>Current Topics in Conservation Biology</td>
<td>Analysis and discussion of current literature on conservation.</td>
<td>1 credit</td>
<td></td>
<td></td>
<td>Seminar</td>
</tr>
<tr>
<td>EEB 5371</td>
<td>Current Topics in Molecular Evolution and Systematics</td>
<td>Current concepts, ideas and techniques in the field of molecular evolution, and theoretical problems peculiar to the phylogenetic analysis of molecular data.</td>
<td>1 credit</td>
<td></td>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td>EEB 5372</td>
<td>Computer Methods in Molecular Evolution</td>
<td>Practical aspects of molecular data analyses. Databank searches, sequence alignments, statistical analyses of sequence data. Parsimony, distance matrix, and spectral analysis methods. Students compile and analyze a data set of their choice.</td>
<td>3 credits</td>
<td></td>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td>EEB 5375</td>
<td>Instructor Consent Required Evolution and Ecology of Communities</td>
<td>The evolutionary consequences of ecological interactions between species and the role of evolution in shaping biological communities. Readings, lectures, and discussions emphasize the importance of descriptive, experimental, and theoretical approaches in community biology.</td>
<td>3 credits</td>
<td>Instructor Consent Required</td>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td>EEB 5445</td>
<td>Advanced Invertebrate Zoology</td>
<td>The functional morphology, ecology and evolution of selected invertebrate groups. Field trips are required.</td>
<td>4 credits</td>
<td>Instructor Consent Required</td>
<td></td>
<td>Laboratory, Lecture</td>
</tr>
<tr>
<td>EEB 5447</td>
<td>Instructor Consent Required Mathematical Ecology</td>
<td>Theory and methods of mathematical modeling as applied to ecological systems. Modeling techniques developed around examples from ecological literature.</td>
<td>4 credits</td>
<td>Instructor Consent Required</td>
<td></td>
<td>Laboratory, Lecture</td>
</tr>
<tr>
<td>EEB 5449</td>
<td>Evolution</td>
<td>A review of our current understanding of the patterns and processes of organic evolution. Class periods will include discussion and critical analysis of primary literature.</td>
<td>3 credits</td>
<td></td>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td>EEB 5452</td>
<td>Field Ecology</td>
<td>A field of study of the biotic communities in selected areas of eastern North America.</td>
<td>2 credits</td>
<td>Instructor Consent Required</td>
<td></td>
<td>Laboratory, Lecture</td>
</tr>
<tr>
<td>EEB 5453</td>
<td>Helminthology</td>
<td>Morphology, taxonomy, and physiology of the parasitic worms. Methods of culture, preparation for study, and experimental determination of life cycles.</td>
<td>3 credits</td>
<td></td>
<td></td>
<td>Laboratory, Lecture</td>
</tr>
<tr>
<td>EEB 5459</td>
<td>Aquatic Insects</td>
<td>Taxonomic, habitat, and life history studies of aquatic insects.</td>
<td>3 credits</td>
<td>Instructor Consent Required</td>
<td></td>
<td>Laboratory, Lecture</td>
</tr>
<tr>
<td>EEB 5462</td>
<td>Evolutionary Pattern and Process: Experimental Approaches</td>
<td>A rigorous introduction to the concepts and methods for systematic and evolutionary studies with an emphasis on genetic, molecular (proteins and DNA), and phylogenetic analyses. The laboratory portion provides the opportunity to gain experience in DNA extraction, amplification, sequencing, alignment, and phylogenetic analyses.</td>
<td>2 credits</td>
<td></td>
<td></td>
<td>Laboratory, Lecture</td>
</tr>
<tr>
<td>EEB 5463</td>
<td>Plant Ecology</td>
<td>An advanced course in plant ecology with emphasis on the effects of environment on development of vegetation, metabolism of the ecosystem, cycling of nutrients, growth and succession. Principles of vegetation dynamics, classification and their ecological interpretation will be discussed.</td>
<td>4 credits</td>
<td>Instructor Consent Required</td>
<td></td>
<td>Laboratory, Lecture</td>
</tr>
<tr>
<td>EEB 5477</td>
<td>Insect Phylogeny</td>
<td>A review of our current understanding of the evolutionary relationships of the major orders and families of insects, including the phylogenetic position of Insecta within Arthropoda.</td>
<td>3 credits</td>
<td></td>
<td></td>
<td>Lecture</td>
</tr>
</tbody>
</table>
EEB 5889 (1 - 6 credits) Instructor Consent Required Research
Conferences and laboratory work covering selected fields of Ecology and Evolutionary Biology.
Components: Independent Study

EEB 5891 (1 - 9 credits) Instructor Consent Required Internship in Ecology, Conservation, or Evolutionary Biology
An internship with a non-profit organization, a governmental agency, or a business under the supervision of Ecology and Evolutionary Biology faculty. Activities relevant to the practice of ecology, biodiversity, evolutionary biology, or conservation biology will be planned and agreed upon in advance by the job site supervisor, the faculty coordinator, and the intern. One credit may be earned for each 42 hours of pre-approved activities up to a maximum of nine credits.
Components: Practicum

EEB 5894 (1 - 3 credits) Seminar
Study and discussion of current researches, books and periodicals in the field of Biology. Subtopic designations: Ec, Ecology; M, Mammalogy; Mec, Marine Ecology; Pr, Parasitology; En, Entomology; Bi, Biogeography; Ev, Evolution; Sy, Systematics.
Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Seminar

EEB 5895 (1 - 6 credits) Instructor Consent Required Invest Sp Topics
Advanced study in a field within Ecology and Evolutionary Biology.
Components: Lecture

EEB 5899 (1 credits) Instructor Consent Required Independent Study
A reading course for those wishing to pursue special work in biology. It may also be elected by undergraduate students preparing to be candidates for degrees with distinction.
Components: Independent Study

EEB 6480 (1 credits) Seminar in Vertebrate Biology
Analysis and discussion of current literature in vertebrate biology. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Seminar

EEB 6481 (1 credits) Seminar in Biodiversity
Provides the opportunity for students to present research plans, reports of work in progress, and full-length seminars on completed research projects in ecology, systematics, and evolutionary biology to a supportive but critical audience.
Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Seminar

EEB 6482 (1 credits) Seminar in Spatial Ecology
Analysis and discussion of current literature in spatial ecology.
Components: Seminar

EEB 6483 (1 credits) Seminar in Marine Biology
Analysis and discussion of current literature in marine biology.
Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Seminar

EEB 6484 (1 credits) Seminar in Plant Ecology
Analysis and discussion of current literature in plant ecology.
Components: Seminar

EEB 6485 (1 credits) Seminar in Comparative Biology
Analysis and discussion of current literature in evolution and comparative ecology.
Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Seminar

EEB 6486 (1 credits) Seminar in Systematics
Analysis and discussion of current literature in systematic biology.
Components: Seminar

EEB 6487 (1 credits) Seminar in Parasitology
Analysis and discussion of current literature in parasitology.
Components: Seminar

EEB 6490 (1 credits) Seminar in Behavioral Ecology
Analysis and discussion of current literature in behavioral ecology. Students in this course receive a grade of S (Satisfactory) or U (Unsatisfactory).
Components: Seminar

Associated Grad School Courses
†GRAD 5930. Full-Time Directed Studies (Master's Level)
(Grant 397) 3 credits.
†GRAD 5950. Master's Thesis Research
(Grant 395) 1 - 9 credits.
†GRAD 5960. Full-Time Master's Research
(Grant 396) 3 credits.
GRAD 5998. Special Readings (Master's)
(Grant 398) Non-credit.
GRAD 5999. Thesis Preparation
(Grant 399) Non-credit.
†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(Grant 497) 3 credits.
†GRAD 6950. Doctoral Dissertation Research
(Grant 495) 1 - 9 credits.
†GRAD 6960. Full-Time Doctoral Research
(Grant 496) 3 credits.
GRAD 6998. Special Readings (Doctoral)
(Grant 498) Non-credit.
GRAD 6999. Dissertation Preparation
(Grant 499) Non-credit.
ECONOMICS

Department Head: Professor Dennis R. Heffley
Professors: Carstensen, Clapp, Cosgel, Cotterill, Hallwood, Knoblauch, Langlois, Miceli, Ray, Ross, Santerre, and Segerson
Associate Professors: Ahking, Alpert, Couch, Cunningham, Dharmapala, Harding, Harmon, Kimenyi, Landau, Lott, Minkler, Morand, Randolph, Tripathi, and Zimmerman
Assistant Professors: Aysun, and Matschke

Study leading to the Master of Arts and Doctor of Philosophy degrees is offered.

Requirements for the Master of Arts Degree.
The program of studies for the M.A. degree is not uniform for all students. The combination of courses depends on the candidate's objective. For some purposes, a broad spread of subject-matter courses may be advisable, while for other purposes a narrowly focused program may be appropriate. Economics 5201, 5202, 5301, and 5311 are required. Candidates with inadequate backgrounds in mathematics are required to take Economics 2301.

Requirements for the Doctor of Philosophy Degree.
Students in the Ph.D. program are required to pass Economics 6110, 6201, 6202, 6211, 6212 6301, 6311, 6312, or their equivalents.

If a supporting area of study is elected rather than a foreign language, it cannot include any of the courses used to satisfy the above requirements; it must consist of a coherent unit of work in one subject considered a special skill for economists, and it must include at least one course above the 4000's level.

Each student must pass the preliminary examination in economic theory before taking the field examination. Students choose from among the following:

- Industrial Organizations
- International Economics
- The Evolution of Europe's Economic Institutions
- The Economic Development of Europe from the Colonial Period to the Present
- American Economic History

ECONOMIC THEORY

ECON 5110(3 credits) History of Economic Thought from 1890
The history and methodological underpinnings of modern economic theory. Topics include macroeconomics and business cycles; utility and demand theory; and industrial organization. Particular attention to Marshall and Keynes.
Components: Lecture

ECON 5128(3 credits) Instructor Consent Required Economic Rights
Economic Rights include the right to an adequate standard of living, the right to work, and the right to basic income guarantees for those unable to work. These rights are grounded in international law - particularly in the Universal Declaration of Human Rights and the International Covenant on Economic, Social, and Cultural Rights. This class will explore the conceptual bases, measurement, and policy applications of economic rights. Specific topics will include: child labor, the right to development, non-governmental initiatives, and the institutionalization of economic rights (e.g., constitutionalization versus statutory implementation versus discretionary policies).
Components: Seminar
Course Equivalents: HRTS 5390, POLS 5390

ECON 5198(3 credits) Instructor Consent Required Topics in Economic History
Focuses on critical episodes and salient turning points in the history of European, American, and Third World economic development; emphasis on institutional and technological factors. Evaluates different approaches.
Components: Lecture

ECON 5201(3 credits) Mathematical Economics
Mathematical Economics
Beginning graduate microeconomics covering consumer and producer theory, price determination, economic efficiency, and welfare analysis.
Components: Lecture
Course Equivalents: ARE 5201

ECON 5202(3 credits) Macroeconomics I
Survey of the field: its historical foundations and development, conceptual framework, and application to current macroeconomic problems.
Components: Lecture

ECON 5298(3 credits) Topics in Microeconomics
Topics in microeconomic theory. Students choose the material to be covered.
Components: Lecture

ECON 5301(3 credits) Mathematical Economics Optimization, comparative statics, envelope theorem, basic differential and difference equations.
Components: Lecture

ECON 5311(3 credits) Econometrics I
Construction, estimation, and interpretation of economic behavioral and technical equations using data that are passively generated by a system of simultaneous, dynamic and stochastic relations.
Components: Lecture
Course Equivalents: ARE 5311

ECON 5348(3 credits) Economic Development Policy
The role of government in the economic development of underdeveloped countries. Topics include: alternative paradigms of development and the resulting place for government in the economy; the theory, institutions, and policies of government in planning, fiscal, and monetary concerns; analysis of policy instruments influencing international trade and financial flows; and the influence of international organizations on the development process.
Components: Lecture

ECON 5411(3 credits) Monetary Theory and Policy
Theoretical analysis of the role of money in the economy, including general equilibrium and monetarist frameworks, the demand for and supply of money, channels of monetary influence, and determinants of long-term and short-term interest rates. Problems of monetary policy, such as selection of instruments and targets, use of discretionary policy, and stability of the money multiplier.
Components: Lecture

ECON 5416(3 credits) Issues in Monetary Theory and Policy
Contemporary theoretical and policy issues in money, such as portfolio theory, the money supply process, the mechanics of policy implementation, "crowding out," dynamic macro models, disequilibrium macro models, and rational expectations.
Components: Lecture
Requirement Group: Prerequisite: ECON 5411 (RG796).

ECON 5421(3 credits) International Trade: Theory and Policy
The economic aspects of international relations, including the pure theory of international trade and the instruments of commercial policy. Topics include comparative advantage; international economic policies; and regional economic integration.
Components: Lecture

ECON 5422(3 credits) International Finance: Theory and Policy
Theoretical and historical analysis of international finance, including balance-of-payments adjustments, foreign-exchange markets, international capital
flows, and the effectiveness of macroeconomic policies in open economies.
Components: Lecture
ECON 5433(3 credits) Federal Finance
Theories of government in the economy including general equilibrium, public choice and institutional economics. Government expenditures: budgeting, cost-benefit studies and analysis of specific expenditure programs. Taxation: equity and efficiency criteria for evaluating taxes, with application to major sources of revenue; public debt.
Components: Lecture
ECON 5434(3 credits) State and Local Finance
Taxes and expenditures in a federal system, with particular emphasis on intergovernmental relationships. Rationale for federalism, problems of public choice, and tax incidence analysis.
Components: Lecture
ECON 5439(3 credits) Urban and Regional Economics
Theoretical and empirical analysis of urban and regional systems in developed and developing economies. Special emphasis on the spatial characteristics and problems of metropolitan markets for housing, transportation services, productive factors, and final products; land-use controls, housing subsidies, public transit, and other forms of public sector intervention.
Components: Lecture
ECON 5441(3 credits) The Labor Market
A thorough examination of the labor market. Topics include human capital, wage determination, public policy, and money wage rates.
Components: Lecture
ECON 5461(3 credits) Industrial Organization
Survey of contemporary theory and models of the organization of industry. Topics include oligopoly; product differentiation; advertising; innovation; contestable markets; the financial theory of the firm; dynamic and evolutionary models; and transaction-cost economics.
Components: Lecture
ECON 5462(3 credits) Topics in Public Policy Toward Industry
Components: Lecture
ECON 5463(3 credits) The Economics of Organization
Surveys the modern agency, transaction-cost, and evolutionary theories of organization. Topics include measurement and monitoring costs, asset specificity, incomplete-contracts theory, the dynamic capabilities approach, and alternative organizations.
Components: Lecture
ECON 5473(3 credits) Economic Development
An examination of the problems facing the less developed nations. Comparisons of alternative paradigms of economic development (orthodox to political economy) and the strategies and policies they imply.
Components: Lecture
ECON 5474(3 credits) Seminar in Development and Growth
A continuation of Economics 350. Topics include agriculture and industry in development, investment criteria, essentials of developing planning, the promotion of domestic saving and fixed investment, foreign aid, improvements in international trade, and human capital formation.
Components: Seminar
ECON 5479(3 credits) Economic Growth and Fluctuations
Economic growth and business cycles in the economically advanced countries, with emphasis on both theory and evidence.
Components: Lecture
ECON 5494(3 credits) Applied Research Seminar
A survey of research methods in economics and development of individual research projects.
Components: Seminar
ECON 5495(3 credits) Instructor Consent Required Topics in Economics
Components: Seminar
ECON 5499(1-3 credits) Instructor Consent Required Independent Study in Economics
Components: Independent Study
ECON 6110(3 credits) History of Economic Thought
Advanced treatment of material in 320W and 322W.
Components: Lecture
ECON 6201(3 credits) Microeconomics II
Microeconomic theory: contemporary economic analysis of decisions by consumers, producers, and other agents.
Components: Lecture
Requirement Group: Prerequisite: ECON 5201 or ARE 5201 (RG260).
ECON 6202(3 credits) Macroeconomics II
A rigorous course in macroeconomic modeling with policy applications. Focuses primarily on developments in the current literature, analytical techniques, and macroeconomic models. Includes an introduction to stochastic dynamic models.
Components: Lecture
Requirement Group: Prerequisite: ECON 5202 (RG263).
ECON 6211(3 credits) Microeconomics III
Markets, general equilibrium theory, efficiency, and advanced topics in microeconomics.
Components: Lecture
Requirement Group: Prerequisite: Completion of ECON 6201 with a grade of B- or better (RG264).
ECON 6212(3 credits) Macroeconomics III
Stochastic modeling, recent developments in the literature, and policy applications. Topics may include real business cycle theory, new classical economics, neo-Keynesian theory and growth models.
Components: Lecture
Requirement Group: Prerequisite: Completion of ECON 6202 with a grade of B- or better (RG265).
ECON 6301(3 credits) Advanced Mathematical Economics I
An introduction to advanced mathematical topics with applications to economics. Topics and applications may include set theory, logic, topology, difference and differential equations, game theory, preference theory and matching models.
Components: Lecture
ECON 6302(3 credits) Advanced Mathematical Economics II
Topics and applications may include: dynamic programming, fixed-point theorems, measure theory, Markov chains and processes, functional analysis, and advanced optimization.
Components: Lecture
Requirement Group: Prerequisite: Completion of ECON 6301 with a grade of B- or better (RG661).
ECON 6311(3 credits) Econometrics II
Theoretical underpinnings of standard econometric methods of estimation and testing of single-equation models.
Components: Lecture
Requirement Group: Prerequisite: STAT 5415 (RG261).
ECON 6312(3 credits) Econometrics III
Special topics from single-equation models; simultaneous equations models; full information maximum likelihood methods; and recent advances in econometrics.
Components: Lecture
Requirement Group: Prerequisite: Completion of ECON 6311 with a grade of B- or better (RG262).
ECON 6400(1-3 credits) Independent Study
Students pursue an in-depth study of an area of interest under the guidance of a faculty member.
Components: Independent Study
ECON 6411(3 credits) Advanced Monetary Theory and Policy I
Advanced treatment of material covered in ECON
381. Advanced treatment of material covered in econ
industrial organization econ 6461(3 credits)
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG663)

ECON 6412 (3 credits)
Advanced Monetary Theory and Policy II
Advanced treatment of material covered in ECON 347.
Components: Lecture
Requirement Group: Prerequisite: Econ 6411 (RG664).

ECON 6421 (3 credits)
Advanced International Trade: Theory and Policy
Advanced treatment of material covered in ECON 342.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG662).

ECON 6422 (3 credits)
Advanced International Finance: Theory and Policy
Advanced treatment of material covered in ECON 343.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG663).

ECON 6435 (3 credits)
Government Expenditures
Theory and evidence of government expenditure policy.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG662).

ECON 6436 (3 credits)
Government Revenues
Positive and normative analysis of alternative government resource uses.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG662).

ECON 6441 (3 credits)
Advanced Labor Economics I
Labor supply with an emphasis on the family. Applications in the area of demography, development, and health.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (428) (RG3880).

ECON 6442 (3 credits)
Advanced Labor Economics II
Labor demand and other applied topics in labor economics.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (428) (RG3879).

ECON 6461 (3 credits)
Industrial Organization
Advanced treatment of material covered in ECON 381.

ECON 6462 (3 credits)
Advanced Monetary Theory and Policy II
Advanced treatment of material covered in ECON 347.
Components: Lecture
Requirement Group: Prerequisite: Econ 6411 (RG664).

ECON 6421 (3 credits)
Advanced International Trade: Theory and Policy
Advanced treatment of material covered in ECON 342.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG662).

ECON 6422 (3 credits)
Advanced International Finance: Theory and Policy
Advanced treatment of material covered in ECON 343.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG663).

ECON 6435 (3 credits)
Government Expenditures
Theory and evidence of government expenditure policy.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG662).

ECON 6436 (3 credits)
Government Revenues
Positive and normative analysis of alternative government resource uses.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG662).

ECON 6441 (3 credits)
Advanced Labor Economics I
Labor supply with an emphasis on the family. Applications in the area of demography, development, and health.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (428) (RG3880).

ECON 6442 (3 credits)
Advanced Labor Economics II
Labor demand and other applied topics in labor economics.
Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (428) (RG3879).

ECON 6461 (3 credits)
Industrial Organization
Advanced treatment of material covered in ECON 381.

Components: Lecture
Requirement Group: Prerequisite: Econ 6211 (RG662).

ECON 6463 (3 credits)
Economics of Organization
Advanced treatment of material covered in ECON 386.
Components: Lecture

ECON 6466 (3 credits)
Environmental Economics
Economic analysis of environmental problems and corrective policy instruments. Topics covered will include the theory of externalities and public goods, the role of uncertainty and imperfect information in policy design, benefit-cost analysis, and non-market valuation. Applications to various environmental problems (such as air and water pollution, hazardous waste, and occupational health and safety) will be discussed.
Components: Lecture
Course Equivalents: ARE 6466
Requirement Group: Prerequisite: Econ 5201 or ARE 5201 (RG260).

ECON 6494 (1 credits)
Graduate Seminar
Participation in departmental research seminars and presentation and discussion of original research projects. Students taking this course will receive a grade of Satisfactory (S) or Unsatisfactory (U).
Components: Seminar

Associated Grad School Courses

†GRAD 5930. Full-Time Directed Studies (Master's Level)
(Grad 397) 3 credits.

†GRAD 5950. Master's Thesis Research
(Grad 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research
(Grad 396) 3 credits.

GRAD 5998. Special Readings (Master's)
(Grad 398) Non-credit.

GRAD 5999. Thesis Preparation
(Grad 399) Non-credit.
†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(Grad 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(Grad 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(Grad 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(Grad 498) Non-credit.

GRAD 6999. Dissertation Preparation
(Grad 499) Non-credit.
Applicants may be required to submit scores for the General Test of the Graduate Record Examinations and/or the Miller Analogies Test.

Admission Requirements for the Ph.D. Degree.

The Doctor of Philosophy degree program is intended to give persons of unusual ability and promise the opportunity to become scholars in their areas of specialization. Only outstanding individuals whose experience and background will allow them to carry on a scholarly program and to work professionally at a level commensurate with the degree after its completion are accepted into the program.

Applicants to doctoral programs in education must submit scores for the Graduate Record Examinations General Test. In addition, applicants to some programs may be required to submit scores for the Miller Analogies Test. These tests must have been taken within the last five years. International students may have these test requirements waived by the Admissions Committee of a given program or deferred until after admission.

Special Facilities in the Neag School of Education.

Several important services, facilities, and agencies contribute to the scholarship and research experiences of graduate students in education.

There are opportunities in the Reading-Language Arts center for graduate students to pursue research studies of the many problems affecting the teachers of reading at all grade levels. The Institute for Urban School Improvement works with students, educators, school communities, local and state governing bodies, and scholars to meet the needs of urban youth and schools through collaboration and evidence-based practices. The University of Connecticut Center for Educational Policy Analysis serves to inform educational and public policy leaders about the development, analysis, and implementation of educational policies. The Center on Postsecondary Education and Disability educates preprofessionals and professionals in acquiring knowledge and skills and developing state-of-the-art practices in disability services. The Department of Kinesiology has laboratory facilities available for research in these areas: sport biomechanics, exercise physiology, sport disabilities, sport social sciences, and athletic training. In addition, the local public schools of Connecticut cooperate closely with the University and provide opportunities for internships, practica, and field studies.

Graduate Courses.

Education courses are listed under the sponsoring departments. Reference should be made to the offerings of the Departments of Curriculum and Instruction, Educational Leadership, Educational Psychology, Kinesiology, and Physical Therapy.

CURRICULUM AND INSTRUCTION

Department Head: Professor Mary Anne Doyle
Professors: DeFranco, Goodkind, and Leu
Associate Professors: Alfano, Glenn, Kaufman, Moss, Osborn, Reyes, and Settlaige
Assistant Professors: T. Casa, Howard, Iriarry, Levine, Marcus, Rojas, Staples, and Truxaw

Graduate programs in Curriculum and Instruction lead to degrees of Master of Arts and Doctor of Philosophy. The Neag School of Education also confers a Sixth-Year Diploma in Professional Education. Master’s and doctoral study is offered in bi-lingual and bi-cultural education, curriculum development, elementary education, and in most secondary school teaching areas. In addition, master’s study is offered in Music Education. Students should consult the statement under Education for information pertaining to admission requirements and special facilities available in the Neag School of Education.

COURSES OF STUDY

EDCI 5000(3 credits)
Teaching in the Affective Domain
Study in the relationship between the affective and cognitive domains of education and how the affective domain influences student behavior in the learning process, self-awareness, and self-concept. Classroom activities, materials, and methods are featured.
Components: Lecture

EDCI 5002(3 credits)
History of Education in the United States
Development of educational ideas and practices in the United States from the colonial period to the present.
Components: Lecture

EDCI 5004(3 credits)
History of Educational Thought
Leading educational ideas and how these ideas influence theory and professional practice. The contributions of key individuals in the ancient, medieval and modern worlds are the basis for course organization.
Components: Lecture

EDCI 5006(3 credits)
Comparative and International Education
Education and educational systems in comparative and international perspective, with emphasis on the interaction of educational institutions with other social, cultural and political institutions in society.
Components: Lecture

EDCI 5008(3 credits)
Philosophical Analysis in Education
Introduction to philosophical analysis of significant educational concepts.
Components: Lecture

EDCI 5040(3 credits)
Experiment in Music Education
Application of experimental techniques to a problem of learning or pedagogy in music.

Components: Lecture

EDCI 5045(3 credits)
Supervision and Administration of the School Music Program
Programming, scheduling, housing as they apply to music in the schools; of community demands, public relations and legal commitments; of types of supervisory and in-service organization.
Components: Lecture

EDCI 5047(3 credits)
Curriculum Construction in School Music
Developing courses and music activities as resource units.
Components: Lecture

EDCI 5050(3 credits) Program Director Consent Req'd
TCPG Seminar I: Student Teaching Seminar
Analysis of instructional practice in the clinical setting. Relationship of instruction to theory, and implications for instructional evaluation, are emphasized.
Components: Seminar
Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).

EDCI 5055(3 credits) Program Director Consent Req'd
TCPG Seminar II: Teacher as Professional
Culminating seminar experience in the TCPG program.
Components: Seminar
Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).

EDCI 5060(3 credits) Program Director Consent Req'd
Social and Multicultural Foundations of Education
An introduction to the social and multicultural foundations of contemporary public education in U.S. society. Includes discussion of the nature, organization and purposes of public education in a democratic society, cultural diversity in U.S. schools and society, the role of the classroom teacher, professional ethics, and contemporary issues in U.S. education.
Components: Lecture
Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).

EDCI 5062(3 credits)
Evaluation in Vocational and Technical Education
Theories of evaluation; survey of practices and role of evaluation in educational programs; development of instruments and procedures for appraising educational programs and individual achievement.
Components: Lecture
EDCI 5063 (3 credits)
Occupational Experience Programs
Theory of occupational adjustment; design of experience programs; community cooperation; labor legislation, integration with school programs; and role of coordinator.
Components: Lecture

EDCI 5064 (3 credits)
Career Education: Theory and Practice
The need for and rationale of career education. Strategies and processes for implementing career education concepts and practices in schools and other educational settings.
Components: Lecture

EDCI 5065 (3 credits) Program Director Consent Req'd
Learning Theories
Introduction to learning theories as they are applied to educational contexts. Topics include instructional objectives, behavioral analysis, social cognitive theory, cognitive psychology, social emotional development, and cognitive development.
Components: Lecture
Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).

EDCI 5066 (3 credits)
Principles and Philosophy of Vocational and Technical Education
Descriptive and normative principles of vocational and technical education with attention to their special, economic, psychological and political bases as a philosophical rationale.
Components: Lecture

EDCI 5067 (1 credit)
Administrative Applications in Vocational Education
The application of administrative theories to programs of vocational education.
Components: Lecture

EDCI 5068 (3 credits)
Instructional Strategies in Vocational and Adult and Human Resources Education
Innovative approaches to the improvement of learning; instructional techniques, materials and media.
Components: Lecture

EDCI 5070 (3 credits) Program Director Consent Req'd
Methods of Instruction and Evaluation
Selection and organization of learning experiences, instructional activities and materials, and methods of instruction. Course activities include a combination of lecture and seminar experiences.
Components: Lecture
Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).

EDCI 5071 (3 credits)
Program Planning and Curriculum Development in Vocational and Technical Education
Analysis of vocational/technical program planning and curriculum development theory, with emphasis on principles and current issues influencing program decisions.
Components: Lecture

EDCI 5072 (1 - 3 credits)
Business Office Automation
Components: Lecture

EDCI 5075 (3 credits) Program Director Consent Req'd
Meeting the Needs of Exceptional Learners
Introduction to the characteristics of and educational programming for students with exceptionalities.
Components: Lecture
Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).

EDCI 5080 (3 credits) Program Director Consent Req'd
Reading and Literacy in the Content Areas
Effective use of reading and writing to help students learn content material. Includes selection of reading materials that are appropriate for individual students with diverse reading abilities, understanding reading diagnosis provided by other professionals, using reading material in ways that facilitate comprehension and learning, and using written assignments to increase understanding and recall.
Components: Lecture
Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).

EDCI 5085 (3 credits) Program Director Consent Req'd
Subject Area Methods
Selection and organization of learning experiences, instructional activities and materials, and methods of instruction related to the subject area. Course activities include a combination of lecture and seminar experiences, as well as extensive practice teaching.
Components: Lecture
Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).

EDCI 5090 (9 credits) Program Director Consent Req'd
TCPD CG Directed Student Teaching
Supervised student teaching in a subject-specific content area.
Components: Clinical
Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).

EDCI 5092 (1 - 6 credits) Practicum
The implementation and application of theory in the student's area of specialization. Open primarily to master's and Sixth-Year students.
Components: Practicum

EDCI 5094 (1 - 3 credits) Seminar
Analysis of the issues and research in the field of education. Open primarily to master's and Sixth-Year students.
Components: Seminar

EDCI 5099 (1 - 3 credits) Instructor Consent Required
Independent Study in Education
Students requesting this course should have a significant background in education and should present to the instructor problems, well-defined and well laid out for investigation, which hold special interest for them and which will be pursued on the plan of advanced study.
Components: Independent Study

EDCI 5100 (3 credits)
Teaching Writing in the Elementary School, Grades K-6
A course for elementary teachers with emphasis on: teaching the writing process in persuasive, narrative and expository writing; evaluation of errors; developing appropriate curricular sequences; and research in the writing process.
Components: Lecture

EDCI 5105 (3 credits)
Teaching the Language Arts
Teaching integrated language arts including oral and written communication, creative language, and spelling development with an emphasis on current research.
Components: Lecture

EDCI 5110 (3 credits)
The Teaching of Reading
An overview of process and program; theoretical models of the reading, guidelines for a total school reading program, definition of terminology and principles of instruction. Analysis of available material made when appropriate. Intended as a background course for teachers with no previous course work or experience in teaching reading.
Components: Lecture

EDCI 5120 (3 credits)
Introductory Reading Clinic
Clinical practice in instruction of persons with corrective reading disabilities.
Components: Practicum
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
<th>Components: Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDCI 5125</td>
<td>3 credits</td>
<td>Teaching Reading and Writing in Middle and Junior High School</td>
<td>Requirement Group: Prerequisite: EDCI 5150 and EDCI 5155 (RG583).</td>
</tr>
<tr>
<td>EDCI 5130</td>
<td>3 credits</td>
<td>Teaching Children's Literature in the Elementary School</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5135</td>
<td>3 credits</td>
<td>Literacy in the Secondary School</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5140</td>
<td>3 credits</td>
<td>Teaching Reading in the Content Areas</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5145</td>
<td>3 credits</td>
<td>Classroom Assessment and Correction of Reading Difficulties</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5150</td>
<td>3 credits</td>
<td>Clinical Diagnosis and Correction of Reading Difficulties</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5155</td>
<td>6 credits</td>
<td>Instructor Consent Required Advanced Reading/Language Arts Clinic</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5160</td>
<td>3 credits</td>
<td>Instructor Consent Required Design, Management, and Supervision of Reading Programs</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5250</td>
<td>3 credits</td>
<td>Teaching Literature to Adolescents</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5255</td>
<td>3 credits</td>
<td>Teaching Composition (7-12)</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5350</td>
<td>3 credits</td>
<td>Teaching Elementary and Middle School Social Studies</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5355</td>
<td>3 credits</td>
<td>Trends in Social Studies Curricula</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5360</td>
<td>3 credits</td>
<td>Instructor Consent Required Education and Popular Culture</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5365</td>
<td>3 credits</td>
<td>The Teaching and Learning of Mathematical Problem Solving</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5450</td>
<td>3 credits</td>
<td>The Teaching and Learning of Mathematics in the Secondary School</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5455</td>
<td>3 credits</td>
<td>Curricula in Mathematics Education</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5500</td>
<td>3 credits</td>
<td>Teaching Science in the Middle and Secondary School</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5505</td>
<td>3 credits</td>
<td>Materials and Methods in the Teaching of Elementary School School Science</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
<tr>
<td>EDCI 5550</td>
<td>3 credits</td>
<td>Problems in the Teaching of Science</td>
<td>Requirement Group: Prerequisite: EDCI 5150 (RG583).</td>
</tr>
</tbody>
</table>

An examination of current approaches to the teaching and learning of mathematics in the secondary school. Emphasis will be placed on issues surrounding content knowledge, curriculum, pedagogy, epistemology, assessment, and technology with respect to recent national initiatives and instructional techniques impacting the secondary school mathematics curriculum.

Components: Lecture
E D C I 5 5 55(3 credits)
Environmental Education
An exploration of state, national, and international environmental issues and instructional approaches for developing student awareness, knowledge, and concern for the environment, K-12. Includes classroom and field study.
Components: Lecture

E D C I 5 6 00(3 credits)
Instructor Consent Required
Methods for Teaching Foreign Languages in the Elementary Schools
An introduction to methods of teaching foreign languages in the elementary schools. Includes FLEX, FLES, and immersion approaches.
Components: Lecture

E D C I 5 6 0 5(3 credits)
Instructor Consent Required
Second Language Acquisition in the Elementary School-Age Student
An introduction to current research related to second language acquisition in elementary school-age children, with emphasis on implications for foreign language instruction.
Components: Lecture

E D C I 5 7 00(3 credits)
Foundations of Bilingual Education
Study of the political, social and legal aspects of bilingual education, including principles of second language acquisition.
Components: Lecture

E D C I 5 7 0 5(3 credits)
Curricular Issues in Bilingual Education
Current approaches, methods and techniques with respect to curricular issues in contemporary bilingual education programs.
Components: Lecture

E D C I 5 7 1 0(3 - 6 credits)
Spec Topics Bilingual Education
In-depth study of current topics related to bilingual education programs.
Components: Lecture

E D C I 5 7 1 5(3 credits)
Bilingualism and Second Language Acquisition
Developmental sequences and theories of first and second language acquisition.
Components: Lecture

E D C I 5 7 1 2(3 credits)
Bilingual Education and Biliteracy
Current methods, strategies and techniques of reading in the mother tongue (L1); transfer of reading skills into English (L2); and, evaluation and adaptation of L1 and L2 reading materials. Principles of second language acquisition.
Components: Lecture

E D C I 5 7 4 0(3 credits)
Latinos and U.S. Education
Conditions of schooling Latinos in the U.S. educational system via an historical and economic context, including principles of second language acquisition. Policy issues and theoretical discussions of underachievement. Relationship between dominant and subordinate cultures and their effect on classroom discourses.
Components: Lecture

E D C I 5 7 4 2(3 credits)
Sheltered English Instruction for English Language Learners
Current approaches and techniques with respect to academic language development in sheltered environments. This course attempts to disclose the most important issues surrounding content area teaching for English Language Learners (ELLs). Special attention is placed on the teaching of mathematics, science, and literacy in English for second language learners, including second language acquisition and development within the content areas.
Components: Lecture

E D C I 5 7 4 5(3 credits)
International Perspective on Bilingual Education
Education of speakers of non-dominant languages in comparative and international perspective. Emphasis on issues of educational policy, curricula, teacher education, and evaluation as these relate to the schooling of cultural and linguistic minority populations in different societies.
Components: Lecture

E D C I 5 7 5 0(3 credits)
Language Diversity and Literacy
Overview of issues and debates concerning the theory and practice of literacy development for non-native English speaking students in the United States. Includes principles of second language acquisition.
Components: Lecture

E D C I 5 7 5 5(3 credits)
Teaching English as a Second Language
An examination of current research on the acquisition and learning of English as a second language (ESL) in school settings. Critical issues in the application of research on ESL to the bilingual classroom are discussed.
Components: Lecture

E D C I 5 7 6 0(3 credits)
Research in Bilingual Education
Analysis of research in bilingual education, methods of research and design and implementation of research studies in bilingual education.
Components: Seminar
Requirement Group: Prerequisite: E D C I 5 7 0 5 (RG266).

E D C I 5 7 6 5(3 credits)
Assessment of Bilingualism
Principles of assessment for bilingual learners, including language proficiency and dominance, (b)iliteracy development, and academic content knowledge. Current assessment approaches for bilingual learners in different context (e.g., bilingual, ESL classes) and for various purposes (e.g., screening, placement, evaluation). Principles of second language acquisition.
Components: Seminar

E D C I 5 7 7 0(3 credits)
Advanced Issues in Bilingual Education
Critical contemporary issues and topics related to bilingual education programs in the United States.
Components: Seminar
Requirement Group: Prerequisite: E D C I 5 7 0 5 (RG266).

E D C I 5 7 7 5(3 credits)
Advanced Issues in Second Language Acquisition
Advanced clinically-based seminar focusing on research issues and practice in second language acquisition.
Components: Seminar

E D C I 5 7 8 0(3 credits)
Social and Political Context Bilingual Eduction
Advanced seminar addressing the social and political context of contemporary bilingual education programs from a critical perspective.
Components: Seminar
Requirement Group: Prerequisite: E D C I 5 7 0 5 (RG266).

E D C I 5 8 0 0(3 credits)
Applied Learning Research for Instructional Leaders
A study of learning principles and their manifestations in classroom settings; design and application of goals and objectives; instructional methods and programming which complement and extend learning style preferences and collective and individual needs.
Components: Lecture

E D C I 5 8 0 2(1 credits)
Lectures in Education
A course in which staff members and authorities in education and related fields discuss selected problems.
Components: Lecture

E D C I 5 8 0 4(3 credits)
Curriculum Planning
Examines teachers' issues and problems from real-life cases with theoretical perspectives and pedagogical methods.
Components: Lecture

E D C I 5 8 0 8(3 credits)
Curriculum Development Processes
A study of the processes, strategies, and techniques used to bring about planned curriculum development in any educational setting.
Components: Lecture

E D C I 5 8 1 0(1 - 3 credits)
Workshop in Education
Professional personnel to work cooperatively on problems arising out of actual school situations. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Practicum
EDCI 5812 (3 credits)
Managing and Motivating Students in the Classroom
Classroom management from the perspective of motivation theory. Whole group, as well as individualized, interventions for increasing students’ task-attentiveness and academic interest. Components: Lecture

EDCI 5814 (3 credits)
Addressing Individual Needs and Talents in the Heterogeneous Classroom
Instructional and managerial techniques that can be used in the grade level classroom to meet the individual learning needs and talents of all students. Strategies for improving the effectiveness of large group, individual and small group instructional practices. Current and promising practices, as well as relevant research. Components: Seminar
Course Equivalents: EPSY 5740

EDCI 5815 (3 credits)
Teaching the Elementary School Child
Study of the development of the elementary school child, the relationship between theory and practice, balancing traditional expectations with current concerns, and the selection and implementation of successful learning experiences in both school and non-school settings. Components: Lecture

EDCI 5820 (3 credits)
Media Literacy in an Information Age
A study of the growing field of media literacy and the media’s influence upon our culture and education. Includes major principles, development of media analysis skills, and integration with the school curriculum. Components: Lecture

EDCI 5824 (3 credits)
Educational Ethnography
Methodology and content of socio-cultural case studies dealing with education in a variety of cultural contexts. Components: Seminar

EDCI 5825 (3 credits)
Enhancing Classroom Curriculum with Computers and Electronic Media
Effective use of microcomputers and other electronic media to strengthen and enhance classroom instruction in the basic content and skill areas. Emphasis upon specific curriculum applications of technology rather than on its basic operation, mechanics, and programming. Components: Laboratory

EDCI 5830 (1 - 6 credits)
Curriculum Laboratory
Open to teachers and administrators seeking practical solutions to curriculum problems in elementary and secondary schools. Reorganization of courses, reorientation of the program of studies, articulation of administrative units, and development of new materials are considered in relation to the local situation. Students make individual studies of their specific problems, and group studies of related problems. Components: Practicum

EDCI 5845 (3 credits)
Seminar in International Education
Concentrated study of culture and education in a major geographical region such as Africa, Asia, or Latin America; or cross-cultural studies of educational issues. Components: Seminar

EDCI 5850 (3 credits)
Introduction to Curriculum Philosophy, theory, and practice employed in curriculum development and change. Components: Lecture

EDCI 5855 (3 credits)
Elementary School Curriculum Analysis of the elementary school curriculum. Emphasis on curriculum development and educational alternatives. Components: Lecture

EDCI 5870 (3 credits)
Curriculum Theory and Design Elements and formation of theory and application in the curriculum field. Components: Lecture

EDCI 5875 (3 credits)
Multicultural Education Interrelationships between education and various sociocultural aspects of cultural diversity and cultural pluralism, including language acquisition and diversity. Components: Lecture

EDCI 5880 (3 credits)
Contemporary Educational Theories Examination of the work of selected major contemporary educational theorists, as well as of significant trends and developments in modern education. Components: Seminar

EDCI 5885 (3 credits)
Introduction to Critical Pedagogy Theory and practice in teaching for social justice with an emphasis on issues of class, race, gender and ethnicity. Components: Lecture

EDCI 5890 (3 credits)
Educational Linguistics Overview of the study of language and linguistics, and especially applied linguistics, with emphasis on their implications for classroom teacher. Includes principles of second language acquisition. Components: Lecture

EDCI 5895 (3 credits)
Language Ideology & Education Interrelationship among language, ideology, education and society, including examination of issues of social classes, ethnicity, gender, social context, pow-

EDCI 6000 (3 credits)
Qualitative Methods of Educational Research
Purposes and nature of qualitative research, including selected techniques for conducting various types of qualitative and naturalistic research in educational settings. Components: Lecture

EDCI 6005 (3 credits)
Advanced Methods of Qualitative Research
Field-based methods of collecting data in qualitative research studies in educational settings, coding and analysis of qualitative data, use of computer programs to analyze data, and methods and procedures for ensuring trustworthiness in qualitative research. Components: Lecture

EDCI 6010 (3 credits)
Writing for Educational Publications
Designing, writing, editing, and marketing material for professional publication. Components: Lecture

EDCI 6092 (1 - 6 credits)
Practicum
The implementation and application of theory in the student’s area of specialization. Components: Practicum

EDCI 6094 (1 - 6 credits)
Seminar
Cooperative study of developments and problems in the student’s area of specialization. Components: Seminar

EDCI 6200 (3 credits)
Theoretical Foundations of Teaching English
A sociocognitive perspective on teaching the English language arts, including the historical, sociological, linguistic, and psychological foundations of teaching English. Components: Lecture

EDCI 6410 (3 credits)
Learning Theories for Mathematics Instruction
This course will examine various learning theories and their influence on mathematics instruction. In particular, this course will be concerned with understanding the processes involved in mathematical thinking, the impact of learning theory on mathematics instruction, expert-novice models of mathematical behavior, and ways to enhance mathematics learning in the classroom. Components: Lecture
Requirement Group: Prerequisite: EPSY 5510 (RG702).

EDCI 6415 (3 credits)
Research in Mathematics Education
Analysis of research in mathematics education, methods of research, and design and research studies. Components: Lecture
EDCI 6500 (3 credits) Research in Science Education
An analysis of current research in science education. Emphasis on evaluation of research as well as the design and implementation of research. Components: Lecture
EDCI 6855 (3 credits) Sociocultural Theories for Educators
The study of selected sociocultural theories and their application in education. Components: Seminar
EDCI 6860 (3 credits) Research in Multicultural Education
Advanced study in the processes and findings of research in multicultural education. Components: Lecture
†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(Grad 497) 3 credits.
†GRAD 6950. Doctoral Dissertation Research
(Grad 495) 1 - 9 credits.
†GRAD 6960. Full-Time Doctoral Research
(Grad 496) 3 credits.
GRAD 6998. Special Readings (Doctoral)
(Grad 498) Non-credit.
GRAD 6999. Dissertation Preparation
(Grad 499) Non-credit.

EDUCATIONAL LEADERSHIP
Department Head: Professor Barry G. Sheckley
Professor: Schwab
Associate Professors: Bell, Cobb, Kehrhahn, Rong, Saddlemire, Saunders, and Yakimowski
Assistant Professors: Donaldson, Grenier, James, Lemons, Mayer, and Tucker

Graduate programs in the Department of Educational Leadership lead to the degrees of Master of Arts and Doctor of Philosophy in the field of Education Administration and to the degree of Doctor of Education in the field of Educational Leadership. New students are not being admitted at this time to the Ph.D. program in Education Administration. The Neag School of Education also confers a Sixth-Year Diploma in Professional Education. Students should consult the statement under Education for information pertaining to admission requirements and special facilities available in the Neag School of Education.

The M.A. in in the field of Professional Higher Education Administration with an emphasis in Higher Education and Student Affairs (HESA) is designed to prepare students for professional careers in various higher education and student affairs positions. This full-time, cohort-based academic program combines traditional instruction with graduate assistantships and practicum experience. Major advisor and program coordinator: S. A. Saunders.

The Sixth-Year Diploma Program in Educational Administration—University of Connecticut Administrator Preparation Program (UCAPP) – is a special two-year administrator certification program preparing educators for school leadership positions. For additional information, contact the Department Office. UCAPP cohorts consist of students from various geographic regions across the state including: East Hartford, Farmington, Southeaster Connecticut, and Stamford. Advisor: S.K. Tucker. Director: M. Femc-Bagwell.

The Ph.D. in Adult Learning program prepares professionals who have a strong theoretical foundation and empirically validated principles of practice for designing and supporting effective and efficient adult learning. Applications address adult learning and development in all sectors, including education, business, government, non-profit, and community. The M.A. program in Adult Learning also is offered. This program is designed for practitioners responsible for facilitating adult learning and developing systems that support adult learners. Major advisors are S. Bell, R. S. Grenier, M. T. Kehrhahn, R. W. Lemons, and B. G. Sheckley.

The Ed.D. in Educational Leadership is an inquiry-based program that capitalizes on one of the most powerful learning forums available to full-time professional educators—their work settings. Throughout the program these settings become “laboratories of practice” in which participants inquire actively into problems of practice. The cohort-based program integrates theory, research and practice to enhance the habits of mind that enable educational leaders to accomplish systemic improvements. Classes meet at times designed to accommodate working professionals. Major advisors are S. Bell, C. D. Cobb, M. L. Donaldson, R. S. Grenier, M. C. James, R. W. Lemons, A. P. Mayer, R. L. Schwab, B. G. Sheckley, S. K. Tucker.

The program in the field of Educational Administration offers an emphasis in education policy analysis leading to the M.A. and Ph.D. degrees is designed for individuals whose interests are directed toward scholarly research and analysis of education policy issues. New students are not being admitted to the Ph.D. at this time. The program is particularly suited for individuals who are interested in careers in academia, governmental, or consulting fields. Ordinarily, students have background experiences in the field of education that are rich in their depth and breadth. Major advisors are C. D. Cobb, M. L. Donaldson, M. C. James, R. W. Lemons, A. P. Mayer, R. L. Schwab, and B. G. Sheckley.

The Department of Educational Leadership offers the Executive Leadership Program which is designed to provide aspiring individuals outstanding preparation for assuming the school superintendency and other central office positions. This cohort-based program is completed within 12-13 months and meets on dates designed to accommodate working professionals. This is a non-degree program that leads to endorsement for the Connecticut 093 (superintendency) certificate. Selected courses are eligible for transfer to UConn’s Ed.D. program with the approval of the student’s advisory committee. Director: R. M. Villanova.

The M.A. in the field of Professional Higher Education Administration is offered with an emphasis in Higher Education Student Affairs.

COURSES OF STUDY
EDLR 5001 (1 credits) Lectures in Education
A course in which staff members and authorities in education and related fields discuss selected problems. Components: Lecture
EDLR 5002 (1 - 6 credits) Workshop in Education Professional personnel to work cooperatively on problems arising out of actual school situations. Components: Lecture
EDLR 5015 (3 credits) Teacher Leadership and Organizations Teachers’ role in providing leadership that extends beyond the walls of the individual classroom and includes collaboration with other adults. Components: Lecture
EDLR 5092 (1 - 6 credits) Instructor Consent Required Practicum: Administrative Field Experience This course will provide an opportunity for educators who wish to become administrators of educational organizations to become familiar with the functions and tasks that certified administrators perform. It is intended primarily for sixth-year students. Components: Practicum
EDLR 5094 (3 credits)
Seminar
Analysis of the issues and research in the field of education. Open primarily to Master’s and Sixth-Year students.
Components: Lecture

EDLR 5099 (1-3 credits) Instructor Consent Required
Independent Study in Education
Students requesting this course should have a significant background in education and should present to the instructor problems, well-defined and well laid out for investigation, which hold special interest for them and which will be pursued on the plan of advanced study.
Components: Independent Study

EDLR 5102 (3 credits) Instructor Consent Required
Assessment, Evaluation, and Research in Student Affairs I
The role of assessment and evaluation to address current student affairs issues in higher education settings. Focus on skill development in problem identification, research question formulation, qualitative design, interview protocol development, and critique and applications of professional literature.
Components: Lecture
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5103 (3 credits) Instructor Consent Required
Assessment, Evaluation, and Research in Student Affairs II
Application of assessment and evaluation research methodologies to address genuine problems in student affairs contexts. Focus on development of theoretical framework, quantitative methods, reporting results, and formulating recommendations for improving practice and policy.
Components: Discussion
Requirement Group: Prerequisite: EDLR 5102 (302). Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3457)

EDLR 5105 (3 credits) Instructor Consent Required
Structured Group Interventions in Student Affairs
Basic approaches to structured group work in relation to goals, objectives, and group dynamics. Implications of group approaches to the personal and educational development of students and staff in Student Affairs
Components: Discussion
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5107 (3 credits) Instructor Consent Required
Resource Management in Student Affairs Administration
Analysis of higher education resource development and management with an emphasis on issues in student affairs administration; including, financial management and analysis, human resource management, and management of information technology resources.
Components: Discussion
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5108 (3 credits) Instructor Consent Required
Leadership Challenges in Higher Education
Application of leadership theory to challenges faced by higher education professionals. By developing critical thinking and problem solving skills, students will learn to identify a crisis, provide leadership for crisis management, and utilize methods of managing communication regarding incidents.
Components: Discussion
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5112 (3 credits) Instructor Consent Required
Alcohol and Other Drugs and their Influence on Higher Education
Examination of alcohol and other drug issues in higher education, substance abuse, and modalities of intervention for individual students. Includes current research on the complexity of environmental, cultural, and political issues of alcohol and other drug uses on college campuses.
Components: Discussion
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5113 (3 credits) Instructor Consent Required
The Small College Experience
Seminar designed to explore and understand a unique form of Higher Education, the American Small College, from various perspectives including president, faculty, students, and staff affairs professionals. Primary emphasis on the small, residential, liberal arts college, though other small college settings will be discussed.
Components: Discussion
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5114 (3 credits) Instructor Consent Required
The College Student
Characteristics of today’s college students. Student behavior theory. Impact of college on students.
Components: Lecture
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5117 (3 credits)
The College Student
Characteristics of today’s college students. Student behavior theory. Impact of college on students.
Components: Lecture
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5118 (3 credits)
Seminar in Higher Education
Seminar designed to promote the integration of the core curriculum and practitioner experiences of the Master’s degree program in Higher Education and Student Affairs and to prepare students for their transitions to a professional position within student affairs upon graduation.
Components: Seminar
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5119 (3 credits)
The Law, Ethics, and Decision-making in Student Affairs
Survey of case law and statutory provisions related to higher education with a focus on student affairs administration. Students will develop an understanding of ethical decision-making and its application to relevant student affairs scenarios.
Components: Seminar
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5121 (3 credits) Instructor Consent Required
Introduction to Student Services in Higher Education
A survey of student services and personnel functions in higher education, including an examination of philosophies, goals, objectives and procedures.
Components: Lecture
Requirement Group: Open to students in Professional Higher Education Administration, others with permission (RG2077)

EDLR 5122 (3 credits) Instructor Consent Required
College Student Development: Programs and Services
History and philosophy of student personnel work related to contemporary and projected student developmental programs and services. Rights, freedoms and responsibilities of students in relation to the college.
Components: Lecture
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5123 (3 credits) Administration of Student Affairs in Higher Education
Administration of student affairs and services and applications of student development theory in the college community.
Components: Lecture
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master’s degree program (RG3454)

EDLR 5124 (3 credits) Instructor Consent Required
Higher Education in Film
An exploration of the portrayals of higher education in film, this course will establish a theoretical base for evaluating film and apply the constructs as a means for understanding the college experience.
Focus on applications of film as a tool for student learning and programming.
Components: Seminar
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master's degree program (RG3454)

EDLR 5125 (3 credits)
Issues in Student Affairs Administration
An examination of issues which affect the new student affairs administrator. Topics vary per semester.
Components: Lecture
Requirement Group: Open to Students in Professional Higher Education Administration, others with permission (RG2077).

EDLR 5126 (3 credits)
Leading Toward a Multicultural Educational Environment
American higher education continually struggles with issues of difference, particularly racial, ethnic, gender, ability, religion, sexual orientation, and other cultural differences. Course participants are challenged to reflect on their personal experiences and examine their values, beliefs, and attitudes with regard to multicultural difference as a means to deepen a critical understanding of multicultural issues in higher education.
Components: Lecture
Requirement Group: Open to students enrolled in the Higher Education and Student Affairs master's degree program (RG3454)

EDLR 5201 (3 credits) Instructor Consent Required
Influences on Adult Learning
Components: Lecture

EDLR 5202 (3 credits)
Workplace Learning
Trends in workplace learning and workforce development. Conceptual models of performance improvement and transfer of training. Focus on individual, work team, and organizational variables related to learning, performance, and transfer of training.
Components: Lecture

EDLR 5203 (3 credits)
The Brain, Experience, and Adult Learning
Four learning systems within the brain. Role of experience in learning. Implications for adult learning and professional development programs.
Components: Lecture

EDLR 5204 (3 credits)
Organizational Learning
Group and collective learning in organizational settings, with an emphasis on adaptive and generative learning processes.
Components: Lecture

EDLR 5205 (3 credits)
Professional Development
Using research on how adults learn best and principles of human resource development to implement effective, job-imbedded professional development programs. Using professional development to advance organizational goals. Examination of best practices.
Components: Lecture

EDLR 5206 (3 credits) Instructor Consent Required
Development of Programs for Adult and Human Resource Education
Program development for adult learners; emphasis on collaborative planning, needs assessment, effective learning strategies, transfer of training, evaluation, principles of good practice.
Components: Lecture

EDLR 5207 (3 credits)
Methods for Facilitating Adult Learning
Recommended preparation: EDLR 5201.
Focuses on principles and practices of adult learning facilitation, including situational and methodological factors that impact how adults learn in conventional and multimedia contexts.
Components: Lecture

EDLR 5301 (3 credits)
The School Principalship (K-12)
Roles and functions of the principal, problem solving, decision-making, school culture, curriculum leadership.
Components: Lecture

EDLR 5302 (3 credits)
Program Evaluation for School Improvement
Program evaluation issues critical to effective school leadership.
Components: Lecture

EDLR 5303 (3 credits)
Supervision of Educational Organizations
Supervision models; teacher selection and induction; teacher evaluation; staff development and organizational change.
Components: Lecture

EDLR 5304 (1 - 3 credits)
Curriculum Laboratory
Open to teachers and administrators seeking practical solutions to curriculum problems in elementary and secondary schools. Reorganization of courses, reorientation of the program of studies, articulation of administrative units, and development of new materials are considered in relation to the local situation. Students make individual studies of their specific problems, and group studies of related problems.
Components: Lecture

EDLR 5305 (2 credits)
Legal Aspects of Education
Legal status of public schools; legal rights and responsibilities of administrators, parents, students, school board members, and teachers.
Components: Lecture

EDLR 5306 (3 credits)
School Leadership and Administration of Educational Organizations
This course will introduce students to concepts and skills which are fundamental to the successful administration of educational organizations. The overarching goal of the course is to provide pragmatic knowledge which will give students an understanding and appreciation of the complexity of educational organizations. The course will use Bolman and Deal's conceptual framework (multi-frame thinking) which borrows ideas from sociology, management science, psychology, political science as well as social and cultural anthropology.
Components: Lecture

EDLR 5307 (3 credits)
Contemporary Educational Policy Issues
Study of current educational policy issues.
Components: Lecture

EDLR 5308 (3 credits)
Psychological Foundations of Education
Learning and related psychological theories and their implications for curriculum, teaching methods, and other aspects of educational practices.
Components: Lecture

EDLR 5342 (3 credits)
Effective Departmental Leadership
Concepts and practices required of departmental leaders in today's secondary schools.
Components: Lecture

EDLR 5343 (3 credits)
Women, Education and Social Change
Examination of the lives of girls and women as students, teachers and academics. Emergence of teaching as a hierarchically sex-segregated profession. Effect of gender on the status and organization of the profession. Changing women's roles and social ideologies as related to women's educational aspirations, career achievement and leadership.
Components: Seminar

EDLR 5344 (3 credits)
Time Management and Personal Organization
Principles and practices of time management. Including interdisciplinary studies relating time usage to organizational behavior and personal effectiveness.
Components: Lecture
EDLR 5346(3 credits) Personnel Evaluation
Issues critical to the design and implementation of effective personnel evaluation programs.
Components: Lecture

EDLR 5347(3 credits) Improving Teacher Evaluation Practice
Improving the teacher evaluation skills of principals and department heads through guided practice experiences that allow them to reflect on what they are doing now in light of promising alternatives.
Components: Lecture

EDLR 5349(3 credits) Issues in Teacher Assessment and Evaluation
Critical review and analysis of current issues and emerging methodologies in teacher assessment and evaluation.
Components: Lecture

EDLR 5351(3 credits) Budgeting and Resource Management
Analysis of educational budget formats: program, capital, function, objective and zero based; budget planning, procedures, forms, documents, codes; political-economic issues in educational budgeting; case studies of program budgeting and site-based budgeting in education; cost reduction and analysis; resource management research.
Components: Lecture

EDLR 5354(3 credits) Human Resources Administration
Study of personnel management in education, including current laws, policies, practices and problems such as recruitment, tenure, promotion, retirement; performance evaluation; motivation; salary, benefits; welfare; staff development; data collection; layoff procedures; grievances; contract administration.
Components: Lecture

EDLR 6050(3 credits) Program Director Consent Req'd
Research Designs in Educational Leadership
Development of research designs and conceptual rationale for investigative studies in adult learning and educational leadership.
Components: Seminar
Requirement Group: Open to students enrolled in doctoral programs offered by the Department of Educational Leadership.

EDLR 6051(3 credits) Program Director Consent Req'd
Research Methods in Educational Leadership
Research methods for investigative studies in adult learning and educational leadership.
Components: Lecture
Requirement Group: Open only to students enrolled in Ph.D. programs offered by the Department of Educational Leadership (RG284).

EDLR 6052(3 credits) Qualitative Methods of Educational Research II
This course is a companion to EDCI 6000, Qualitative Methods of Educational Research. It provides the opportunity for students to more closely examine qualitative methodology and methods to ensure that students are able to synthesize an analysis of qualitative data. Specifically, students will generate credible units from narrative and visual data and develop categories from the units through comparing, contrasting, aggregating, and ordering data. Students will present findings in a chronological or thematic case example or case history, in an essay formulated around topics or theses, or in an alternative format appropriate to the analysis.
Components: Seminar
Requirement Group: Prerequisite: EDCI 6000 (365) (RG4039)

EDLR 6054(3 credits) Instructor Consent Required Inquiry and Research in Educational Leadership I: Foundations, Design, and Use
Explicates knowledge production through systematic inquiry in education, including processes, questions, and strategies used to conduct meaningful research in schools. Explores the intersection of theory and practice with emphasis placed on the critical analysis and interpretation of the research literature to the practice of school leadership.
Components: Seminar
Requirement Group: Open to students in the Ed.D. program in Educational Leadership (RG2751).

EDLR 6055(3 credits) Instructor Consent Required Inquiry and Research in Educational Leadership I: Implementation, Analysis, and Discovery
A continuation of Understanding, Inquiry and Research in Educational Leadership I. Elaborates the strategies and tools used to conduct meaningful research in schools with emphasis in the actual conduct of research in school settings. Explores the link between research findings and the improvement of practice.
Components: Seminar
Requirement Group: Open to students in the Ed.D. program in Educational Leadership (RG2751).

EDLR 6092(1 - 9 credits) Instructor Consent Required Practicum
The implementation and application of theory in the student's area of specialization.
Components: Practicum

EDLR 6094(1 - 3 credits) Seminar
Cooperative study of developments and problems in the student's area of specialization.
Components: Seminar

EDLR 6201(3 credits) Instructor Consent Required Strategic Applications of Adult Learning
Case study analysis and live case study consultation to develop innovative approaches to adult learning to address the challenges of employee development in corporate, education, public sector, and private sector settings.
Components: Seminar

EDLR 6202(1 credits) Research Seminar in Adult and Vocational Education Advanced research issues in adult learning.
Components: Seminar

EDLR 6301(3 credits) School District Executive Leadership
Seminar and practicum experiences focusing on leadership and policy issues facing school superintendents, central office administrators, and senior state education agency officials.
Components: Seminar

EDLR 6302(3 credits) Instructor Consent Required School District Policy, Politics, and Governance
Study of educational policy and school governance; the politics of educational administration; reform; finance; and the processes of district policy formulation, implementation, and analysis. Specific school district policy and governance issues are examined.
Components: Seminar

EDLR 6303(3 credits) Instructor Consent Required Data-Driven Decision Making for School Improvement and Policy Development
The purpose of this course is to provide school leaders with the knowledge necessary to improve instructional programs and improve policy by relying on data-driven strategies and tools. The course meets in seminar/lab format with students working on data-driven problems, analyses and developing action plans as a result. Students work on several case studies and a major project of personal, professional significance.
Components: Seminar

EDLR 6304(3 credits) Instructor Consent Required Financial and Human Resources Management in Education
Study of human resources development practices in school systems, with emphases on central office and school unit responsibilities for attracting, selecting, developing, evaluating, and retaining competent faculty and staff. This course also includes the study of concepts in school finance and school business management. Attention is given to national, state, and local issues. Emphasis is also given to school support services including transportation, faculty planning and maintenance, food service, and risk management.
Components: Seminar

EDLR 6311(3 credits) Organizational Behavior in Educational Administration
Advanced course focusing on interdisciplinary research about organizations, leadership behavior, and management processes.
Components: Lecture

EDLR 6312(3 credits) Instructor Consent Required Leadership for Teaching and Learning: The Role of
the Leader in School Improvement
Explores leadership skills required to improve instruction and student learning in the school and district. Students develop and apply models to address an instruction/achievement issue in practice.
Components: Seminar

EDLR 6313(3 credits)
Educational Policy and Politics
Study of educational policy; the politics of educational administration; and the processes of policy formulation, implementation and analysis. Specific educational policy areas are examined.
Components: Seminar

EDLR 6314(3 credits)
Instructor Consent Required
Legal Issues in Organizational Management
The legal process and understanding of legal issues in education involving students, teachers, and boards of education.
Components: Seminar

Requirement Group: Open to students in the Ed.D. program in Educational Leadership (RG2751).

EDLR 6320(3 credits)
Instructor Consent Required
Micro Theories for Policy Research
Theoretical perspectives on policy formulation and implementation. Case examples illuminate the origin, development, and interpretation of policies by various policy actors across a range of contexts.
Components: Seminar

EDLR 6321(3 credits)
Instructor Consent Required
Evaluation Theory
Addresses conceptual underpinnings of contemporary approaches to evaluation. Major theories of evaluation in education policy are examined through a case study approach.
Components: Seminar

EDLR 6322(3 credits)
Instructor Consent Required
Economics of Education and School Finance
Use of economic theory and statistical analysis to explore current issues in education policy. Topics may include school finance, school finance reform, standards, assessment, class size, charter schools, tuition tax credits, and vouchers. Open to all graduate students in the Neag School of Education.
Components: Seminar

EDLR 6323(3 credits)
Instructor Consent Required
Seminar in the History of K-12 Education Reforms, 1890-present
Seminar examining the history of K-12 education reforms from the 1890s to the present day.
Components: Seminar

EDLR 6460(3 credits)
Collective Bargaining in Education
This course concerns resolving conflict through self-help, negotiations and arbitration, understanding the Teacher Negotiations Law and methods of dealing with impasses under the law. The course also deals with preparing for negotiations by teacher unions and boards of education.
Components: Lecture

EDLR 6461(3 credits)
Instructor Consent Required Resources Management II
Students will apply the principles of financial and human resources management to advanced educational leadership positions.
Components: Seminar

EDLR 6462(3 credits)
Instructor Consent Required Legal Issues in Human Resources Administration for School Leaders
Provides legal bases for human resources decision-making through reading of primary source materials (statutes, administrative decisions, judicial decisions) and related materials, and related class discussion. Provides students with practical experience in analysis and advocacy in human resource disputes, through mock negotiations, writing model briefs and conducting mock hearings.
Components: Seminar

EDLR 6464(3 credits)
Seminar: Leadership and School Organizations
Study of organizations and leadership from the perspective of the humanities and the social and behavioral sciences.
Components: Seminar

EDLR 6465(3 credits)
Educational Administration Issues and Research
Designing educational research studies; current topics in school administration. This course ordinarily meets for ten full days for special research activities.
Components: Seminar

Requirement Group: Prerequisite: EPSY 5605, EPSY 5607, and EPSY 6601 (RG289).

EDLR 6466(3 credits)
Instructor Consent Required Policies for Improvement: Mobilizing School and Community
Advanced seminar explores perspectives on the policy environment for school improvement. Students identify policy issues, collect data, conduct analyses, and propose actions.
Components: Seminar

EDLR 6467(3 credits)
Program Director Consent
Reqd Social Justice Leadership, Equity and School Change Exploration of various tenets, theoretical tensions, and transformative applications of social justice leadership in American education.
Components: Seminar

GRAD 6930. Full-Time Directed Studies (Doctoral Level) (GRAD 497) 3 credits.

GRAD 6950. Doctoral Dissertation Research (GRAD 495) 1 - 9 credits.

GRAD 6960. Full-Time Doctoral Research (GRAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral) (GRAD 498) Non-credit.

GRAD 6999. Dissertation Preparation (GRAD 499) Non-credit.

EDUCATIONAL PSYCHOLOGY

Department Head: Professor Hariharan Swamianathan
Professors: Bray, Brown, Karan, Kehle, Leu, O’Neill, Reis, Rogers, and Sugai
Associate Professors: Alfano, Britner, Chafoleas, Colbert, Coyle, Gavin, Gubbins, Hannanin, Madaus, McCooch, Pérusse, Siegle, Yakimowski, and Young
Assistant Professors: T. Casa, Faggella-Luby, Little, Olinghouse, Sanetti, Schader, Simonsen, Stephens, and Welsh

Graduate study in the Department of Educational Psychology (http://www.epsy.uconn.edu) leads to the Master of Arts and the Doctor of Philosophy degrees in the fields of study of Educational Psychology, Educational Technology, and Special Education. In addition, the Department offers the Sixth-Year Diploma in Professional Education conferred by the Neag School of Education.

The Field of Educational Psychology.

The M.A. and Ph.D. degrees in Educational Psychology may be taken with concentrations in the areas of Cognition/Instruction; Counselor Education and Counseling Psychology (Ph.D. only); Gifted and Talented Education; Measurement, Evaluation, and Assessment; School Counseling (M.A. only); and School Psychology.

The Concentration in Measurement, Evaluation and Assessment (MEA) prepares graduates to become leaders in educational measurement, program evaluation, large-scale and classroom-based assessment practice, and educational statistics and research methods. The program integrates theory and practice to promote the scientific uses of measurement within the field of education and related disciplines. Coursework emphasizes the development of professional competencies within the area of MEA, and focuses on current and emerging topics including instrument development, measurement theory and applications, multilevel modeling, item-response theory, sampling methods, and educational assessment. Faculty support strong student/faculty interactions to promote research excellence and the development of significant contributions to the field. Contact H. Jane Rogers at Unit 2064 for more information.

The Ph.D. Concentration in Counselor Education and Counseling Psychology is intended to prepare Counselor Educators. Mandatory bi-monthly seminars including all the program’s doctoral students and full-time faculty are an integral part of the program and are intended to promote a mutually supportive community of scholars that are actively addressing critical issues in the field. To build their credentials as future professors, all the program’s Ph.D. students are expected to assist the faculty in teaching a minimum of two graduate courses in our master’s degree program in school counseling; to make presentations at state, regional, and/or national professional conferences; and to collaborate with faculty and their peers on research studies resulting in publishable manuscripts. Doctoral students are involved in all aspects of our master’s program. The mission of the
master's program is to prepare professional school counselors to work with students of all age levels with special emphasis on poor and minority youth. It leads to state certification as a school counselor.

The doctoral program includes core academic requirements designed to enhance the students' research skills as well as a variety of specialty tracks from which students may choose the one that best meets their professional interests and career goals. The specialty tracks are in the following areas: (1) program evaluation, (2) qualitative research methodology, (3) primary prevention, (4) gifted and talented education, (5) positive behavioral supports, (6) licensure as a professional counselor, and (7) licensure as a counseling psychologist. Contact O. Karan at Unit 2064 for more information.

The Concentration in School Psychology is accredited by the American Psychological Association. The Master's Sixth Year program also is approved by the National Association of School Psychologists. The program adheres to the scientist-practitioner model of graduate education which assumes that the effective practice of school psychology is based on knowledge gained from established methods of scientific inquiry. Emphasis is on the preparation of competent practitioners who are skilled and dedicated researchers who will contribute to the knowledge base in school psychology. In addition, the program is designed to acquaint students with the diversity of theories and practices of school psychology, allowing the student sufficient intellectual freedom to experiment with different delivery systems and various theoretical bases. The atmosphere is intended to foster student-faculty interaction, critical debate, and respect for theoretical diversity of practice, thus creating a more intense and exciting learning experience. The faculty believe that such an environment encourages and reinforces the student's creativity and intellectual risk-taking that are fundamental in the further development of the professional practice of school psychology. Contact T.J. Kehle at Unit 2064 for more information.

The Concentration in Cognition/Instruction links psychological theory with research and educational practice. The program emphasizes learning, cognition, instructional design, research, and theoretical perspectives on new literacies and instruction. Course work typically includes the study of instructional theories and models from cognitive psychology, motivation, emerging technologies and research methods. Additionally, research experiences are encouraged both at the University and in more applied settings. Contact the Graduate Program Coordinator at Unit 2064 or visit http://www.education.uconn.edu/departments/epsy/COGN/COGN.cfm for additional information.

The Concentration in Gifted and Talented Education prepares individuals for leadership roles as gifted education program coordinators, curriculum development specialists, regional or state gifted education agency directors, and for positions as teachers and researchers in higher education settings. The program of study includes course work on strategies and program models for developing student talent, field experiences in school settings, and research investigations that provide worthwhile and creative contributions to the literature. Contact E. J. Gubbins at Unit 3007 for more information.

The Field of Educational Technology.

The program in Educational Technology emphasizes the study of the use of various media to promote learning and instruction. Special emphasis is placed on research, and development and design of instruction based on the latest instructional technologies. Students completing the program may work in academic or in training settings.

The Field of Special Education.

The program in general Special Education is an individualized program, containing a number of emphases, including study in teacher education, transition, behavioral disorders, school reform, learning disabilities, literacy, developmental disabilities, and secondary and postsecondary education and services for students with disabilities, among others. Our commitment is to inspire and prepare professionals in special education to create and broaden opportunities for individuals with disabilities. Students are encouraged to develop their interests in educating learners at risk across a wide range of disabilities incorporating a lifespan perspective. The doctoral program is designed to enhance independent thinking and leadership qualities through an individualized program embedded in a thorough knowledge of theory and the existing literature and culminating in active research to guide, direct, and inform the field. Contact M. Coyne at Unit 2064 for more information.

COURSES OF STUDY

EPSY 5107(3 credits)
Curriculum Issues in Special Education
Program and curriculum planning for students with moderate to mild disabilities with particular attention given to relating individual education plans to school curricula.
Components: Lecture

EPSY 5108(3 credits)
Instruction for Students with Special Needs in the Mainstream
Focus on planning for and working with students with special needs in schools.
Components: Lecture

EPSY 5109(3 credits)
Individual Pupil Assessment
Diagnosis and prescription for children with special learning and behavioral disabilities, including administration, scoring and interpretation of pupil assessment instruments.
Components: Lecture

EPSY 5119(3 credits)
Policy, Law, and Ethics in Special Education
The impact of policy and law on the professional role of special educators.
Components: Lecture

EPSY 5121(3 credits)
Developmental Foundations of Exceptionality
An exploration of the link between normative theory and research in child development with assessment, understanding, and intervention for children and youth with exceptionalities.
Components: Lecture

EPSY 5127(3 credits)
Adm Supv Special Ed
Adm Supv Special Ed
Components: Lecture

EPSY 5135(3 credits)
Instructor Consent Required School-wide Proactive Discipline and Positive Behavior Supports
The purpose of this course is to give school administrators processes and practices for establishing and sustaining implementation of a systems approach to school-wide proactive discipline and positive behavior support (SWPBIS). Emphasis is focused on the establishment, activities, and features of positive behavioral interventions and supports. Four elements will be emphasized: (a) data-based decision making, (b) research-validated practices, (c) meaningful outcomes, and (c) efficient systems.
Components: Lecture

EPSY 5138(1 credits)
Responding to Violence in the Schools
Addresses how incidences of violence in the schools can be prevented, contained, and kept at a minimum with prevention programs, and immediate interventions to contain incidents of violence.
Components: Seminar

EPSY 5140(3 credits)
Transition Planning for Students with Disabilities
An examination of relevant legislation and recommended practices related to person-centered transition planning for students with disabilities in post-school and adult life, including postsecondary education, employment, community participation, and independent living.
Components: Lecture

The Concentration in Gifted and Talented Education prepares individuals for leadership roles as gifted education program coordinators, curriculum development specialists, regional or state gifted education agency directors, and for positions as teachers and researchers in higher education settings. The program of study includes course work on strategies and program models for developing student talent, field experiences in school settings, and research investigations that provide worthwhile and creative contributions to the literature. Contact E. J. Gubbins at Unit 3007 for more information.

The Field of Educational Technology.

The program in Educational Technology emphasizes the study of the use of various media to promote learning and instruction. Special emphasis is placed on research, and development and design of instruction based on the latest instructional technologies. Students completing the program may work in academic or in training settings.

The Field of Special Education.

The program in general Special Education is an individualized program, containing a number of emphases, including study in teacher education, transition, behavioral disorders, school reform, learning disabilities, literacy, developmental disabilities, and secondary and postsecondary education and services for students with disabilities, among others. Our commitment is to inspire and prepare professionals in special education to create and broaden opportunities for individuals with disabilities. Students are encouraged to develop their interests in educating learners at risk across a wide range of disabilities incorporating a lifespan perspective. The doctoral program is designed to enhance independent thinking and leadership qualities through an individualized program embedded in a thorough knowledge of theory and the existing literature and culminating in active research to guide, direct, and inform the field. Contact M. Coyne at Unit 2064 for more information.

COURSES OF STUDY

EPSY 5092(1 - 6 credits)
Practicum
The implementation and application of theory in the student's area of specialization. Open to master's and Sixth-Year students.
Components: Practicum

EPSY 5107(3 credits)
Curriculum Issues in Special Education
Program and curriculum planning for students with moderate to mild disabilities with particular attention given to relating individual education plans to school curricula.
Components: Lecture

EPSY 5108(3 credits)
Instruction for Students with Special Needs in the Mainstream
Focus on planning for and working with students with special needs in schools.
Components: Lecture

EPSY 5113(3 credits)
Lang & Lit Cog Dis
Lang & Lit Cog Dis
Components: Lecture

EPSY 5116(3 credits)
Individual Pupil Assessment
Diagnosis and prescription for children with special learning and behavioral disabilities, including administration, scoring and interpretation of pupil assessment instruments.
Components: Lecture

EPSY 5119(3 credits)
Policy, Law, and Ethics in Special Education
The impact of policy and law on the professional role of special educators.
Components: Lecture

EPSY 5121(3 credits)
Developmental Foundations of Exceptionality
An exploration of the link between normative theory and research in child development with assessment, understanding, and intervention for children and youth with exceptionalities.
Components: Lecture

EPSY 5127(3 credits)
Adm Supv Special Ed
Adm Supv Special Ed
Components: Lecture

EPSY 5135(3 credits)
Instructor Consent Required School-wide Proactive Discipline and Positive Behavior Supports
The purpose of this course is to give school administrators processes and practices for establishing and sustaining implementation of a systems approach to school-wide proactive discipline and positive behavior support (SWPBIS). Emphasis is focused on the establishment, activities, and features of positive behavioral interventions and supports. Four elements will be emphasized: (a) data-based decision making, (b) research-validated practices, (c) meaningful outcomes, and (c) efficient systems.
Components: Lecture

EPSY 5138(1 credits)
Responding to Violence in the Schools
Addresses how incidences of violence in the schools can be prevented, contained, and kept at a minimum with prevention programs, and immediate interventions to contain incidents of violence.
Components: Seminar

EPSY 5140(3 credits)
Transition Planning for Students with Disabilities
An examination of relevant legislation and recommended practices related to person-centered transition planning for students with disabilities in post-school and adult life, including postsecondary education, employment, community participation, and independent living.
Components: Lecture
EDUCATIONAL PSYCHOLOGY

EPsy 5141(3 credits)
Classroom and Behavior Management for Special Educators
An introduction to Positive Behavior Interventions and Supports (PBIS), including theoretical and empirical support, three-tiered model, and implementation strategies.
Components: Lecture

EPsy 5142(3 credits)
Individualized Positive Behavior Support
Approaches for adapting programs to the behavioral, social and emotional needs of exceptional learners.
Components: Lecture
Requirement Group: Prerequisite: EPsy 5141 (RG 4509).

EPsy 5145(3 credits)
Issues in Postsecondary Disability Services
An examination of issues relating to the assurance of equal educational access for students with disabilities in postsecondary settings.
Components: Lecture

EPsy 5160(3 credits)
Considerations in the Provision of Assistive Technology
Emphasis will be on the consideration of assistive technology in the educational environment and will encompass the scope of activities involved in considering whether assistive technology is needed for a student to receive a free and appropriate education. This course is a required prerequisite for all other course work in the assistive technology emphasis.
Components: Lecture

EPsy 5161(3 credits)
Assistive Technology for Access
This course will provide an introduction to alternate access to the computer as a tool for the performance of educational tasks. Included will be an exploration of alternate and adaptive pointing and keyboard devices as well as software to enhance accessibility and productivity for persons with motor impairment, sensory challenges, and cognitive difficulties. Emphasis in the course will be on assistive technology solutions and applications for persons with significant disabilities in the educational environment.
Components: Lecture

EPsy 5163(3 credits)
Assistive Technology for the Struggling Learner
This course will explore the use of assistive technology tools across a continuum of low to mid to high tech aid in the efficiency, organization, and productivity of the struggling learner.
Components: Lecture

EPsy 5183(1 credits)
Lectures in Education
A course in which staff members and authorities in education and related fields discuss selected problems.
Components: Lecture

EPsy 5187(1 - 6 credits)
Clinical Experiences in Integrated Settings
An intensive supervised clinical experience that provides opportunities for students to plan and deliver integrated programs for students with and without special needs. A cooperative venture between the School of Education and the Professional Development Centers (public schools).
Components: Practicum

EPsy 5188(6 credits) Instructor Consent Required
School-based Practicum in Communication Disorders
100 clock hours of practicum in assessment, treatment, and prevention of communication disorders in children PreK-Grade 12.
Components: Practicum
Requirement Group: Open only to MA in Communication Disorders. (RG4759)

EPsy 5194(3 credits)
Seminar
Analysis of the issues and research in the field of education. Open to master’s and Sixth-Year students.
Components: Seminar

EPsy 5195(1 - 3 credits)
Workshop in Education
Professional personnel to work cooperatively on problems arising out of actual school situations.
Components: Lecture

EPsy 5198(1 - 6 credits)
Curriculum Laboratory
Reorganization of courses, reorientation of the program of studies, articulation of administrative units, and development of new materials are considered in relation to the local situation. Students make individual studies of their specific problems, and group studies of related problems.
Components: Practicum

EPsy 5199(1 - 3 credits) Instructor Consent Required
Independent Study in Education
Students requesting this course should have a significant background in education and should present to the instructor problems, well-defined and well laid out for investigation, which hold special interest for them and which will be pursued on the plane of advanced study.
Components: Independent Study

EPsy 5210(3 credits)
Learning with Technology
Uses a problem-based design format to integrate learning theory and principles with educational technology to develop an integrated lesson plan in a content area. Students select meaningful authentic problems to integrate.
Components: Lecture

EPsy 5220(3 credits)
Introduction to Educational Technology
Instructional applications of productivity software and educational technology.
Components: Lecture

EPsy 5230(3 credits)
Web-Based Learning
Design, development, delivery and evaluation of web-based instruction.
Components: Lecture

EPsy 5235(3 credits)
Design and Production of Multimedia Presentations
Students will prepare presentations using slides, motion pictures, audiotapes and overhead transparencies; and will explore application of other technological developments to multimedia uses.
Components: Lecture

EPsy 5240(3 credits)
Interactive Learning Environments
This course is a broad overview of the interactive learning environments (ILEs) that are being used in Education. It will introduce students to current research in development and implementation of ILEs.
Components: Lecture

EPsy 5250(3 credits)
Software Design and Evaluation
This course provides students with the knowledge and experience in design and evaluation of educational software.
Components: Lecture

EPsy 5301(3 credits)
Group Processes in Counseling
Experiential and theoretical introduction to group process and dynamics.
Components: Lecture

EPsy 5304(3 credits)
Foundations and Contents of School Counseling
Basic philosophical and professional premises of the counseling profession. History of counseling profession, counselor’s roles and functions, role of research/theory in counseling, and professional ethics. Individual group, and preventive counseling approaches.
Components: Lecture

EPsy 5306(3 credits)
Principles of Career Development in Counseling
Career development and career psychology. Adolescents and adults.
Components: Lecture

EPsy 5307(3 credits)
Professional Orientation of School Counseling
Principles and practices of pupil personnel work in educational institutions including all aspects of pupil personnel services; the role of the school counselor as a pupil personnel worker; and as a consultant on teacher-pupil relations.
Components: Lecture
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSY 5308</td>
<td>Counseling: Theory and Practice</td>
<td>3</td>
<td></td>
<td></td>
<td>Contemporary theories and practices of essential helping skills. Components: Laboratory, Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Prerequisite: EPSY 5307 (RG291).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5309</td>
<td>Gender Role Conflict Issues for Helping Professionals</td>
<td>3</td>
<td></td>
<td></td>
<td>Intensive review of gender role socialization in a workshop setting, emphasizing men's and women's gender role conflicts across the life span. Lectures, readings, discussions, self assessments, and media are used to explicate core concepts and themes. Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Prerequisite: EPSY 5307, EPSY 5602 (RG307).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5315</td>
<td>Multi-Cultural Parent-Professional Alliances</td>
<td>3</td>
<td></td>
<td></td>
<td>Alliance-building processes between helping professionals and parents. Multi-cultural relationship development. Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Prerequisite: EPSY 5308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5314</td>
<td>Appraisal Procedures in Counseling</td>
<td>3</td>
<td></td>
<td></td>
<td>Use of instruments for estimating abilities, achievements, interest and personality; interpretation of appraisal procedures in counseling. Components: Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Prerequisite: EPSY 5306 and EPSY 5602 (RG307).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5315</td>
<td>Instructor Consent Required Counseling: Advanced Practice</td>
<td>3</td>
<td></td>
<td></td>
<td>Continuing the work begun in EPSY 316; to strengthen and extend helping skills. Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Prerequisite: EPSY 5308 (RG308).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5316</td>
<td>Cross-Cultural Counseling</td>
<td>3</td>
<td></td>
<td></td>
<td>Theories, skills and practices of counseling with culturally different persons in mental health settings. Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Prerequisite: EPSY 5308 and EPSY 5315 (RG311).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5317</td>
<td>Instructor Consent Required Field Work in Counseling and Personnel Supervised experience in counseling and related practices in schools and agencies with a concurrent supervisory seminar. Components: Practicum</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5318</td>
<td>Program Director Consent Reqd Human Growth and Development over the Lifespan: Implications for Counselors A review of human growth and development over the lifespan using psychosocial theory with an emphasis on individual and family transitions, learning processes, personality, developmental crises, gender role conflicts and transitions, ethical issues, and strategies to optimize human potential. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5319</td>
<td>(3 credits) Instructor Consent Required School Counseling Internship Post practicum experience in school counseling under the supervision of a fully trained and certified professional school counselor for the duration of one school year along with an accompanying on-campus seminar. All core courses in the school counseling program must be completed prior to beginning the internship. This course may be repeated once for a maximum of 12 credits. Components: Practicum</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5320</td>
<td>Critical Issues in School Counseling This course covers three main topics. These include an introduction to the broad profession of counseling: the ethical standards of the American Counseling Association and the American School Counseling Association; and a review and analysis of the critical and emerging issues/incidents facing today's professional school counselors. Components: Seminar</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5339</td>
<td>Assistive Technology for Curriculum Access This course will explore the range of assistive technology devices and software for curriculum access from the preschool through secondary environments. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5396</td>
<td>Directed Student Teaching for Students in the Teacher Certification Program for College Graduates Supervised student teaching in special education. Components: Clinical Requirement Group: Open to students in the Teaching Certification Program for College Graduates, others with permission (RG2794).</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5402</td>
<td>Individual Differences in Learners Foundations for individual differences among elementary and secondary school pupils. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5403</td>
<td>Instructor Consent Required Intellectual Assessment Administration of the standard instruments of intellectual assessment and synthesis of the test information into an assessment report. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5404</td>
<td>Pupil Behavior: Studies in Clinical Diagnosis Diagnosis of school problems, report writing for school purposes, and an analysis of needs for referral. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5405</td>
<td>Applied Behavior Analysis Introduction to theories and application of behavioral techniques. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5406</td>
<td>Consultation Theories and Practices Theories and practices of professional consultation with an emphasis on actual interventions in schools, corporations and social service agencies. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5407</td>
<td>Ethics in Educational and Professional Psychology Explores the nature of professional virtue in psychology and related educational and human service disciplines. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5408</td>
<td>Critical Issues in School Counseling under the supervision of a fully trained and certified professional School Psychologist for the duration of one school year along with an accompanying on-campus seminar. All core courses in the School Psychology program must be completed prior to beginning the internship. This course may be repeated once for a maximum of 12 credits. Components: Practicum</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5510</td>
<td>Learning: Its Implic. for Education Nature and types of learning, transfer of training, motivation, nature of instructional outcomes, with particular attention to individual differences among elementary and secondary school pupils. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5515</td>
<td>Professional Seminar in Cognition & Instruction A professional seminar designed to present topics, paradigms, models, and theories in the various fields of educational psychology. The current research programs of the graduate faculty in Cognition and Instruction are presented for discussion in a seminar format. Components: Seminar</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5520</td>
<td>Instructional Design Overview of the field of instructional design: instructional theories, prescriptive models, instructional strategies, issues and trends as they relate to the comprehensive development of instructional systems. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5530</td>
<td>Theories of Learning, Cognition and Instruction Behavioral and cognitive psychology as it applies to instruction. Components: Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPSY 5540</td>
<td>Research Ethics in Education and Psychology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Description</td>
<td>Component(s)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>EPSY 5601</td>
<td>Principles and Methods in Educational Research</td>
<td>3</td>
<td>Methods of research in education designed for Master's level students.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5602</td>
<td>Educational Tests and Measurements</td>
<td>3</td>
<td>The development of measurement and evaluation techniques.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5603</td>
<td>Methods of Inquiry</td>
<td>3</td>
<td>Fundamentals of qualitative and quantitative research in education.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5605</td>
<td>Quantitative Methods in Research I</td>
<td>3</td>
<td>Quantitative procedures and analysis of computer output including descriptive and inferential statistics through one-way analysis of variance.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5607</td>
<td>Quantitative Methods in Research II</td>
<td>3</td>
<td>Quantitative procedures and analysis of computer output including factorial analysis of variance, analysis of covariance, and multiple regression.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5610</td>
<td>Applied Regression Analysis for the Education Sciences</td>
<td>3</td>
<td>Multiple regression analysis and related techniques with applications to research in education. Topics include assumptions and inference; matrix representations; diagnostics and remedial measures; polynomial regression and interaction models; treatment of categorical independent variables, autocorrelation of errors in time series data, problems of missing values and selection bias, and logistic and ordinal regression models.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5613</td>
<td>Instructor Consent Required Multivariate Analysis in Educational Research</td>
<td>3</td>
<td>An extension of EPSY 313. Practical emphasis on multiple regression, canonical correlation, multivariate analysis of variance and covariance, discriminant function analysis, and factor analysis.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5621</td>
<td>Construction of Evaluation Instruments</td>
<td>3</td>
<td>The theory and construction of assessment instruments in the affective domain.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5645</td>
<td>Computer Methods in Educational Research</td>
<td>2</td>
<td>Introduction to the UConn mainframe and microcomputers, data preparation and verification, Job Control Language, XEdit procedures, and SPSS-X.</td>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>EPSY 5671</td>
<td>School-Based Systems Interventions</td>
<td>3</td>
<td>Examination of current professional issues, theoretical models, and research related to the design interventions.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5710</td>
<td>Introduction to Gifted Education and Talent Development</td>
<td>3</td>
<td>Issues encountered in developing giftedness and talents in students: the nature of exceptional abilities, the history of special provisions, major scientific studies dealing with superior abilities, and contemporary educational systems and models.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5720</td>
<td>Developing Schoolwide Enrichment Programs</td>
<td>3</td>
<td>An overview of the theory and research behind and components within the Schoolwide Enrichment Model. Practical techniques for implementing the model in classrooms and school districts.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5740</td>
<td>Strategies for Differentiating the Grade Level Curriculum</td>
<td>3</td>
<td>Instructional and managerial techniques for use within or between classrooms to address learning differences among students. Strategies for improving academic achievement and success of diverse learners. Current and promising practices, as well as relevant research.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5750</td>
<td>Creativity</td>
<td>3</td>
<td>The identification of creative thinking and problem solving and the development and implications of creativity training materials and teaching strategies.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5760</td>
<td>Improving Students' Thinking Skills</td>
<td>3</td>
<td>Designed for teachers and administrators who wish to acquire more information about current research, trends and practices within the field of thinking skills instruction. An overview of the field, with special emphasis on research-based practices, major programs, and models for the improvement of thinking skills.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 5780</td>
<td>Social and Emotional Components of Giftedness and Talent Development</td>
<td>3</td>
<td>Review of current research on affective growth and potential adjustment problems of gifted and talented youth. Vocational concerns, self-concept, self-esteem, and the teacher's role in preventing or remediating affective problems related to giftedness.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 6103</td>
<td>Grant Writing</td>
<td>3</td>
<td>The grant procurement process is covered from identifying funding sources through initial grant management with a focus on actually writing a grant proposal.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 6194</td>
<td>Doctoral Seminar</td>
<td>1-3</td>
<td>Cooperative study of developments and problems in the student's area of study.</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>EPSY 6220</td>
<td>Video Design for Learning</td>
<td>3</td>
<td>Advanced principles of the video medium and its application to the learning process, instructional message design and the implementation of existing and emerging video delivery systems.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 6230</td>
<td>Advanced Educational Technology</td>
<td>3</td>
<td>Readings, research and development of instructional materials using applications of advanced educational technology.</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>EPSY 6240</td>
<td>Academic Motivation: Theory, Research and Practice</td>
<td>3</td>
<td>The purpose of this course is to examine theory, research and practice related to motivation, particularly the motivation to learn in academic settings. Specifically, the goals of this course are to introduce students to the field of the psychological study of motivation to learn in school settings; to explore the conceptual and practical value of framing of school and learning from a motivational and developmental perspective; to assist students in exploring how motivational theory and research may relate to their own areas of interest and help them in integrating motivational constructs into their research; and for participants to learn from each other and together read interesting new work on motivation to learn (a caring community is the crucible within which learning of enduring value unfolds). This course is designed for graduate students who are studying issues related to motivation to learn in school settings during the first two decades of life.</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>EPSY 5510</td>
<td>Requirement Group: Prerequisite: EPSY 5510</td>
<td>3</td>
<td>(R64148)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instrument design, types of research methods and problem formulation, stating hypotheses, sampling, investigation of educational problems, including A survey of the principal methods employed in the methods and techniques of educational research.

EPSY 6601 (3 credits)
Instructor Consent Required
Advanced Group Processes
Component: Seminar
Student observers in a basic group course. Processing and analyzing of group processes.
Component: Seminar
Prerequisite: EPSY 5637.

EPSY 6302 (3 credits)
Prevention and Intervention in Schools, Education, and the Community
The theory, practice, and science of primary prevention of human problems in schools, education, and the community. Prevention concepts and case studies are presented by the faculty. Students give analysis and critique of course content and develop personal perspectives on prevention interventions and skills in the context of their careers.
Component: Lecture
Prerequisite: EPSY 5605 (309), and EPSY 6605 (313) (RG3726).

EPSY 6611 (3 credits)
Logistic and Hierarchical Linear Models
In-depth coverage of specialized topics in educational statistics including logistic regression and hierarchical linear models.
Component: Lecture
Prerequisite: EPSY 5605, EPSY 5607, and EPSY 6601 (RG289).

EPSY 6626 (3 credits)
Sampling Designs and Survey Research Methods in Education
Probability and non-probability sampling, single- and multi-stage sampling, sampling errors, design effects, unit-of-analysis concerns, confidentiality/anonymity issues, questionnaire design, interview procedures, item development, question format, ethics.
Component: Lecture
Prerequisite: EPSY 5605, EPSY 5607, and EPSY 6601 (RG289).

EPSY 6621 (3 credits)
Program Evaluation
An overview of quantitative and qualitative procedures used in the evaluation of educational programs. Current trends and practical applications are stressed.
Component: Lecture
Prerequisite: EPSY 5605, EPSY 5607, and EPSY 6601 (RG289).

EPSY 6635 (3 credits)
Measurement of Variables in Cognitive Psychology
Review of theory and research related to the measurement of variables in cognitive psychology such as domain knowledge, strategy knowledge, and motivation. Specific emphasis will be placed on the use of statistical theories and tools employed to study the reliability and validity of test scores. These tools include: generalizability theory, factor analysis, item response theory, and multidimensional scaling.
Component: Lecture
Prerequisite: EPSY 5605, EPSY 5607, and EPSY 6601 (RG289).

EPSY 6638 (3 credits)
Item Response Theory
An advanced course in educational and psychological testing theory. This course emphasizes the principles and processes of the most sophisticated approach to educational test construction and scoring available today.
Component: Lecture
Prerequisite: EPSY 5605, EPSY 5607, and EPSY 6601 (RG289).
ELECTRICAL ENGINEERING

Department Head: Professor Peter Luh
Professors: Anwar, Bansal, Bar-Shalom, Enderle, Jain, Javid, Pattipati, Taylor, Willett, and Zhu
Professor-in-Residence: DeMaria
Research Professor: Boggs
Associate Professors: Ayers, Chandy, Donkor, Escabi, Fei, Tehranipoor, and L. Wang,
Assistant Professors: Gokirmak, Park, Silva, Zhang, and Zhou

The following areas of study and research leading to M.S. and Ph.D. degrees are offered: Electronics, Photonics, and Biophotonics; and Information, Communication, Decision, Biosystems. In addition, areas of emphasis in computer engineering (M.S. and Ph.D.) and nanotechnology (M.S.) are available. Students may also choose to pursue an M.S. degree in Electrical Engineering without a concentration.

The significant involvement of the Department of Electrical and Computer Engineering in interdisciplinary programs, e.g., Biomedical Engineering, is indicative of the broad scope of its basic interests and activities. Admission to one of the programs does not require an undergraduate degree in electrical engineering. It is quite common for graduate students with undergraduate degrees in other fields of engineering or in biology, mathematics, and physics to hold fellowships, assistantships, and part-time instructorships in the Department of Electrical and Computer Engineering. This mixing of faculty and graduate students with a variety of backgrounds integrates diverse ideas into departmental research projects.

Research and education in information, communication, decision, and biosystems includes human-machine systems, manufacturing systems, power systems, digital and optical signal processing, optical computing, image analysis and processing, optoelectronic neural networks computer-aided design, estimation theory, and stochastic communication and control. Activities in electronics, photonics, and biophotonics include research in diffractive optics, optoelectronics, biophotonics, nanostructure engineering, sensor technology, electro-optics, quantum electronics, semiconductor lasers, semiconductor heterojunctions with application to integrated circuits, electronic materials, antenna design, microwave technology, power electronics, and high voltage engineering. Research in computer engineering includes computer systems, trustable computing, VLSI design and testing, computer architecture, low power embedded systems, molecular computing, and high-performance computing. Separate listings should be consulted for information concerning biomedical engineering as well as for collaborative fields such as computer science and materials science.

Special Requirements for the Ph.D. Program.
Admitted students must submit evidence of capability for independent study in the form of a master's thesis or comparable achievement.

For information regarding fellowships, assistantships, and part-time instructorships, the applicant should address the chairperson of the Information, Communication, Decision, and Biosystems Graduate Admissions Committee, or the Electronics, Photonics, and Biophotonics Graduate Admissions Committee, depending upon the major interest of the applicant. The address in both cases is 371 Fairfield Way, Unit 2157, Room 450, Storrs, Connecticut 06269-2157. Further information about the Biomedical Engineering program is available from the Admissions Chair of the Biomedical Engineering field of study, 260 Glenbrook Road, Unit 2247, Storrs, Connecticut 06269-2247.

Special Facilities.
Departmental facilities include the following research laboratories: Biomedical Instrumentation Laboratory, Cyber Laboratory, Electrical Insulation Research Laboratory, Central Laboratory for Imaging Research, Micro/Opto-electronics Research Laboratory, Nanotechnology Laboratory, Optical Signal Processing/Computing Laboratory, Manufacturing Systems Laboratory, and the Photonics Research Laboratory. These laboratories contain a variety of computers and workstations, interface facilities, a clean room with semiconductor growth and characterization facilities, MBE and MOVPE facilities, and other specialized equipment. Fellowships, assistantships, and part-time instructorships are available. For more information, visit <www.engr.uconn.edu/ece/>.

COURSES OF STUDY

ECE 5101 (3 credits)
Introduction to System Theory
Components: Lecture

ECE 5121 (3 credits)
Instructor Consent Required
Multivariable Digital and Robust Control Systems Analysis and design of robust multivariable control systems incorporating a digital computer as the controlling element. Topics include: Mathematical models of discrete-time systems, Discretization of continuous-time systems, Measures of control system performance, Classical single input-single output design methods, Compensator design via discrete-equivalent and direct design methods, State variable design via discrete equivalent and pole placement methods, Linear quadratic regulator (LQR) control, H2 and H-infinity optimal control, numerical optimization and nonlinear control.
Components: Lecture

ECE 5201 (3 credits)
Electromagnetic Wave Propagation
Engineering application of Maxwell's field theory to electromagnetic wave propagation in various media. Reflection, refraction, diffraction, dispersion, and attenuation. Propagation in sea water and in the ionosphere.
Components: Lecture

ECE 5211 (3 credits)
Semiconductor Devices and Models
Band theory, conduction in semiconductors, carrier statistics, deep levels, impurities with multiple charge states, heavy doping effects, non-uniform doping. Non-equilibrium processes, carrier scattering mechanisms, the continuity equation, avalanche multiplication, carrier generation, recombination, and lifetime. P-n junctions, non-abrupt junctions, various injection regimes, and device models. Metal semiconductor junctions, current transport mechanisms, and models. BJTs, JFET, MESFET, and MOSFET, and device models.
Components: Lecture

ECE 5212 (3 credits)
Fundamentals of Opto-Electronic Devices
Absorption and emission mechanisms in direct and indirect semiconductors. Semiconductor optoelectronic devices such as light-emitting diodes, injection lasers, photodiodes, solar cells, and integrated optics.
Components: Lecture

ECE 5213 (4 credits)
MOS Device & VLSI Fundamentals
Physics of MOS capacitors and transistors, derivation of V-1 relation expressing subthreshold, threshold, and saturation region behavior; short-channel effects in scaled-down transistors; scaling laws; VLSI fabrication technologies; design and layout gates and gate arrays; physics, device layout and design of semiconductor memories including static and dynamic RAMs. Laboratory emphasizes introduction to nonvolatile RAMs; computer aids in VLSI design; schematic capture, SPICE simulation, layout of custom IC's, and VHDL.
Components: Lecture

ECE 5225/3 credits
Instructor Consent Required
Electronic Device Design and Characterization
Recommended Preparation: ECE 4211 or equivalent course
Design and evaluation of micro/nano electronic devices using state-of-the-art computer simulation tools, ex-perimental electrical characterization of semiconductor devices and overview of modern electronic devices such as high-performance MOSFETs, TFTs, solar cells, non-volatile memories, CCDs, thermoelectric power generators. The electronic device (such as nanometer scale field effect transistor) design project will involve use of Synopsys tools to simulate the fabrication process, device simulation and performance evaluation.
Components: Laboratory, Lecture

ECE 5231 (3 credits)
Instructor Consent Required
Fund Of Photonics
Principles of optics including rays, waves, beams, electromagnetics, polarization and statistics. Basic postulates, simple optical components, graded index and matrix optics, monochromatic waves, interference, polychromatic light, Gaussian beams and propagation, diffraction, Fourier transforms, holography, dispersion and pulse propagation, polarizing devices and applications.Concepts of coherence and partial coherence as
applied to various light sources in optical experiments and systems.
Components: Lecture

ECE 5232(3 credits)
Optoelectronic Devices
Components: Lecture

ECE 5233(3 credits)
Optical Systems Engineering
Design and analysis of paraxial optical systems, including stable and unstable laser resonators, and the propagation of geometric beams, Gaussian beams, and plane waves through complex optical systems. Topics include ray optics; ray matrices; polarization of light; diffraction theory; the connection between geometrical optics and diffraction; and performance analysis.
Components: Lecture

ECE 5234(3 credits)
Optical Waveguides
Propagation of electromagnetic waves in dielectric slab and fiber waveguides as described by geometrical ray optics and normal mode analysis. Integrated optic guides, step and graded index fiber guides. Single mode vs. multimode transmission, coupling, and other system considerations.
Components: Lecture

ECE 5301(3 credits) Instructor Consent Required
Engineering Problems in the Hospital
Given in collaboration with staff from the University's School of Medicine and from hospitals in Hartford. Aim is to familiarize the student with engineering problems in a modern hospital. Role of the small computer in the hospital; implanted pacemakers; heart catheterization. Students are expected to investigate and solve an engineering problem associated with clinical medicine as a semester project.
Components: Lecture
Course Equivalents: BME 5050

ECE 6094(1 credits)
Seminar
Presentation and discussion of advanced electrical engineering problems. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).
Components: Seminar

ECE 6095(1 - 3 credits)
Special Topics in Electrical and Systems Engineering

Classroom and/or laboratory courses in special topics as announced in advance for each semester.
Components: Lecture

ECE 6099(1 - 6 credits) Instructor Consent Required
Independent Study in Electrical Engineering
Individual exploration of special topics as arranged by the student with an instructor of his or her choice.
Components: Independent Study

ECE 6101(3 credits)
Linear Multivariable System Design
Components: Lecture
Requirement Group: Prerequisites: ECE 5101 and 6111 (RG330).

ECE 6102(3 credits) Instructor Consent Required
Optimal and Model Predictive Control
Optimal Control, including optimization techniques for linear and nonlinear systems, calculus of variations, dynamic programming, the Pontryagin maximum principle, and computational methods. Linear Model Predictive Control, including process models and model prediction methods of state space description, transfer matrix representation, and neural network representation; and optimization methods without and with constraints. Nonlinear Model Predictive Control.
Components: Lecture
Requirement Group: Prerequisites: ECE 5101 and 6111 (RG330).

ECE 6103(3 credits)
Nonlinear System Theory
Components: Lecture
Requirement Group: Prerequisites: ECE 5101 and 6111 (RG330).

ECE 6104(3 credits)
Info Control & Games
Problems of static and dynamic optimization where more than one decision maker is involved, each having own payoff and access to different information. Review of elementary decision and control theory, non-cooperative games, cooperative games, bargaining models, differential games, team decision theory, Nash games, Stackelberg games (leader-follower problems). Introduction to large-scale systems and hierarchical control.
Components: Lecture
Requirement Group: Prerequisite: ECE 5101 and ECE 6111 (RG330).

ECE 6105(3 credits)
Man-Machine Systems Analysis
Role of the human as a decision and control element in a feedback loop. Mathematical models of human control characteristics and instrument monitoring behavior. Effects of human limitations upon overall task performance. Parallel discussion of measurement and experimental techniques. Validation of theoretical results by comparisons with existing human response data.
Components: Lecture
Requirement Group: Prerequisite: ECE 5101 and ECE 6111 (RG333).

ECE 6106(3 credits) Instructor Consent Required
Experimental Investigation of Control Systems
A study of experimental techniques and advanced design of control systems.
Components: Lecture
Requirement Group: Prerequisite: ECE 6111 and ECE 6103 (RG334).

ECE 6107(3 credits)
Stochastic Control
Components: Lecture
Requirement Group: Prerequisite: ECE 5101 or ECE 6111 (RG343).

ECE 6108(3 credits)
Linear Programming and Network Flows
Computational methods for linear programming with special emphasis on sequential and parallel algorithms for Network Flow Problems. Standard and canonical forms of linear programming, revised Simplex methods, basis updates, decomposition methods, duality, shortest paths, minimal spanning trees, maximum flows, assignment problems, minimum cost network flows, and transportation problems.
Components: Lecture
Requirement Group: Prerequisites: ECE 5101 and 6111 (RG330).

ECE 6111(3 credits)
Applied Probability and Stochastic Processes
Components: Lecture

ECE 6121(3 credits)
Information Theory
Basic concepts: entropy, mutual information, transmission rate and channel capacity. Coding for noiseless and noisy transmission. Universal and robust codes. Information-theoretic aspects of multiple-access communication systems. Source encoding, rate distortion approach.
Components: Lecture
Requirement Group: Prerequisite: ECE 6111 (RG331).
ECE 6122 (3 credits)
Digital Signal Processing
Components: Lecture

ECE 6123 (3 credits)
Advanced Signal Processing
Components: Lecture
Requirement Group: Prerequisite: ECE 6111 and ECE 6122 (RG332).

ECE 6124 (3 credits)
Advanced Signal Detection
Focus on discrete-time detection of signals in noise which is not necessarily Gaussian. Topics include: classical Neyman-Pearson and Bayes theory, efficacy and asymptotic relative efficiency; some canonical noise models; quantized detection; narrowband signal detection; distance measures and Chernoff bounds; sequential detection; robustness; nonparametric detection; continuous-time detection and the Karhunen-Loève expansion.
Components: Lecture

ECE 6125 (3 credits)
Digital Image Processing
Problems and applications in digital image processing, two-dimensional linear systems, shift invariance, 2-D Fourier transform analysis, matrix theory, random images and fields, 2-D mean square estimation, optical imaging systems, image sampling and quantization, image transforms, DFT, FFT, image enhancement, two-dimensional spatial filtering, image restoration, image recognition, correlation, and statistical filters for image detection, nonlinear image processing, and feature extraction.
Components: Lecture

ECE 6126 (3 credits)
Optical Information Processing
Two-dimensional signal processing using optical techniques. Topics include: review of two-dimensional linear system theory; scalar diffraction theory, Fresnel and Kirchhoff diffraction; Fourier transforming and imaging properties of lenses; image formation; frequency analysis of optical imaging systems; modulation transfer function; two-dimensional spatial filtering; coherent optical information processing; frequency-domain spatial filter synthesis; holography, Fourier and nonlinear holograms.
Components: Lecture

ECE 6141 (3 credits)
Neural Networks for Classification and Optimization
This course provides students with an understanding of the mathematical underpinnings of classification techniques as applied to optimization and engineering decision-making, as well as their implementation and testing in software. Particular attention is paid to neural networks and related architectures. The topics include: Statistical Interference and Probability Density Estimation, Single and Multi-layer Perceptions, Radial Basis Functions, Unsupervised Learning, Preprocessing and Feature Extraction, Learning and Generalization, Decision Trees and Instance-Based Classifiers, Graphical Models for Machine Learning, Neuro-Dynamic Programming.
Components: Lecture

ECE 6142 (3 credits)
Fuzzy and Neural Approaches to Engineering
Components: Lecture
Requirement Group: Prerequisite: ECE 5101 and 6111 (RG330).

ECE 6143 (3 credits)
Pattern Recognition and Neural Networks
Components: Lecture

ECE 6151 (3 credits)
Communication Theory
Design and analysis of digital communication systems for noisy environments. Vector representation of continuous-time signals; the optimal receiver and matched filter. Elements of information theory. Quantization, companding, and delta-modulation. Performance and implementation of common coherent and non-coherent keying schemes. Fading; intersymbol interference; synchronization; the Viterbi algorithm; adaptive equalization. Elements of coding.
Components: Lecture
Requirement Group: Prerequisite: ECE 6111 (RG331).

ECE 6152 (3 credits)
Wireless Communication
Introduces basic concepts in wireless communication and networks with emphasis on techniques used in the physical layer of current and future wireless communication systems. Covers channel modeling, modulation, spread spectrum techniques, multiuser communication theory, wireless network protocols, and current cellular and PCS systems. Special topics in equalization and array signal processing are included.
Components: Lecture
Requirement Group: Prerequisite: ECE 6122 and ECE 6151 (RG344).

ECE 6161 (3 credits)
Modern Manufacturing System Engineering
Issues and methods in modern manufacturing systems. Integrated product and process development. Design for quality, on-line quality control and improvement, reliability during product development, and design for testability. Computer-aided production management, production planning and scheduling, and optimization-based planning and coordination of design and manufacturing activities. Targeted toward students, professional engineers, and managers who want to have an impact on the state-of-the-art and practice of manufacturing engineering, and to improve manufacturing productivity.
Components: Lecture

ECE 6211 (3 credits)
Antenna Theory and Applications
Analysis and synthesis of antenna systems including electric- and magnetic-dipole, cylindrical, helical, reflector, lens, and traveling-wave antennas. Theory of arrays including patterns, self and mutual impedances.
Components: Lecture

ECE 6212 (3 credits)
Microwave Techniques
A theoretical analysis of microwave components, systems, and measuring techniques. Scattering matrix analysis is applied to microwave devices having two or more ports.
Components: Lecture

ECE 6221 (3 credits)
Transport in Semiconductors
Topics include theory of energy bands in crystals; carrier scattering; the Boltzman equation and its approximations; low field transport; high field effects; transport in heterojunctions; quantum effects; and Monte Carlo simulation.
Components: Lecture
Requirement Group: Prerequisite: Physics 5401 (RG340).

ECE 6222 (3 credits)
Advanced Semiconductor Devices
Fundamental properties of heterostructures, strained-layer superlattices, NIP structures, multiple quantum well, quantum wire, and quantum dot structures. Operation, modelling of the electrical characteristics, design, and applications of HBT, HEMT, and resonant tunneling devices. Second-order effects in submicron MOSFETS and MESFETS.
Components: Lecture

ECE 6231 (3 credits)
Advanced Optoelectronics
Review of optoelectronic devices and integrated circuit (IC) technologies (analog and digital); logic gates; self-electro-optic devices (SEEDs), microlasers; Fabry-Perot (F-P) etalons and optoelectronic IC (OEICs); modulators: F-P modulators (absorptive and refractive), spatial light modulators (SLMs) and their applications; bistable devices: bistable laser amplifiers, resonant tunneling transistor lasers, and polarization bistability; optical interconnects; architectural issues and optical processors based on S-SEED, optical neural networks, and other devices.

Components: Lecture
Requirement Group: Prerequisite: ECE 5212 (RG339).

ECE 6232(3 credits)
Nonlinear Optical Devices
Components: Lecture
Requirement Group: Prerequisite: ECE 5231 (RG342).

ECE 6241(3 credits)
Electronic Materials
Physical and electronic properties, and device applications of disordered materials including amorphous semiconductors, liquid crystals, bubble-memory magnetic materials. Applications of amorphous semiconductors including xerography and solar cells.
Components: Lecture
Requirement Group: Prerequisite: MSE 5313 (RG335).

ECE 6242(3 credits)
Instructor Consent Required
VLSI Fabrication Principles
Semiconductor materials and processing, emphasizing compound semiconductors, optoelectronic materials, shallow devices, and fine-line structures. Semiconductor material properties; phase diagrams; crystal growth and doping; diffusion; epitaxy; ion implantation; oxide, metal, and silicide films; etching and cleaning; and lithographic processes.
Components: Lecture

ECE 6243(3 credits)
Nanotechnology
Components: Lecture

ECE 6244(3 credits)
Instructor Consent Required
Nanotechnology - II (Laboratory Course)
Growth and characterization of carbon nanotubes using vapor phase nucleation; Growth of cladded quantum dots using liquid and/or vapor phase techniques; Characterization using AFM and TEM and Dynamic scattering techniques; Nano-device processing highlighting E-Beam lithography, and self assembly techniques; Project work involving fabrication of devices including LEDs, FETs and memor, detectors and sensors using quantum dots and nanotubes/wires.
Components: Laboratory, Lecture

ECE 6247(3 credits)
Dielectric and Magnetic Materials Science
Components: Lecture

ECE 6301(3 credits)
Biomedical Instrumentation I
Origins of bioelectric signals; analysis and design of electrodes and low-noise preamplifiers used in their measurement. Statistical techniques applied to the detection and processing of biological signals in noise, including the treatment of nerve impulse sequences as stochastic point processes. Methods of identifying the dynamic properties of biosystems.
Components: Lecture
Course Equivalents: BME 6500
Requirement Group: Prerequisite: ECE 6111 (RG331).

ECE 6302(3 credits)
Biomedical Imaging
Fundamentals of detection, processing and display associated with imaging in medicine and biology. Topics include conventional and Fourier optics, optical and acoustic holo-graphy, optical and digital image enhancement, ultrasonography, thermography, isotope scans, and radiology. Laboratory demonstrations will include holo-graphy and optical image processing.
Components: Lecture
Course Equivalents: BME 6400

ECE 6303(3 credits)
Advanced Ultrasonic Imaging Technique
Components: Lecture
Course Equivalents: BME 5329
Requirement Group: Prerequisite: EE 6302 or BME 6400 (RG345).

ECE 6304(3 credits)
Instructor Consent Required
Biomedical Instrumentation Laboratory
Experimental investigation of electrodes, transducers, electronic circuits, and instrumentation systems used in biomedical research and in clinical medicine.
Components: Laboratory
Course Equivalents: BME 6510

ECE 6305(3 credits)
Medical Imaging Systems
Medical imaging principles and systems of x-ray, ultrasound, optical tomography, magnetic resonance imaging, positron emission tomography. The students are required to have the courses of instrumentation, signal analysis using Fourier Transform and Laplace transform. Students are also required to have advanced mathematics on differential equations and matrix calculations. Also offered as BME 360.
Components: Lecture

ECE 6311(3 credits)
Communication and Control in Physiological Systems
Processing, transmission, and storage of information in nerve systems. Mechanisms of neuro-sensory reception, coding and signal-to-noise ratio enhancement. Analysis of invertebrate and vertebrate visual systems. Neural spatio-temporal filters in feature extraction and pattern recognition. Analysis of control systems and regulators associated with vision: e.g., gaze control, accommodation, pupil area, and intra-ocular pressure.
Components: Lecture
Course Equivalents: BME 6120

ECE 6421(3 credits)
Advanced VLSI Design
Advanced concepts of circuit design for digital VLSI components in state of the art MOS technologies. Emphasis is on the circuit design, optimization, RTL design, synthesis, and layout of either very high speed, high density or low power circuits and systems for use in applications such as micro-processors, signal and multimedia processors, memory and periphery. Other topics include challenges facing digital circuit designers today and in the coming decade, such as the impact of scaling, deep submicron effects, interconnect, signal integrity, power distribution and consumption, and timing. Recommended preparation: ECE 249 and ECE 252 (or equivalent).
Components: Lecture

ECE 6431(3 credits)
Advanced Computer Networks and Distributed Processing Systems
Design and evaluation of distributed computer communication and processing systems. Case studies, development of suitable queueing and other models to describe and evaluate design problems such as capacity assignment, concentration and buffering, network topology design, routing, access techniques, and line control procedures.
Components: Lecture
Course Equivalents: CSE 5300
Requirement Group: This course and CSE 330 may not both be taken for credit (RG581).

ECE 6432(3 credits) Instructor Consent Required
VLSI Design Verification and Testing
Introduction to the concepts and techniques of VLSI (very large scale integration) design verification and testing, details of test economy, fault modeling and simulation, defects, automatic test pattern generation (ATPG), design for testability (DFT), scan and boundary scan architectures, built-in self-test (BIST) and current-based testing. State-of-the-art tools are used for ATPG, DFT, test synthesis and power analysis and management.
Components: Lecture

ECE 6433(3 credits)
Stochastic Models for the Analysis of Computer Systems and Communication Networks
Continuous and discrete-time Markov chains and their applications in computer and communication network performance and reliability evaluation. Little's theorem and applications; review of stochastic processes; simple Markovian queues; open, closed, and mixed product-form networks; computational algorithms for closed and mixed product form networks; flow-equivalence and a gregation; M/G/1 queue with vacations and applications to time-division and frequency-division multiplexing; reservations and polling; multi-access communication; reliability and performability models of computer systems.
Components: Lecture

ECE 6435(3 credits)
Advanced Numerical Methods in Scientific Computation
Development, application and implementation of numerically stable, efficient and reliable algorithms for solving matrix equations that arise in modern systems engineering. Computation of matrix exponential, generalized inverse, matrix factorizations, recursive least squares, eigenvalues and eigenvectors, Lyapunov equations.
Components: Lecture

ECE 6437(3 credits)
Computational Methods for Optimization
Computational methods for optimization in static and dynamic problems. Ordinary function minimization, linear programming, gradient methods and conjugate direction search, nonlinear problems with constraints. Extension of search methods to optimization of dynamic systems, dynamic programming.
Components: Lecture

ECE 6439(3 credits)
Estimation Theory & Comp Alg
Estimation of the state and parameters of noisy dynamic systems with application to communication systems and control. Bayesian estimation, maximum-likelihood and linear estimation. Computational algorithms for continuous and discrete processes, the Kalman filter, smoothing and prediction. Nonlinear estimation, multiple model estimation, and estimator Kalman, multiple model estimation, and estimator design for practical problems.
Components: Lecture

Requirement Group: Prerequisite: ECE 5101 and ECE 6111 (RG333).

Associated Grad School Courses
+GRAD 5930. Full-Time Directed Studies (Master's Level)
(GRAD 397) 3 credits.
+GRAD 5950. Master's Thesis Research
(GRAD 395) 1 - 9 credits.
+GRAD 5960. Full-Time Master's Research
(GRAD 396) 3 credits.
GRAD 5998. Special Readings (Master's)
(GRAD 398) Non-credit.
GRAD 5999. Thesis Preparation
(GRAD 399) Non-credit.
+GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GRAD 497) 3 credits.
+GRAD 6950. Doctoral Dissertation Research
(GRAD 495) 1 - 9 credits.
+GRAD 6960. Full-Time Doctoral Research
(GRAD 496) 3 credits.
GRAD 6998. Special Readings (Doctoral)
(GRAD 498) Non-credit.
GRAD 6999. Dissertation Preparation
(GRAD 499) Non-credit.

Engineering
Dean: Professor Mun Choi
Assistant Dean for Graduate Studies and Diversity
Associate Professor Jun-Hong Cui

Master of Engineering Degree Program.
The School of Engineering, in addition to the master's and doctoral degree programs described elsewhere in this Catalog, offers the M.Engr. degree with areas of concentration in: Civil and Environmental Engineering, Chemical Engineering, Computer Science and Engineering, Electrical and Computer Engineering, Materials Science and Engineering, and Mechanical Engineering.

In addition to the general admission requirements of the Graduate School, the following also are required: verbal, quantitative, and analytical scores from the Graduate Record Examinations; evidence of demonstrated competence in the discipline, including but not limited to undergraduate research or field experience; and, whenever possible, a personal interview by a potential graduate advisor.

The courses listed below are of common interest to students in various engineering disciplines and is taught by faculty from the various departments within the School of Engineering. Other engineering courses are listed under the sponsoring departments. Reference should be made to the offerings of the Departments of Chemical Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electrical and Systems Engineering, Mechanical Engineering, and Metallurgy and Materials Engineering and to the interdisciplinary offerings in applied mechanics, biomedical engineering, environmental engineering, fluid dynamics, and polymer science.

COURSES OF STUDY

ENGR 5300(1 - 6 credits)
Special Topics in Engineering
Classroom and/or laboratory course in special topics as announced in advance for each semester.
Components: Lecture

ENGR 5311(3 credits)
Professional Communication and Information Management
Development of the advanced communication skills as well as information management required of engineers and engineering managers in industry, government, and business. Focus on (1) the design and writing of technical reports, articles, propos-
ENGLISH

Interim Department Head: A. Harris Fairbanks
Director of Graduate Studies: Gregory M. Colón Semenza

Professors: Anselment, Barreca, Benson, Biggs, Bloom, Comprone, Dulack, Eby, Franklin, Harris, Hasenfratz, Higgonet, Hogan, Hollenberg, Jones, MacLeod, Makowsky, Marsden, Meyer, Miller, Murphy, Peterson, Pickering, Sonstroem, and Wilkenfeld

Assistant Professors: Bailey, Bedore, Burke, Bystrom, Campbell, Carillo, Duane, Gorkemli, King'o, Litman, Salvant, Schlund-Vials, Tonry, and Van Alst

The Department of English (Web site: www/english.uconn.edu) offers courses in English language and composition theory, criticism, and literature written in English. Special research projects and courses of study in comparative literature, medieval studies, American studies, and linguistics are available in course sequences administered cooperatively with other departments. Comparative literature courses of study are conducted in cooperation with the Department of Modern and Classical Languages. The Medieval Studies Program is conducted in cooperation with the language department and the Departments of Art, Dramatic Arts, History, and Philosophy. The area of concentration in American Studies is offered in cooperation with the Departments of History, Political Science, and Sociology.

English courses numbered in the 5000's series normally are broad studies of literary schools, periods, and topics and are open to both doctoral and master's candidates. Enrollment is limited to ten students. Seminars are numbered in the 6000's series and are designed primarily for doctoral students, although they are open to a limited number of master's candidates. Enrollment in the seminars is limited to eight students. Independent study is available under English 6000.

Admission to the M.A. and Ph.D. Programs.

All applications for admission, together with letters, personal statement, writing sample and the Graduate Record Examination scores (for both General and Subject tests) should reach Storrs by January 1 to be competitive for teaching assistantships and fellowships. There is no special application for teaching assistantships.

The M.A. Program.

Students pursuing the M.A. in English must complete thirty credits of course work— including ENGL 5100, 5150 —and a written examination, which is taken in January of the second year of study; the examination is designed to test critical ability and awareness of literary history and theory. Typically, the M.A. program takes two years to complete.

The Ph.D. Program.

Ordinarily, the plan of study is expected to contain twenty four credits of full-time graduate course work beyond the master's degree. Before writing the dissertation, students take a series of preliminary examinations in selected literary subject areas and write a dissertation proposal.

Special Facilities.

Library collections include "little magazines" and alternative press publications, the Charles Olson archives, and extensive Short Title Catalogue holdings. The English Department sponsors the Connecticut Writing Project, a program for teachers at all levels throughout the State. Funds endowing the Department's Aetna Professorship in Writing make possible a variety of innovative courses as well as prizes for outstanding student essays. Student creativity is encouraged in the yearly Wallace Stevens Poetry Prize competition, judged by a leading poet in a special presentation at Storrs. Faculty edit the journals The Eighteenth Century: Theory and Interpretation, LIT, and MELUS (Multi-ethnic Literature of the United States). Recent distinguished Visiting Professors have included Andrew Gurr, Derek Pearsall, and James Simpson.

COURSES OF STUDY

ENGL 5100(3 credits)
The Theory and Teaching of Writing
An exploration of the relationship between the theories and practice of writing, with attention given to recent classroom practices in composition.
Components: Lecture
Requirement Group: Open to graduate students in English, others with permission (RG803).

ENGL 5120(3 credits)
Approaches to Literature
An introduction to practical criticism. The nature of literature; the use of biography, psychology, and other background subjects in literary criticism; problems in literary history and analysis.
Components: Lecture
Requirement Group: Open to graduate students in English, others with permission (RG803).

ENGL 5150(1 credits)
Advanced Research Methods
An introduction to advanced research in the humanities. History of and recent developments in humanities-based research; the use of electronic databases and traditional material resources; the collection and organization of materials; the formulation of an argument; the forms of professional academic writing.
Components: Lecture
Requirement Group: Open to graduate students in English and Medieval Studies, others with permission (RG818).

ENGL 5160(3 credits)
Professional Development in English
Advanced training in such activities as dissertation...
writing, attending conferences, publishing book reviews
and scholarly articles, and seeking employment in
academe. Includes practical instruction on revising a
seminar paper for publication.
Components: Practicum
Requirement Group: Open to graduate students in
English and Medieval Studies, others with permis-
sion (RG818).

ENGL 5200(3 credits)
Children’s Literature
A study of Children’s Literature from the aesthetic,
historic, psychological and sociological points of
view. Major themes and genres. Standards of literary
criticism.
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5220(3 credits)
History of the English Language
The development of the sounds, forms, order, and
vocabulary of Standard English; an introduction to
the methods of modern descriptive linguistics, and
to the application of linguistic fact and theory to the
teaching of English.
Components: Lecture
Requirement Group: Open to graduate students in
English and Medieval Studies, others with permis-
sion (RG818).

ENGL 5240(3 credits)
The Bible as Literature
A study of major themes and literary character-
istics of writing from the Hebrew Bible and New
Testament. The Bible’s relevance to modern literary
criticism.
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5270(3 credits)
Modern Poetry: Problems in Critical Analysis
Components: Lecture
 Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5280(3 credits)
Modern Drama
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5310(3 credits)
Old English
A study of the language and literature of pre-con-
quest England.
Components: Lecture
Requirement Group: Open to graduate students in
English and Medieval Studies, others with permis-
sion (RG818).

ENGL 5315(3 credits)
Medieval Literature
A study of medieval literature, exclusive of Chaucer.
Components: Lecture

ENGL 5318(3 credits)
Chaucer
Components: Lecture
Requirement Group: Open to graduate students in
English and Medieval Studies, others with permis-
sion (RG818).

ENGL 5320(3 credits)
Shakespeare
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5323(3 credits)
Renaissance Drama
Components: Lecture
Requirement Group: Open to graduate students in
English and Medieval Studies, others with permis-
sion (RG818).

ENGL 5325(3 credits)
Renaissance I: 1485-1603
A study of major writers and literary traditions of the
sixteenth century, exclusive of the drama.
Components: Lecture
Requirement Group: Open to graduate students in
English and Medieval Studies, others with permis-
sion (RG818).

ENGL 5326(3 credits)
Seventeenth-Century Literature
Components: Lecture
Requirement Group: Open to graduate students in
English and Medieval Studies, others with permis-
sion (RG818).

ENGL 5329(3 credits)
Milton
Components: Lecture
Requirement Group: Open to graduate students in
English and Medieval Studies, others with permis-
sion (RG818).

ENGL 5330(3 credits)
Restoration and Eighteenth Literature
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5335(3 credits)
Later Eighteenth Century Literature
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5340(3 credits)
Romantic Literature
Open to graduate students in English, others with permis-
sion.
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5345(3 credits)
Romantic Literature
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5350(3 credits)
Modern British Writers
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5360(3 credits)
Irish Literature
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5400(3 credits)
American Literature since 1914
Components: Seminar
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5410(3 credits)
American Literature 1865-1914
Components: Seminar
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5420(3 credits)
American Literature 1776-1865
Components: Seminar
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5430(3 credits)
American Literature 1865-1914
Components: Seminar
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5500(3 credits) Literary Criticism
A study of the major documents of literary criticism
and theory from Plato and Aristotle to the present.
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5530(3 credits)
World Literature in English
Selected works of colonial and post-colonial
literature from Africa, South Asia, the Caribbean,
Australia,
New Zealand, Canada, etc.
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5550(3 credits) Rhetoric and Composition Theory
Classical and contemporary rhetorical theory, cur-
rent research in composition.
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5540(3 credits)
Irish Literature
Components: Lecture
Requirement Group: Open to graduate students in
English, others with permission (RG803).

ENGL 5550(3 credits)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Components</th>
<th>Requirement Group</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 6000</td>
<td>Independent Study</td>
<td></td>
<td>Open to doctoral candidates.</td>
<td>Instructor Consent Required</td>
</tr>
<tr>
<td>ENGL 6200</td>
<td>Seminar in Children's Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6260</td>
<td>Seminar in Modern Fiction</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6270</td>
<td>Seminar in Modern Poetry</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6290</td>
<td>Seminar in Non-Fiction Prose</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6310</td>
<td>Seminar in Beowulf</td>
<td>Seminar</td>
<td>Open to graduate students in English and Medieval Studies, others with permission (RG818).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6312</td>
<td>Seminar in Old Irish Language and Literature of Medieval Ireland.</td>
<td>Seminar</td>
<td>Open to graduate students in English and Medieval Studies, others with permission (RG818).</td>
<td>With a change of content, this course may be repeated for credit.</td>
</tr>
<tr>
<td>ENGL 6313</td>
<td>Seminar in Old Norse</td>
<td>Seminar</td>
<td>Open to graduate students in English and Medieval Studies, others with permission (RG818).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6315</td>
<td>Seminar in Medieval Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English and Medieval Studies, others with permission (RG818).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6320</td>
<td>Seminar in Shakespeare</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6325</td>
<td>Seminar in Renaissance Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6330</td>
<td>Seminar in Eighteenth-Century Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6340</td>
<td>Seminar in Romantic Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6345</td>
<td>Seminar in Victorian Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6360</td>
<td>Seminar in Irish Studies</td>
<td>Seminar</td>
<td>Open to graduate students in English and Medieval Studies, others with permission (RG818).</td>
<td>With a change in content, this course may be repeated for credit.</td>
</tr>
<tr>
<td>ENGL 6400</td>
<td>American Ethnic Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6420</td>
<td>American Literary Movements</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6450</td>
<td>Special Topics in American Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6500</td>
<td>Seminar in Literary Theory</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6530</td>
<td>Seminar in World Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6550</td>
<td>Seminar in Rhetoric and Composition Theory</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6575</td>
<td>Seminar in American Literature</td>
<td>Seminar</td>
<td>Open to graduate students in English and Medieval Studies, others with permission (RG818).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6600</td>
<td>Creative Writing Workshop</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
<tr>
<td>ENGL 6700</td>
<td>Seminar in Major Authors</td>
<td>Seminar</td>
<td>Open to graduate students in English, others with permission (RG803).</td>
<td></td>
</tr>
</tbody>
</table>
ENVI RONMENTAL ENGINEERING

Program Director: Professor Amvrossios Bagtzoglou
Professors: Cetegen, Clausen, Miller, Noll, Robbins, Segerson, Strasser, Torgersen, Willig, Warner, and Yang
Associate Professors: Abboud, Anagnostou, Liu, MacKay, Pamas, and Wang
Assistant Professors: Anyah, Bushey, Chrysochoou, Cui, Gebremichael, Li, McCutcheon, Seth, Srinivastava, Wang, and Zhou

Environmental Engineering is an interdisciplinary field concerned with the scientific and technological aspects of environmentally related processes and systems. Environmental engineers play a critical role in assessing the impacts of existing contamination problems, devising strategies for managing polluted ecosystems, developing new guidelines for the treatment and disposal of wastes, and modifying manufacturing and other activities to minimize the generation of pollutants. Environmental engineers apply scientific principles to these areas in order to improve environmental quality, to protect public health, and to promote the advancement of sustainable development.

Environmen tal Engineering graduate program emphasizes the mastery of fundamental scientific and socioeconomic principles. Graduate education in Environmental Engineering provides students with a sound foundation in basic engineering concepts, and the technological training and research expertise necessary to apply these concepts to the solution of a variety of problems.

Environmental Engineering degree programs are offered as an interdisciplinary Field of Study through the School of Engineering. Because of Environmental Engineering's broad scope and association with other University departments and research institutes, it offers a wide range of academic focus areas based in the natural and engineering sciences. We offer three focus areas of study: (i) biogeochemical processes (BGC), (ii) atmospheric processes (ATM), and (iii) hydrogeosciences engineering (HGS). Active research areas include:

- biochemical and physiochemical processes in environmental systems;
- combustion;
- environmental geophysical techniques,
- environmental interfacial processes,
- groundwater modeling and remediation,
- vadose zone hydrology,
- surface hydrological processes and land atmosphere interactions,
- pollution prevention, and
- environmental biotechnology

The graduate program offers Master of Science and Doctor of Philosophy degrees in Environmental Engineering. Student plans of study are flexible, comprehensive in nature, and are designed to meet the needs of the individual student.

Admission to Degree Programs.

In addition to the basic admission requirements of the Graduate School, applicants must submit Graduate Record Examination scores with their application. Sound undergraduate preparation in science and/or engineering is required for entrance to the degree programs. Admission is offered on a competitive basis to highly qualified individuals who show promise for distinguished professional and/or academic careers. Limited remedial coursework for non-engineering prospective students is required. For more details, please visit our website at <http://www.engr.uconn.edu/envir>.

The M.S. Program.

There are no special requirements for admission to the master's program beyond those of the Graduate School. Most entering students have an accredited engineering degree or have taken preparative engineering course work. Selection of the Plan A (thesis) or Plan B (non-thesis) option is made after consultation with the advisory committee. The primary objective of the master's program is to develop the students' understanding of the subject matter either through an emphasis on research (Plan A) or through a comprehensive understanding of a more general character (Plan B).

The Ph.D. Program.

Admission to the doctoral program is based upon a careful assessment of the student's potential for significant, creative research in Environmental Engineering. There are no special requirements for admission to the doctoral program beyond those of the Graduate School. The student's plan of study is arranged in consultation with an advisory committee. Doctoral students must pass a general examination by the end of the second year of study.

Facilities.

Students in the Environmental Engineering program have access to numerous state-of-the-art laboratories and facilities through the School of Engineering and associated University departments and institutes. These resources include: the Biotechnology Center, the Center for Biochemical Toxicology, the Center for Environmental Health, the Combustion/Air Pollution Laboratory, the Center for Environmental Sciences and Engineering, the Environmental Processes Laboratory, the Geographic Information Systems Institute, the Hydraulics Laboratory, the Institute of Water Resources, the Marine Sciences Institute, the Pollution Prevention Research & Development Center, and the Unit Operations Laboratory.

The mission of the Center for Environmental Sciences and Engineering (CESE) is to develop technology-based solutions to existing and emerging environmental concerns – particularly regarding the management of hazardous wastes and the advancement of pollution prevention technologies. CESE contains well-equipped analytical chemistry and environmental
Chemistry laboratories focused on methods development and advanced analyses.

Graduate students within the School of Engineering also have access to a wide range of computing facilities. A laboratory of Unix-based SUN computers including Sun Workstations and Sun SparcStations is available to students in the environmental field. Peripheral hardware includes line and laser printers, image scanners, slide makers and large plotters. The School of Engineering also houses a series of computing laboratories containing IBM PC and Apple Macintosh computers. Large scale computing facilities are available through the University mainframe system and the School of Engineering's supercomputer facility.

COURSES OF STUDY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 5202(1 - 6 credits)</td>
<td>Instructor Consent Required Independent Graduate Study in Environmental Engineering</td>
<td>Special problems in environmental engineering as arranged by the student with a supervisory instructor of his or her choice. Components: Independent Study</td>
<td></td>
</tr>
<tr>
<td>ENVE 5090(1 - 3 credits)</td>
<td>Instructor Consent Required Advanced Topics in Environmental Engineering Classroom or laboratory courses as announced for each semester. For independent study, see ENVE 5020. Components: Seminar Course Equivalents: CE 5394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5210(3 credits)</td>
<td>Environmental Engineering Chemistry - I Quantitative variables governing chemical behavior in environmental systems. Thermodynamics and kinetics of acid/base coordination, precipitation/dissolution, and redox reactions. Also offered as CE 390. Components: Lecture Course Equivalents: CE 5210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5211(3 credits)</td>
<td>Environmental Engineering Chemistry - II Environmental organic chemistry: ideal and regular solution thermodynamics; linear free energy relations; estimation of vapor pressure, solubility, and partitioning behavior, abiotic organic compound transformations; chemical fate modeling. Also offered as CE490. Components: Lecture Course Equivalents: CE 5211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5221(3 credits)</td>
<td>Transport and Transformation of Air Pollutants Transport and deposition of gaseous and aerosol pollutants; chemical formation and reactions of oxidants and acidic compounds. Also offered as CE 408. Components: Lecture Course Equivalents: CE 5221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5230(3 credits)</td>
<td>Advanced Soil Chemistry Physical chemical characteristics of soil minerals and soil organic matter, and their reactivity with compounds present in the aqueous and vapor phase. Topics include: modern spectroscopic surface analyses, soil organic matter and its interactions with metals, redox reactions, solubility, derivations of ion-exchange equations, and kinetics of soil reactions. Also offered as PLSC 378. Components: Lecture Course Equivalents: PLSC 5420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5240(3 credits)</td>
<td>Biodegradation and Bioremediation Biochemical basis of the transformation of key organic and inorganic pollutants; quantitative description of kinetics and thermodynamics of pollutant transformation; impact of physiochemical and ecological factors on biotransformation. Also offered as CE 394. Components: Lecture Course Equivalents: CE 5240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5250(3 credits)</td>
<td>Ground Water Assessment and Remediation Quantitative evaluation of field data in assessing nature and extent of groundwater contamination. Subsurface control and remediation. Case studies. Also offered as CE 410. Components: Lecture Course Equivalents: CE 5253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5251(3 credits)</td>
<td>Environmental Physicochemical Processes Reactor dynamics, applications of interfacial phenomena and surface chemistry, processes for separation and destruction of dissolved and particulate contaminants. Scholarly reviews. Also offered as CE 387. Components: Lecture Course Equivalents: CE 5250 Requirement Group: Prerequisites: CE 5310 or ENVE 5310, and CE 5210 or ENVE 5210 (RG235).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5252(3 credits)</td>
<td>Contaminant Source Remediation Regulatory framework. Soil clean-up criteria. Treatment technologies: soil vapor extraction, solidification - stabilization, soil washing - chemical extraction, hydrolysis - dehalogenation, thermal processes, bioremediation. Risk analysis. Also offered as CE 5252. Components: Lecture Course Equivalents: CE 5252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5253(3 credits)</td>
<td>Combustion and Air Pollution Engineering Review of thermodynamics and chemical equilibrium. Introduction to chemical kinetics. Studies of combustion processes, including diffusion and premixed flames. Combustion of gases, liquid, and solid phases, with emphasis on pollution minimization from stationary and mobile systems. Air pollution measurement and instrumentation. Also offered as ME 346. Components: Lecture Course Equivalents: ME 6170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5254(3 credits)</td>
<td>Industrial Waste Management and Regulation Origin and characteristics of industrial wastes. Engineering methods for solving industrial waste problems. Also offered as CE 392. Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5270(3)</td>
<td>Advanced Environmental Engineering Laboratory Analysis of water and waste water. Experimental laboratory and plant investigation of water, wastewater and industrial waste treatment processes. Also offered as CE 391. Components: Laboratory, Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5310(3 credits)</td>
<td>Environmental Transport Phenomena Movement and fate of chemicals: interfacial processes and exchange rates in environmental matrices. Also offered as CE 389. Components: Lecture Course Equivalents: CE 5310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5311(3 credits)</td>
<td>Environmental Biochemical Processes Major biochemical reactions; stoichiometric and kinetic description; suspended and attached growth modeling: engineered biotreatment systems for contaminant removal from aqueous, gaseous, and solid streams; process design. Also offered as CE 388. Components: Lecture Course Equivalents: CE 5251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE 5320(3 credits)</td>
<td>Environmental Quantitative Methods Also offered as CE 432. This course and NRME 432 may not both be taken for credit. Topics on natural resources and environmental data analysis: random variables and probability distributions, parameter estimation and Monte Carlo simulation, hypothesis testing, simple regression and curve fitting, wavelet analysis, factor analysis; formulation and classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>ENVE 5340(3 credits)</td>
<td>Environmental Systems Modeling</td>
<td>Also offered as CE 316.</td>
<td>Modeling hydraulic and hydrological properties of partially-saturated porous media. Introduction to sustainable and environmentally friendly solutions.</td>
</tr>
<tr>
<td>ENVE 5370(3 credits)</td>
<td>Environmental Monitoring</td>
<td>Also offered as CE 313.</td>
<td>Introduction to complexities and challenges associated with acquisition of information on environmental processes and characteristics of natural systems. Sampling network and protocol design; and deployment, acquisition and interpretation of measurements in natural systems.</td>
</tr>
<tr>
<td>ENVE 5381(3 credits)</td>
<td>Subsurface Contaminant Transport Modeling</td>
<td>Also offered as CE 5381.</td>
<td>Fate and transport of contaminants in groundwater. Field scale modeling. Galerkin finite elements. Application to field sites.</td>
</tr>
<tr>
<td>ENVE 5811(3 credits)</td>
<td>Hydroclimatology</td>
<td>Also offered as CE 313.</td>
<td>Hydroclimatology course focuses on the physical principles underlying the spatial and temporal variability of hydrological processes. Topics include atmospheric physics and dynamics controlling the water/energy budgets; global water cycle, its dynamics, and causes of variability/changes; occurrence of drought and flood; climate teleconnections and their hydrological application; hydrological impact of global changes; quantitative methods in hydroclimatic analysis.</td>
</tr>
<tr>
<td>ENVE 5812(3 credits)</td>
<td>Ecohydrology</td>
<td>Also offered as CE 312.</td>
<td>This course focuses on the interactions between ecological processes and the water cycle, emphasizing the hydrological mechanisms underlying various terrestrial ecological patterns and the ecological properties controlling the hydrologic and climatic regimes. Topics include conceptual understanding of hydrological cycle over vegetated land, quantifying and modeling flux exchanges in the soil-vegetation-atmosphere continuum, case studies on the hydrological impact of land use/land cover changes, ecosystem response to environmental changes, and vegetation-climate feedback at the regional and global scales.</td>
</tr>
<tr>
<td>ENVE 5820(3 credits)</td>
<td>Unsaturated Flow and Transport</td>
<td>Also offered as CE 315.</td>
<td>Modern approaches to water flow and solute transport in partially-saturated porous media including media characterization (review); unsaturated flow in porous media (governing equations, hydraulic functions, numerical and analytical solution methods); solute transport in unsaturated media (convection dispersion, transfer functions, solutions); modeling and observational scales; coupled water flow and solute transport (model applications); special topics (preferential flow, effects of spatial variability, stochastic aspects of flow and transport, gas exchange and transport measurement methods).</td>
</tr>
<tr>
<td>ENVE 5821(3 credits)</td>
<td>Vadose Zone Hydrology</td>
<td>Also offered as CE 316.</td>
<td>Theoretical and experimental elements of primary physical and hydrological properties of porous media and processes occurring in partially-saturated soils. Practical experience in measurement and interpretation of hydrological information and methods of analysis for vadose-zone related environmental problems.</td>
</tr>
<tr>
<td>ENVE 5830(3 credits)</td>
<td>Groundwater Flow Modeling</td>
<td>Also offered as CE 384.</td>
<td>Groundwater Flow Modeling course focuses on the physical principles underlying the spatial and temporal variability of hydrological processes. Topics include atmospheric physics and dynamics controlling the water/energy budgets; global water cycle, its dynamics, and causes of variability/changes; occurrence of drought and flood; climate teleconnections and their hydrological application; hydrological impact of global changes; quantitative methods in hydroclimatic analysis.</td>
</tr>
<tr>
<td>ENVE 5840(3 credits)</td>
<td>Open Channel Hydraulics</td>
<td>Also offered as CE 338.</td>
<td>Review of thermodynamic properties, transport properties, conservation equations of multicomponent reacting gas. Introduction to chemical kinetics. Classification of combustion waves. Deflagrations, detonations and diffusion flames. Ignition phenomena, droplet and spray combustion and some aspects of turbulent combustion.</td>
</tr>
<tr>
<td>ENVE 6210(3 credits)</td>
<td>Advanced Combustion</td>
<td>Also offered as CE 332.</td>
<td>Analysis of optimization problems with without constraints, linear programming; models for time series; solution of ordinary differential equations with Laplace transforms and Euler integration; solution of partial differential equations with finite differences; basics of modeling.</td>
</tr>
<tr>
<td>ENVE 6250(1-3 credits)</td>
<td>Advanced Fluid Mechanics I</td>
<td>Advanced fluid mechanics course focuses on the physics of fluid flow, including compressible and incompressible flows, boundary layers, turbulence, and heat transfer.</td>
<td></td>
</tr>
<tr>
<td>ENVE 6260(1-3 credits)</td>
<td>Advanced Fluid Mechanics II</td>
<td>Advanced fluid mechanics course focuses on the physics of fluid flow, including compressible and incompressible flows, boundary layers, turbulence, and heat transfer.</td>
<td></td>
</tr>
<tr>
<td>ENVE 6810(3 credits)</td>
<td>Hydraulic Machinery and Transients</td>
<td>Also offered as CE 384.</td>
<td>Hydraulic Machinery and Transients course focuses on the physics of fluid flow, including compressible and incompressible flows, boundary layers, turbulence, and heat transfer.</td>
</tr>
<tr>
<td>ENVE 6811(3 credits)</td>
<td>Advanced Fluid Mechanics I</td>
<td>Advanced fluid mechanics course focuses on the physics of fluid flow, including compressible and incompressible flows, boundary layers, turbulence, and heat transfer.</td>
<td></td>
</tr>
</tbody>
</table>
Fluid Dynamics

Fluid dynamics is concerned with the engineering aspects of fluid mechanics in the broadest sense. It encompasses fundamental theory of perfect and viscous flows, compressible and heated flows, combustion, magnetohydrodynamics and plasma jets, free-surface flows in oceans and natural water courses, laminar and turbulent flows, and the vast number of practical applications which make fluid motions useful.

The Ph.D. Program. The student’s plan of study is arranged in consultation with his or her advisory committee to develop competence in fluid dynamics. Since it is possible to emphasize theoretical, applied or experimental research, the student must develop a balance within his or her program consonant with his or her stated objectives. The remaining courses should be of an interdisciplinary nature from the departments in geological, biological, and marine sciences, engineering, chemistry, mathematics, physics, and others which the student and the committee feel are pertinent to the student’s program.

About half the total credits should be taken in courses oriented toward the engineering aspects of fluid dynamics. The remainder of the program should consist of related courses preferably in two or more supporting areas considered appropriate in the student’s objectives. These may include any courses in solid mechanics, including continuum mechanics, elasticity, plasticity, vibrations and structural or soil mechanics; also any courses in thermodynamics, heat transfer, power plants, process dynamics or reaction kinetics. Related courses in electrical engineering could include those in field theory, networks, computer science, and systems. Fundamental studies in chemistry, mathematics, physics, and statistics constitute an important part of the related course work.

This program is the joint responsibility of the Departments of Civil Engineering and Mechanical Engineering. Inquiries concerning the program may be addressed to these departments.

Geography

The Department of Geography offers a program leading to the M.A. and Ph.D. degrees. The master’s program provides study of the theory and methods of analysis of human and physical features of the earth’s surface. Students take a small number of core courses in research methods and design, and select an area of specialization for the remainder of their course work. Examples of common specializations include GIScience and computer graphics, geomorphology, environmental management and planning, and urban and regional analysis. Other specializations in areas of the faculty’s expertise are possible. Students, working with their advisors, have a good opportunity to select courses which best fit their intellectual interests and professional needs.

Candidates for the M.A. in Geography may pursue either Plan A, completion of 25 credits of course work (including no more than six credits of independent study/research), at least nine credits of Thesis Research (GRAD 5950), and a thesis, including its oral defense; or Plan B, completion of thirty one credits of course work (including no more than six credits of independent study/research), a scholarly research paper, and a comprehensive final examination assessing mastery of the field and the ability to integrate the knowledge acquired. All M.A. students must complete a core curriculum that includes: one methods course, either GEOG 5500 (Fundamentals of GIScience) or GEOG 5600 (Spatial Data Analysis); GEOG 5000 (Research Design); and the one credit Proseminar (GEOG 5010). Students with an exceptional background may, with the approval of their advisor, replace the methods course with an alternative advanced methods course.

The Ph.D. in Geography requires a minimum 24 credits of course work (including no more than six credits of independent study/research) beyond the Master’s degree, along with the completion and defense of a dissertation. All Ph.D. students must complete a core curriculum that includes one methods course, either GEOG 5500 (Fundamentals of GIScience) or GEOG 5600 (Spatial Data Analysis); GEOG 5000 (Research Design); and GEOG 6000 (Development of Geographic Thought) In exceptional cases, equivalent graduate courses may be substituted with the approval of a student’s advisory committee. Other required courses for the Ph.D. include one 6000 level Geography seminar (not including GEOG 6000), a one-credit teaching practicum course (GEOG 6800), a one credit Proseminar course (GEOG 5010), at least six credits of course work from a related field outside the department, and at least 15 credits of Dissertation Research (GRAD 6950 - not included in the 24 credit requirement).

As the student completes the required coursework, a general examination with both written and oral sections is administered. Doctoral degree students must also submit and present a dissertation proposal for approval by the department, and defend the finished dissertation in a departmental colloquium.
The Department recommends that applicants for admission to the graduate program have a strong background in Geography or a related discipline. Students must submit GRE scores and international applicants must also supply TOEFL scores.

Graduate Certificate in Geographic Information Systems.

The Certificate Program is designed to recognize completion of a focused set of courses for graduate students and other professionals seeking expertise in the field of Geographic Information Systems (GIS). GIS are computer systems for integrating and analyzing spatial data. These systems, and the science behind their development and use, are the topics covered in the required coursework. GIS and related technologies are used in a wide range of applications in the public and private sectors. The elective coursework provides students with the opportunity for graduate study in fields where GIS are used.

The Certificate is earned upon the completion of twelve credits of coursework beyond the B.A. or B.S. degree. Students in the Certificate Program are required to complete Geography 5500 and Geography 5510, plus additional courses in Geography or a related field. The additional courses must be taken at the graduate (5000 or 6000) level. A student’s program of study for the Certificate may include only one course numbered Geography 5810. Students develop a program of study with the assistance and approval of the Certificate Program Coordinator. To earn the Certificate, a student must pass all courses counted toward the Certificate with a grade of B- or better in each course and an overall GPA for the 12 credits of 3.0 or greater. All coursework for the Certificate must be completed at the University of Connecticut.

Application to the GIS Certificate Program is made through the Graduate School of the University of Connecticut. Students applying for admission to or already enrolled in a graduate degree program in Geography or another field of study at the University of Connecticut may apply for admission to the Certificate Program. Non-degree students may also apply for the program. All students applying for admission to the Certificate Program must have a B.A. or B.S. degree from an accredited institution. Official transcripts and a personal statement of interest in the program must be submitted with the application. Information on the Graduate Certificate in Geographic Information Systems can be obtained from Graduate Certificate Program Coordinator, Department of Geography Unit 4148, University of Connecticut, Storrs, Connecticut 06269-4148.

Special Facilities.

The program is supported both by in-house facilities and external contacts. The department maintains a full range of graphics laboratories. These include laboratories equipped with NT workstations, laser printers, plotters, and digitizers as well as regular computer terminals and printers linked to the University’s Computer Center and well equipped microcomputer lab. These facilities are complemented by research and practicum opportunities in a wide range of external agencies with whom collaborative relations have been established by means of the department’s experience with internship programs.

COURSES OF STUDY

GPPS 5300(1 - 3 credits) Instructor Consent Required Independent Study
Independent study in a topic related to the graduate program in Professional Studies as designated and approved by the instructor assigned to oversee and grade the project. Components: Independent Study

GPPS 5301(1 - 3 credits) Instructor Consent Required Special Topics in Professional Studies
The instructor assigned will designate the special topic(s) related to the graduate program in Professional Studies and oversee and grade students’ work in the course. With a change of content, this course may be taken for credit twice. Components: Lecture

GPPS 5325(3 credits) Issues in Economic Development
This course concerns economic, social, and demographic change in those countries comprising the less wealthy regions of the South. It examines development from linear (neo-classical), structuralist (political economy), and other perspectives, and emphasizes relationships between “advanced” and “developing” countries within the context of the global economy. In addition to theoretical grounding, the course provides practice in preparing development profiles of individual countries. Components: Lecture

GPPS 5347(3 credits) Program Evaluation
This course is intended to provide students with skills required to apply the methods of science to the assessment of social programs. Here a social program refers to organized, goal-directed activities designed to address a social problem. The goal of this course is to provide you, the student, with enough skill that you are able to design and implement evaluations of programs. The extent to which you are able to do this without assistance reflects largely your familiarity with scientific methods. Some of the more technical forms of impact studies may require additional study, or assistance from consultants. Components: Lecture

GPPS 5352(3 credits) Systemic Analysis
Provides students with a foundational understanding of the complex and dynamic relations between issues and the systems that cause them. Systemic analysis trains students to understand in the operational dynamics of the social and structural dimensions of a society or group. Components: Lecture

GPPS 5357(3 credits) Quantitative Analysis

This course is designed to help students develop skills necessary to understand and utilize research based on quantitative methods while building fundamental skills in quantitative analysis. The course will include basic univariate statistics, bivariate statistics and basic multivariate statistics including basic analysis of variance and basic multiple regression analysis. This course stresses the use of Microsoft Excel for performing statistical analysis. Components: Lecture

GPPS 5389(3 credits) Instructor Consent Required MPS Internship
The internship will provide professional experience in the student’s field of study in a private or public organization. Students will select the organization and specific internship position with the approval of the major advisor. Students will be expected to perform professional duties for a minimum of 160 hours during the semester. Prior to the beginning of the internship, students will develop a set of professional objectives for the internship experience. Students will maintain a log of experiences and activities during the internship. At the conclusion of the internship, students will write a paper evaluating the experience gained in light of the stated objectives. Components: Field Studies

GPPS 5395(0 credits) Instructor Consent Required MPS Residency Program
The Master of Professional Studies (MPS) program requires students to complete a professional residency. The residency is a milestone towards the completion of the MPS degree. Consistent with the criteria for the MPS Capstone Project, each residency will be subject to the approval of the student’s advisory committee. Appropriate residencies are those designed to: (a) provide students with an opportunity to develop a sense of affiliation and identification with the program and the university; (b) provide students with an opportunity for scholarly dialogue related to their capstone project; or (c) provide students with an opportunity for professional socialization by developing relationships with peers, faculty, and practitioners in the field. Examples of appropriate residencies include but are not limited to sessions at the Storrs campus, attendance and participation in approved regional national or international professional conferences. Components: Discussion Requirement Group: Corequisite: GPPS 5397 (RG3472).

GPPS 5397(3 - 6 credits) Instructor Consent Required MPS Capstone Project
Towards the end of the M.P.S. program, students will select, with faculty approval, a topic for a major project that demonstrates the student’s ability to define, analyze, synthesize, evaluate, and recommend actions or solutions to deal with a major issue, problem, or opportunity within the field of study. Capstone Projects may include job-related
field projects, integrative analyses of professional literature, and comprehensive project proposals for adoption by third parties. In all cases, the Capstone Project is intended to demonstrate an extensive understanding of the topic area selected, the ability to develop and integrative and systemic analysis of a problem, and the ability to identify appropriate solutions and recommendations. A written report documenting all aspects of the project will be presented for faculty approval.

Components: Independent Study Requirement Group: Open to students enrolled in the Master of Professional Studies degree program (RG3471)

Associated Grad School Courses

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(GrAD 397) 3 credits.

†GRAD 5950. Master’s Thesis Research
(GrAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master’s Research
(GrAD 396) 3 credits.

GRAD 5998. Special Readings (Master’s)
(GrAD 398) Non-credit.

GRAD 5999. Thesis Preparation
(GrAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GrAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(GrAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(GrAD 496) 3 credits.

GRAD 6987. Special Readings (Doctoral)
(GrAD 498) Non-credit.

GRAD 6999. Dissertation Preparation
(GrAD 499) Non-credit.

Geological Sciences

Program Director: Professor Pieter T. Visscher
Professors: Cervenka, Cormier, Joesten, McBrearty, Noll, Robbins, Thorson, Torgersen, and Visscher
Associate Professors: Byrne, Crespi, Liu, MacKay, Meyer, Noll, and Schultz.

Programs leading to M.S. or Ph.D. degrees in the Geological Sciences are offered.

Programs are designed to provide each student with a broad background in the physical sciences and with the specialization necessary for careers in geology, geophysics, and environmental geoscience.

Research opportunities are available in most of the traditional subdisciplines, including hydrogeology, geochemistry, marine geology, sedimentation, exploration geophysics, geomorphology, glacial geology, structural geology, mineralogy, petrology, geobiology, biogeochemistry, seismology, paleontology, and others.

Graduate research is often supported by the U.S. Geological Survey, the U.S. Environmental Protection Agency, the National Science Foundation, the Connecticut Department of Environmental Protection, and other government agencies. Students also benefit from program collaborations with the Center for Environmental Science and Engineering (CESE), the Electron Microscopy Center, the Institute of Water Resources, Marine Sciences Institute, Institute of Materials Science, the Center for Environmental Health, and the Transportation Research Institute, among others. Scientists from outside the University frequently serve on graduate student advisory committees. Most graduate students in residence receive financial support. As Graduate Assistants, they either help support the teaching mission or assist with faculty research that is supported by external funds.

In addition to applicants with a Bachelor’s degree in geoscience, applicants with undergraduate degrees in related disciplines are encouraged to apply, provided that they have a broad undergraduate background in the physical and life sciences or engineering. Students with degrees in agricultural sciences, environmental management, and science education also are encouraged to apply. Students with an undergraduate degree in mathematics may wish to apply for admission to pursue study in geophysics.

Students working toward an M.S. degree have the option of following either Plan A (with thesis) or Plan B (non-thesis). Together with their graduate advisory committee, each student develops an individualized plan of study that is tailored to meet their needs and objectives. Students pursuing the Plan B option may do so either full-time or part-time.

Special Facilities. Equipment and facilities available for graduate student research include: fully automated electron microprobe, automated X-ray fluorescence equipment, optical emission and infrared absorption spectrophotographic instruments, gas chromatograph, single crystal and powder X-ray diffraction equipment, high pressure-high temperature experimental petrology laboratory, sedimentation laboratory, power auger, water-level monitoring gauges, field gas chromatograph, field flame ionization and photoionization detectors, full range of equipment for field water quality sample collection and analysis; geophysical equipment including a three component broadband digital seismograph, magnetometer, gravimeter, refraction seismograph, electrical resistivity unit, terrain conductivity meter, global positioning system, electronic total station, and extensive computing facilities including SUN workstations. The facilities of the Marine Sciences Institute (research vessels, ultra clean analytical chemistry laboratory), the Institute of Materials Science (transmission electron microscope, automated single-crystal x-ray diffractometer), the Center for Environmental Science and Engineering (Analytical Chemistry Laboratory), and the Computer Applications and Research Center also are available to graduate student research.

Courses of Study

GSCI 5000 (3 credits)
Geoscience Core Course
Exposes students to a solid background in a variety of topics related to integrative geosciences, emphasizing interdisciplinarity. Development of speaking skills through oral presentations, and writing skills through preparation and defense of large, interdisciplinary grant proposals. Required of all first-year graduate students in Geosciences.
Components: Lecture

GSCI 5050 (1 - 6 credits) Program Director Consent Req'd
Special Problems in Geology
Advanced study and research in geology. May be repeated for credit up to six times with a change of content.
Components: Independent Study

GSCI 5110 (3 credits)
Sediment Transport
The mechanics of sediment transport with particular emphasis on the processes governing transport in coastal and estuarine areas. Initiation of motion for cohesive and noncohesive materials, bed and suspended load transport, bed forms, sediment-flow interactions modeling considerations.
Components: Lecture
Course Equivalents: MARN 5062

GSCI 5210 (3 credits)
Glacial Processes and Materials
Reconstruction of former glaciers and the interactive processes leading to the characterization and distribution of unconsolidated surface materials in glaci-
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSCI 5310(3 credits)</td>
<td>Advanced Structural Geology</td>
<td></td>
<td>Application of finite and incremental strain analyses using advanced geometric techniques. This course integrates field studies of deformed rocks with theoretical understanding and quantitative analysis. Components: Laboratory, Lecture</td>
</tr>
<tr>
<td>GSCI 5320(3 credits)</td>
<td>Advanced Plate Tectonics</td>
<td></td>
<td>The course introduces students to techniques used in analyzing plate motions on a sphere, including poles of rotation and instantaneous and finite motions. The course integrates geologic data and analytical techniques with a rigorous understanding of plate motions and provides students with a global understanding and appreciation of the Earth. (successor to GEOL 333) Components: Lecture</td>
</tr>
<tr>
<td>GSCI 5410(4 credits)</td>
<td>Igneous Petrology</td>
<td></td>
<td>Introduction to igneous rocks, physical and chemical principles governing their formation. Fluid mechanics of magmas, heat transfer, thermodynamics, phase equilibria, isotopic geochemistry, and the relation of magmatism to plate tectonics. Optical microscopy, x-ray fluorescence, and electron microprobe analysis. Prepare a paper suitable for publication in a scientific journal. This course is not open for credit to students who have passed GEOL 214 or 335. Components: Laboratory, Lecture</td>
</tr>
<tr>
<td>GSCI 5420(3 credits)</td>
<td>Metamorphic Petrology</td>
<td></td>
<td>Interpretation of mineralogical, chemical, and textural features of metamorphic rocks in terms of the physical conditions and dynamic processes operating in the Earth's crust. Thermodynamic description of phase equilibria in fluid-rock systems. Kinetics, mass and energy transport in metamorphic processes. Petrographic and x-ray analytical techniques. (successor to GEOL 336) Components: Laboratory, Lecture</td>
</tr>
<tr>
<td>GSCI 5510(3 credits)</td>
<td>Applied Geophysics for Geologists and Engineers</td>
<td></td>
<td>Introductory survey of surface and borehole geophysical methods and their application to hydrogeologic, environmental monitoring, and geotechnical engineering studies. Laboratory involves geophysical field measurement, data reduction and geologic interpretation. Components: Lecture</td>
</tr>
<tr>
<td>GSCI 5520(3 credits)</td>
<td>Exploring and Engineering Seismology</td>
<td></td>
<td>Theory of elasticity applied to wave propagation: equations of motion; reflection and refraction of elastic waves; velocity analysis and fundamental petrophysics; and principles of detecting subsurface interfaces and structures. Components: Laboratory, Lecture</td>
</tr>
<tr>
<td>GSCI 5530(3 credits)</td>
<td>Instructor Consent Required Applied and Environmental Geophysics</td>
<td></td>
<td>Potential theory (gravity, static electricity and magnetic fields), electromagnetic coupling, Maxwell's equations; electromagnetic wave propagation; principles of detection of subsurface interface and structures by geophysical methods. Components: Laboratory, Lecture</td>
</tr>
<tr>
<td>GSCI 5550(3 credits)</td>
<td>Physics of the Earth</td>
<td></td>
<td>The composition, structure, and dynamics of the Earth's core, mantle, and crust inferred from observations of seismology, geomagnetism, and heat flow. Components: Lecture</td>
</tr>
<tr>
<td>GSCI 5560(3 credits)</td>
<td>Fundamentals of Planetary Science</td>
<td></td>
<td>Evolution of the solar system, celestial mechanics, tidal friction, internal composition of planets, black-body radiation, planetary atmospheres. Components: Lecture</td>
</tr>
<tr>
<td>GSCI 5720(3 credits)</td>
<td>Groundwater Modeling</td>
<td></td>
<td>Numerical techniques for modeling flow and contaminant transport in groundwater systems. Model design, calibration, visualization, verification and sensitivity analysis. Application to field sites. Components: Laboratory, Lecture</td>
</tr>
<tr>
<td>GSCI 5790(1 - 6 credits)</td>
<td>Field Methods in Hydrogeology</td>
<td></td>
<td>Field methods associated with ground water and contamination assessments. Components: Laboratory, Lecture</td>
</tr>
<tr>
<td>GSCI 6130(1 - 6 credits)</td>
<td>Program Director Consent Reqd</td>
<td></td>
<td>Seminar in Paleontology Readings and discussions on recent advances in paleontology and paleobiology. May be repeated twice to a maximum of 6 credits with change of content. Components: Seminar</td>
</tr>
<tr>
<td>GSCI 6330(3 credits)</td>
<td>Seminar in Structural Geology</td>
<td></td>
<td>Readings and discussion of recent advances in structural geology. Components: Lecture</td>
</tr>
<tr>
<td>GSCI 6340(3 credits)</td>
<td>Seminar in Tectonics</td>
<td></td>
<td>Readings and discussions of recent advances in tectonics. Components: Lecture</td>
</tr>
<tr>
<td>GSCI 6510(3 credits)</td>
<td>Fundamentals of Seismology</td>
<td></td>
<td>Theory of elasticity applied to wave propagation; equations of motion; reflection and refraction of elastic waves; wave propagation in homogeneous media; surface waves. Components: Lecture</td>
</tr>
<tr>
<td>GSCI 6520(3 credits)</td>
<td>Advanced Seismology</td>
<td></td>
<td>Elastic wave propagation in plane layered media; seismogram synthesis by ray parameter integration, ray approximations, and mode summation; earthquake source representations. Components: Lecture Requirement Group: Prerequisite: MATH 5410 and MATH 5411, which may be taken concurrently (RG355).</td>
</tr>
<tr>
<td>GSCI 6530(3 credits)</td>
<td>Geophysical Inverse Theory</td>
<td></td>
<td>Fitting geophysical model parameters to data. Topics include model uniqueness, resolution, and error estimation. Components: Lecture</td>
</tr>
<tr>
<td>GSCI 6540(1 - 6 credits)</td>
<td>Instructor Consent Required Seminar in Geophysics</td>
<td></td>
<td>Readings and discussions of recent advances in geophysics. Components: Seminar</td>
</tr>
<tr>
<td>GSCI 6550(1 - 6 credits)</td>
<td>9 Instructor Consent Required Special Topics in Geophysics</td>
<td></td>
<td>Components: Seminar</td>
</tr>
<tr>
<td></td>
<td>Associated Grad School Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>†GrAD 395</td>
<td>Full-Time Directed Studies (Master's Level)</td>
<td></td>
<td>(GrAD 397) 3 credits.</td>
</tr>
<tr>
<td>†GrAD 5950</td>
<td>Master's Thesis Research</td>
<td></td>
<td>(GrAD 395) 1 - 9 credits.</td>
</tr>
<tr>
<td>†GrAD 5960</td>
<td>Full-Time Master's Research</td>
<td></td>
<td>(GrAD 396) 3 credits.</td>
</tr>
</tbody>
</table>
Graduate School Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAD 5900</td>
<td>Special Topics in Graduate Education</td>
<td>1-3</td>
<td>Lecture.</td>
</tr>
<tr>
<td>GRAD 5910</td>
<td>Responsible Conduct in Research</td>
<td>1</td>
<td>The core principles pertaining to responsible conduct in research are covered through extensive use of case studies, along with readings and classroom instruction. Different sections of the course utilize case studies that emphasize discipline-specific issues. Satisfactory completion is based on participation in the discussions and completion of a case study presentation.</td>
</tr>
<tr>
<td>GRAD 5915</td>
<td>Summer Institute in College Instruction</td>
<td>3</td>
<td>Lecture/Laboratory. Instructo consent required. Required core course of the Graduate Certificate Program in College Instruction, intended for doctoral students in the early stages of their graduate careers. Course objectives include competencies in instruction, classroom management, use of technology, assessment and evaluation, and other pedagogical best-practices. The course is offered in a residential format over a two week period in May.</td>
</tr>
<tr>
<td>GRAD 5924</td>
<td>Part-Time Curricular Practical Training</td>
<td>1-3</td>
<td>Practicum. Instructo consent and Graduate School consents are required. This course is used by those international students whose Major Advisor has defined a part-time internship as an integral part of their plan of study. Credits are variable, based on hours of intended internship (1 credit - fewer than 10 hours per week; 2 credits - 10 to 15 hours per week; 3 credits - 15 to 20 hours per week). The student will receive course credit to apply towards the degree and will be graded as either satisfactory (S) or unsatisfactory (U) by his/her advisor, who will serve as the primary instructor. The individual course objectives will be established by the major advisor. The student will be responsible to register for additional coursework to maintain full-time status. Since this course denotes a part-time commitment, the student may hold a graduate assistantship while taking this course.</td>
</tr>
<tr>
<td>GRAD 5925</td>
<td>Full-Time Curricular Practical Training</td>
<td>3</td>
<td>Practicum. Instructo and Graduate School consents are required. This course is used by those international students whose Major Advisor has defined a full-time internship (21 to a maximum of 40 hours per week) internship as an integral part of their plan of study. The student will receive course credit to apply toward the degree and will be graded as either satisfactory (S) or unsatisfactory (U) by his/her advisor, who will serve as the primary instructor. The individual course objectives will be established by the major advisor. No other courses may be taken concurrently. Since this course denotes a full-time commitment, students may not hold graduate assistantships while taking this course.</td>
</tr>
<tr>
<td>GRAD 5930</td>
<td>Full-Time Directed Studies (Master's Level)</td>
<td>3</td>
<td>Practicum. Graduate School consent required. This course denotes that the student is participating in a full-time internship, field work experience, or other course of off-campus study required as part of the student's Master's program. No other courses may be taken concurrently.</td>
</tr>
<tr>
<td>GRAD 5950</td>
<td>Master's Thesis Research</td>
<td>1-9</td>
<td>This course is associated with the research efforts of students pursuing a Plan A master's degree and may be used to meet the nine-credit Master's research requirement.</td>
</tr>
<tr>
<td>GRAD 5960</td>
<td>Full-Time Master's Research</td>
<td>3</td>
<td>This course is associated with the research efforts of students pursuing a Plan A master's degree and may be used to meet the nine-credit Master's research requirement.</td>
</tr>
<tr>
<td>GRAD 5998</td>
<td>Special Readings (Master's)</td>
<td>0</td>
<td>This is a non-credit course to be used by those international students who are not enrolled in a thesis (Plan A) track. This is a non-credit course for which master's degree students must register in cases where their regular program of course work for credit has been interrupted and they are not otherwise registered. International students should consult with the Graduate School prior to registering for this course.</td>
</tr>
<tr>
<td>GRAD 5999</td>
<td>Thesis Preparation</td>
<td>0</td>
<td>Open only to graduate students enrolled in Plan A master's degree programs. This is a non-credit course to be used to maintain registered status by Plan A master's students who have completed their coursework and who are not registered for any other credit-bearing course. International students should consult with the Graduate School prior to registering for this course.</td>
</tr>
<tr>
<td>GRAD 6930</td>
<td>Full-Time Directed Studies (Doctoral Level)</td>
<td>1-9</td>
<td>Practicum. Open only to doctoral students. Graduate School consent required. This course denotes that the student is participating in a full-time internship, field work experience, or other course of off-campus study required as part of the student's doctoral program. No other courses may be taken concurrently.</td>
</tr>
<tr>
<td>GRAD 6949</td>
<td>International Exchange Research</td>
<td>1</td>
<td>Research.</td>
</tr>
</tbody>
</table>
Open only to doctoral students.

This course is associated with the research efforts of students pursuing a doctoral degree, and may be used to meet the fifteen-credit doctoral research requirement.

GRAD 6960. Full-Time Doctoral Research (GRAD 496) 3 credits. Dissertation Research. Open only to doctoral students. Graduate School consent required.

This course is to be used by those students who have completed all courses on the plan of study and who are performing doctoral level research on a full-time basis. It may contribute to meeting the fifteen credit doctoral research requirement. No other courses may be taken concurrently. In the summer, this is a 12-week (Summer 4) course. Since this course denotes a full time commitment, students may not hold graduate assistantships while taking this course.

GRAD 6998. Special Readings (Doctoral) (GRAD 498) 0 credits. Special Readings. Open only to doctoral students.

This is a non-credit course for which doctoral students must register in cases where their regular program of course work for credit has been interrupted and they are not otherwise registered. International students should consult with the Graduate School prior to registering for this course.

GRAD 6999. Dissertation Preparation (GRAD 499) 0 credits. Dissertation Research. Open only to doctoral students.

This is a non-credit course to be used to maintain registered status by doctoral students who have reached candidacy for the doctoral degree and who are not registered for any other credit-bearing course. International students should consult with the Graduate School prior to registering for this course.

History

Department Head: Professor Shirley A. Roe

Professors: Brown, Buckley, Clark, Clifford, Costigliola, Davis, Goodheart, Gross, Kane, Lansing, Shoemaker, Silvertrin, Spalding, and Waller

Associate Professors: Azimi, Baldwin, Blatt, Caner, Cygan, Dayton, Dintenfass, Gouwens, Meyer, Ogbar, Olson, Omara- Otunnu, Overmyer-Velázquez, Rozwadowski, Schafer, Wang, and Watson

Assistant Professors: Campbell, Gilligan, Kane, Lansing, McKenzie, Pappademos, Vernal, and Woodward

The Department of History offers study leading to the degrees of Master of Arts and Doctor of Philosophy.

Master’s students have flexibility in selecting courses in accordance with their interests and professional goals. Doctoral students may undertake work in four broad areas: medieval European, early modern and modern European, United States, and Latin American history. Students also have the opportunity to enroll in related courses offered by other departments.

Admission to the M.A. Program.

Three letters of recommendation, preferably from members of the academic profession, along with a writing sample and personal statement from the applicant, are required. Graduate Record Examinations scores on the General Tests also are required. Applicants wishing to begin the program in the fall semester must submit their applications and all supporting documents before April 15; applicants for financial aid should submit all materials by January 15. Applicants wishing to begin in the spring semester must submit their applications before November 1. Applicants are expected to have adequate preparation (a minimum of twenty-one credits of history above the freshman level, including courses in both United States and European history), an average of at least B in undergraduate history courses, and preparation in related fields of the social sciences and humanities.

Departmental Requirements for the Ph.D.

Students who have a master’s degree in history, or are working for one, and whose graduate work shows sufficient promise may apply for admission to the doctoral program, submitting a transcript of at least one semester’s work at the master’s level. All applicants for admission to the doctoral program must submit their applications and all supporting documents before April 15; applicants for financial aid should submit all materials by January 15.

COURSES OF STUDY

HIST 5101(3 credits) Instructor Consent Required Introduction to Historical Research

Introduction to the sources and methods of professional historians. Finding primary sources (qualitative and quantitative), evaluating them for accuracy and usefulness, organizing data, and writing exercises based on the sources. Students must produce a proposal (fully annotated) for a major research paper to be written in the subsequent semester.

Components: Seminar

HIST 5102(3 credits) Instructor Consent Required Historical Research and Writing

A research seminar for students in the M.A. and Ph.D. programs in history.

Components: Independent Study

HIST 5103(3 credits) Program Director Consent Required Teaching History

A survey of the pedagogy and practice of history teaching, designed to prepare advanced graduate students for careers in colleges and universities, museums, and other educational settings. Seminar will explore the contemporary landscape of higher education; debates over the liberal arts and the place of history in the curriculum; diversity in the
I. HISTORY

A. University of Connecticut Special Topics in the History of Science

Hist 5215 (3 credits) Instructor Consent Required
Introduction to Historical Museum Work I
A study of historical agencies and museums. Laboratory work and field trips are included.
Components: Lecture
Hist 5142 (3 credits) Instructor Consent Required
Administration of Archives and Manuscripts
An overview of the history and development of the American archival profession, including basic archival theory and methodology. Emphasizes principles of collection, organization, and reference service for historical manuscripts and archives.
Components: Practicum, Seminar
Hist 5143 (3 credits) Instructor Consent Required
Advanced Practice in Archival Management
Advanced practice in archival management, such as appraisal, records management, access, and public programs. Application of archival principles through specific projects relating to processing, appraisal, public outreach, and reference service.
Components: Seminar
Requirement Group: Prerequisite: Hist 5141 (RG356)
Hist 5195 (3 credits) Instructor Consent Required
Special Topics in History
Components: Seminar
Hist 5199 (3 credits) Instructor Consent Required
Independent Study in History
Components: Independent Study
Hist 5201 (3 credits) Instructor Consent Required
Theories of History
The principles and problems underlying the study of history; and a survey of the history of historical writing and of various schools of historical interpretation.
Components: Seminar
Hist 5205 (3 credits) Collaborative Colloquium
Comparative/collaborative study of topics in different areas and/or periods.
Components: Lecture
Hist 5215 (3 credits) Instructor Consent Required
Special Topics in the History of Science
May be repeated for credit with a change in content.
Components: Seminar
Hist 5218 (3 credits) Instructor Consent Required
Historical Conceptions of Race and Science
Historical examination of the interplay between concepts of race and scientific naturalism as they emerged in the eighteenth, nineteenth, and twentieth centuries. Attention also paid to political and social contexts.
Components: Seminar
Hist 5227 (3 credits) Instructor Consent Required
Topics in Imperialism
Components: Seminar
Hist 5235 (3 credits) Instructor Consent Required
The Making of the African Diaspora
Theory and practice of African Diaspora history. Recent theoretical debates and cases of African Diaspora studies and history including: politics, culture, resistance; community formation; slavery; pan-africanism; transnationalism; black internationalism; African and black consciousness; Diaspora theory; gender, race, and class analyses.
Components: Seminar
Hist 5276 (3 credits) Instructor Consent Required
War and Revolution in the Twentieth Century
Components: Seminar
Hist 5316 (3 credits) Instructor Consent Required
Topics in Medieval History
Components: Seminar
Hist 5370 (3 credits) Instructor Consent Required
Western Europe in the Fifteenth and Sixteenth Centuries
Components: Seminar
Hist 5373 (3 credits) Instructor Consent Required
Europe in the Seventeenth Century
Components: Lecture
Hist 5374 (3 credits) Instructor Consent Required
Europe in the Eighteenth Century
Components: Seminar
Hist 5410 (3 credits) Instructor Consent Required
The French Revolution
An intensive study of the intellectual, social, economic, political, and military events of the period and of their impact upon the world, as well as upon French history.
Components: Seminar
Hist 5412 (3 credits) Nineteenth Century France
Components: Seminar
Hist 5423 (3 credits) State and Society in Europe since 1800
Relationship between social change and state formation in Western Europe from c. 1800 to the mid-20th century; industrialization, class, social identities, nationalism, and imperialism.
Components: Seminar
Hist 5424 (3 credits) Instructor Consent Required
Europe in the Nineteenth and Twentieth Centuries
Components: Seminar
Hist 5425 (3 credits) Instructor Consent Required
Social and Intellectual History of Europe in the Nineteenth and Twentieth Centuries
Components: Seminar
Hist 5451 (3 credits) Instructor Consent Required
Topics in Russian History
Components: Seminar
Hist 5454 (3 credits) Instructor Consent Required
Topics in Central European History, 1790-1918
Components: Seminar
Hist 5456 (3 credits) Instructor Consent Required
Germany in the Nineteenth and Twentieth Centuries
Components: Seminar
Hist 5462 (3 credits) Instructor Consent Required
Topics in Modern British History
Components: Seminar
Hist 5470 (3 credits) Instructor Consent Required
Topics in Italian History
Components: Seminar
Hist 5475 (3 credits) Instructor Consent Required
Histories of the Body: European Perspectives since 1500
Historical and interdisciplinary approaches to the study of the body and the European imagination since 1500. Topics include: representations of health and illness; the body as a site of law and sovereign power; sexed bodies; the body in social and political theory; the government of life and death; race and ethnicity.
Components: Seminar
Hist 5510 (3 credits) Instructor Consent Required
Topics in Colonial American History
Components: Seminar
Hist 5515 (3 credits) Instructor Consent Required
The American Revolution
Components: Seminar
Hist 5520 (3 credits) Instructor Consent Required
United States in the Early National Period and the Age of Jackson, 1787-1840
Components: Seminar
Hist 5525 (3 credits) Instructor Consent Required
Society and Culture in the Civil War Era, 1830-1880
The social, economic, political and cultural forces, including gender, race, and class, that shaped the Civil War and its aftermath.
Components: Seminar
Hist 5530 (3 credits) Instructor Consent Required
United States in the Age of Reform, 1877-1924
Components: Seminar
HIST 5535 (3 credits) Instructor Consent Required
The United States from the 1920s to the 1960s
Components: Seminar

HIST 5540 (3 credits) Instructor Consent Required
Topics in American Social and Cultural History, 1600-1876
Major themes in the recent scholarship of social and cultural history: community and communication; family and gender; race, class, and industrialization; religion; and slavery.
Components: Seminar

HIST 5543 (3 credits) Instructor Consent Required
Social Change in 19th Century America
Major sources of social change in 19th-century United States, including legacy of the American Revolution; fate of Native America; rural society; slavery; industrialization; immigration; class formation; race; the impact of Civil War and Reconstruction.
Components: Seminar

HIST 5545 (3 credits) Instructor Consent Required
Topics in New England History
Components: Seminar

HIST 5550 (3 credits) Instructor Consent Required
Topics in American Family History
Components: Seminar

HIST 5555 (3 credits) Instructor Consent Required
Topics in the History of American Women
Components: Seminar
Course Equivalents: WS 5333

HIST 5560 (3 credits) Instructor Consent Required
Topics in the History of American Foreign Relations
Components: Seminar

HIST 5565 (3 credits) Instructor Consent Required
Topics in the History of Urban America
Components: Seminar

HIST 5570 (3 credits) Instructor Consent Required
Topics in Black History
Components: Seminar

HIST 5575 (3 credits) Instructor Consent Required
American Maritime History
A study of the development of American mercantile enterprise from colonial times and its relationship to American political, economic, and cultural history. The course includes lectures, readings, and extensive use of the facilities at Mystic Seaport. It is given at Mystic Seaport under joint auspices of the University of Connecticut and the Frank C. Munson Institute of American Maritime History.
Components: Seminar

HIST 5576 (3 credits) Instructor Consent Required
Seminar in American Maritime Studies
A seminar involving reading and research on selected topics in American maritime studies. Open only to students who have previously taken History 332 or to advanced students who are concurrently enrolled in History 332. This course is given at Mystic Seaport under joint auspices of the University of Connecticut and the Frank C. Munson Institute of American Maritime History.
Components: Seminar

HIST 5610 (3 credits) Instructor Consent Required
Empire, Nations, and Migration: History of Latino/as in the United States
The seminar explores the history of these diverse Latino/a populations in the United States, beginning with the nineteenth century wars that brought large portions of Mexico under U.S. control, and tracing the major waves of migration from Mexico, the Caribbean, and Central America. The course is divided into two sections, each with its own internal logic and progression. The first examines the historical origins of the broad, inter/trans-national and -disciplinary field of Latino studies and its relationship to its historiography. The second section examines political, economic, social, and cultural themes that transcend national and intercultural boundaries.
Components: Seminar

HIST 5621 (3 credits) Instructor Consent Required
Topics in Latin American History
Components: Seminar

HIST 5622 (3 credits) Instructor Consent Required
The Historical Literature of Latin America
Components: Seminar

HIST 5630 (3 credits) Instructor Consent Required
The Historical Development of the Caribbean
Theories and case studies of Caribbean history. Recent theoretical debates and cases of Caribbean history including: economy, politics, culture, community formation; political mobilization; slavery and emancipation; nation and state formation; law; immigration and emigration; intellectual traditions; gender, race, and class analyses.
Components: Seminar

HIST 5836 (3 credits) Instructor Consent Required
Topics in Twentieth-Century China
Components: Lecture

HIST 5837 (3 credits) Instructor Consent Required
East Asian History
Topics in modern Chinese and Japanese history with emphasis on Chinese thought and politics.
Components: Lecture
†GRAD 5930. Full-Time Directed Studies (Master's Level)
(GrAD 497) 3 credits.

†GRAD 5950. Master's Thesis Research
(GrAD 495) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research
(GrAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(GrAD 498) Non-credit.

GRAD 6999. Dissertation Preparation
(GrAD 499) Non-credit.
HUMAN DEVELOPMENT AND FAMILY STUDIES

Department Head: Professor Ronald M. Sabatelli
Associate Department Head for Graduate Studies: Associate Professor Joann Robinson
Associate Department Head for Undergraduate Studies: Associate Professor Shannon Weaver
Professors: S.A. Anderson, Blank, Harkness, Rigazio-DiGilio, Robinson, Sabatelli, Super, and Wisensale
Associate Professors: Asencio, Britner, Garey, Donorfo, Farrell, Goldman, Mulroy, Sheehan, and Weave
Assistant Professors: Adamsons, S.R. Anderson, Bellizzi, Brown, Forman, and Tambling

Graduate courses and research opportunities are offered leading to the Master of Arts degree in Human Development and Family Studies. Available study areas include, but are not restricted to, child and adolescent development, adult development and aging (gerontology), family systems and relations, and marriage and family therapy. Courses are offered in early childhood, adolescence, gerontology, life span development, psychosocial and cognitive development, marital and family interaction, family policy, family life education, and marriage and family therapy.

Students' individual programs of study may be developed in conjunction with faculty in related areas and include offerings from departments and schools throughout the University. Graduate students are encouraged to elect supervised fieldwork and research projects in nearby community agencies.

Students studying marital and family therapy are required to complete clinical practicums in the Humphrey Center for Individual, Couple, and Family Therapy and in selected mental health and family therapy agencies. Such study is designed to fulfill the academic requirements needed to achieve Connecticut licensure and clinical membership in the American Association for Marriage and Family Therapy, which requires twelve continuous months of practicum placement. Students studying marital and family therapy at the doctoral level must have completed the necessary Master's level prerequisites before taking advanced course work and fulfilling the required 9-12 month internship in an approved agency.

Admission to the M.A. Program.

It is desirable for applicants to have a fundamental background in the social sciences and a basic understanding of research procedures. Application forms should be obtained from and be returned directly to the Graduate Admissions Office. In addition, applicants must present results of the General Test of the Graduate Record Examinations (GRE), a personal statement describing themselves and their reasons for pursuing a degree in Human Development and Family Studies, and at least three letters of recommendation to the Graduate School, University of Connecticut, 438 Whitney Road Ext, Storrs, CT 06269-1006. Admission to the Ph.D. Program.

A prospective student must hold a bachelor's or master's degree from a college or university of approved standing. It is desirable, but not mandatory, that the applicant's previous work include undergraduate or graduate study in the areas of Human Development and Family Studies or related behavioral and social science. Applicants must show promise of superior achievement in research. Application forms should be obtained from and returned directly to the Graduate Admissions Office. In addition, applicants must submit the results of the General Test of the Graduate Record Examinations (GRE), personal statement describing themselves and their reasons for pursuing a doctorate in Human Development and Family Studies, scholarly writing sample, and at least three letters of recommendation from members of the academic profession. These materials should be sent directly to the Graduate School, University of Connecticut, 438 Whitney Road Ext, Storrs, CT 06269-1006. Complete applications and all supporting documents must be received no later than December 15. Students ordinarily are admitted to the program to start classes in the fall semester.

Special Facilities.

The department has a number of centers and facilities for basic and applied research in HDFS. It includes five centers: the Center for Applied Research in Human Development, the Child Development Laboratories, Humphrey Center for Individual, Couple and Family Therapy, the Center for Study of Culture, Health, and Human Development, and the Ronald and Nancy Rohner Center on Interpersonal Acceptance and Rejection.

The Center for Applied Research in Human Development (CARHD) is a joint venture with the Cooperative Extension System. Its purpose is to provide assistance to state and community-based agencies in the development, delivery, and evaluation of human service programs. The CARHD strives to create a supportive relationship with its clients and offers assistance at every level of the evaluation process. Technical assistance is provided by graduate students and faculty. The Center is also a research training facility. It offers opportunities for graduate students to learn about the research and publication process under the mentorship and guidance of experts in the field of human development, family studies and applied research.

The Child Development Laboratories (CDL) offer full-day and half-day programs for children who are typically developing or needing specialized educational experiences from age six weeks to five years of age. The CDL's mission is to train students who will be working with young children, facilitate faculty and student research in child development, and serve as a model center for providing quality care and education programs for young children. The CDL's laboratories provide facilities for observation, research, student projects, and field placements for the HDFS and other departments at the University.

The Humphrey Center for Individual, Couple, and Family Therapy is a training facility for graduate intern therapists enrolled in the M.A. and Ph.D. Program for Marriage and Family Therapy in Human Development and Family Studies. The Center offers a range of therapeutic services which are available to university faculty, staff and their families, undergraduate or graduate students, and any individual or family living in the greater northeastern Connecticut area. These services include individual therapy, family therapy, marital or relationship therapy, and therapy for parenting or child-related problems. The Center also offers seminars for mental health professionals, family life enrichment programs, and support and therapy groups. Consultation services and on-site training are available to other departments within the University, as well as to outside community agencies.

The Center for the Study of Culture, Health, and Human Development (CHHD) is a resource for faculty and graduate students from various disciplines including Allied Health, Anthropology, Education, Human Development and Family Studies, Nursing, Nutritional Sciences, Pediatrics, and Psychology. Focusing on the scientific understanding and active promotion of healthy human development in its cultural context, the Center houses several major research projects and manages the university-wide Graduate Certificate in Culture, Health, and Human Development.

The Ronald and Nancy Rohner Center for the Study of Interpersonal Acceptance and Rejection is a collaborative enterprise with the School of Social Work. Its mission is to conduct basic and applied research on the dynamics and consequences of interpersonal acceptance-rejection, with special emphasis on the parent-child relationship. Collaborative research with scholars around the world is a hallmark of the Center's activities.

In addition to the centers, the Department of Human Development and Family Studies is the locus for programming and resources specifically targeted to students and faculty across the Storrs campus interested in gerontology. It coordinates gerontology education programs, research, and service activities. The department offers a Graduate Certificate in Gerontology which offers specialized training in gerontology. The Certificate program is open to students in masters and doctoral programs in a wide range of academic disciplines and professionals in the field of aging. Professionals working in the field of aging who have satisfactorily completed an undergraduate degree program also may apply to the certificate program. Students enrolled in HDFS M.A. and Ph.D. programs with an emphasis on adult development and aging will typically complete the certificate during their course work.

Space for applied activities is housed in the Human Development Center (HDC). The HDC affords students and faculty observation and video taping facilities in its laboratories, therapy, and testing rooms. It also provides opportunities for conducting community-based program evaluation and data analysis services.

COURSES OF STUDY

HDFS 50001 - 6 credits
Instructor Consent Required
Independent Study
Advanced study for qualified students who present suitable projects for intensive, independent
Investigation in human development and family studies. May be repeated for up to 21 credits with a change in content.

Components: Independent Study

HDFS 5001(1 credits)

Seminars in professional orientation to the field of human development and family relations.

Components: Seminar

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission (RG842).

HDFS 5002(1 - 3 credits)

Special Topics in Human Development and Family Studies

In-depth investigation of a recent issue of human development and family studies. With a change of topic, students may enroll up to four times for a maximum of 12 credits.

Components: Seminar

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission (RG842).

HDFS 5003(3 credits)

Research Methods in Human Development and Family Studies I

Family and human development procedures, research experience related to analyzing interpersonal interaction and developmental processes.

Components: Lecture

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission (RG842).

HDFS 5004(3 credits)

Research Methods in Human Development and Family Studies II

Advanced family and human development research methods; research design and underlying methodological issues in analyzing interpersonal interaction and developmental processes.

Components: Lecture

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission (RG842).

HDFS 5005(3 credits)

Instructor Consent Required Qualitative Research Methods in HDFS

Philosophical bases of qualitative research in the social sciences; developing qualitative strategies; including: existential-phenomenological, intensive interviews, participant observation, and textual analysis.

Components: Seminar

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission. **Prerequisite:** HDFS 5003 (RG346).

HDFS 5007(1 - 2 credits)

Instructor Consent Required Current Issues in Human Development and Family Studies

Focused presentation and discussion of an aspect of theory or methods related to advancing the field of human development and family studies. Open to graduate students in HDFS; others by permission. Repeatable for credit with change of topic for up to 12 credits.

Components: Seminar

HDFS 5010(3 credits)

Instructor Consent Required Practicum in University Teaching of Human Development and Family Studies

Supervised teaching of undergraduate courses in HDFS.

Components: Practicum

HDFS 5020(3 credits)

Instructor Consent Required Culture, Health and Human Development

Introduction to current interdisciplinary approaches to the study of human development and health in the context of culture. An overview of theoretical approaches; presentations of current research by invited speakers, focusing on how to combine disciplinary perspectives and methods in order to build a new integrative science of health and development across and within cultures.

Components: Seminar

HDFS 5021(1 credits)

Instructor Consent Required Culture, Health and Human Development

Introduction to current interdisciplinary approaches to the study of human development and health in the context of culture. An overview of theoretical approaches; presentations of current research by invited speakers, focusing on how to combine disciplinary perspectives and methods in order to build a new integrative science of health and development across and within cultures.

Components: Seminar

HDFS 5022(1 credits)

Instructor Consent Required Culture, Health and Human Development

Introduction to current interdisciplinary approaches to the study of human development and health in the context of culture. An overview of theoretical approaches; presentations of current research by invited speakers, focusing on how to combine disciplinary perspectives and methods in order to build a new integrative science of health and development across and within cultures.

Components: Seminar

HDFS 5023(1 credits)

Program Director Consent Required Culture, Health and Human Development Project

Group discussion and guidance through planning, implementation, and writing-up of a publishable research project in fulfillment of a core requirement for the Graduate Certificate in Culture, Health, and Human Development.

Components: Seminar

HDFS 5032(3 credits)

Instructor Consent Required Research Seminar in Qualitative Methods

Discussion and application of qualitative methods as applied to students' individual ongoing research projects. HDFS 5005 is strongly recommended, but not required, as a prerequisite for this course. Participants must be currently conducting research using qualitative methods. Permission of the instructor is required.

Components: Seminar

HDFS 5088(1 - 6 credits)

Instructor Consent Required Supervised Field Work in Family Development

Work in a community agency related to the field of family development. Open to graduate students in Human Development and Family Studies; others by permission.

Components: Field Studies

Requirement Group: Open to graduate students in Human Development and Family Studies; others by permission (RG4584).

HDFS 5101(3 credits)

Instructor Consent Required Infant and Toddler Development

Contemporary theories and research on infant and toddler development; evaluation of prevention and intervention programs designed to address contemporary social issues facing infants/toddlers and their families.

Components: Lecture

HDFS 5102(3 credits)

Early and Middle Childhood Development

Theory and research related to early and middle childhood as a developmental period. Focus will be on topics such as executive functioning and cognitive development, language and literacy development, peer relations, gender roles, aggression, and prosocial behaviors, as well as on prevention and intervention programs designed to address contemporary social issues facing children and their families. Open to graduate students in Human Development and Family Studies, others by permission.

Components: Seminar

HDFS 5103(3 credits)

Adolescent Development

Adolescent development; understanding the various forces related to adolescent behavior.

Components: Seminar

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission (RG842).

HDFS 5110(3 credits)

Instructor Consent Required Families, Communities, and Positive Behavior Supports

Analysis of theory, research, systems, and curricula in Positive Behavior Supports (PBS) with emphasis on family and community partnerships. Interventions for problem behavior are examined across context and perspective. Open to graduate students in Human Development and Family Studies and related fields, and (with permission) to upper level undergraduates and those enrolled in the Honors Program.

Components: Lecture

HDFS 5115(3 credits)

Cultural Issues in Child Development

An examination of the cognitive, social, and emotional development of children from a cultural perspective. Emphasis placed on infancy, socialization, theories of cognitive development, and schooling.
HDfs 5423 (3 credits)

Cultural Role Transitions and Conflicts Over the Life Span

The identification and study of men's and women's gender role transitions and conflicts over the life span. Emphasis on primary prevention of human problems. Prevention concepts and case studies are presented. Students read major theoretical perspectives and research findings.
give analysis and critique of course content and develop personal and professional perspectives on prevention practice and possible social policy initiatives.

Components: Seminar

HDFS 5341(3 credits)
Gender Role Issues for Helping Professionals
Intensive review of gender role socialization in a workshop setting, emphasizing men's and women's gender role conflicts across the life span. Lectures, readings, discussions, self assessments, and media are used to explicate core concepts and themes.

Components: Lecture

Course Equivalents: EPSY 5309

HDFS 5342(3 credits)
Parent Education
Planning, implementation, and evaluation of parent education programs for individuals and groups. Development and use of materials for such programs.

Components: Lecture

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission (RG842).

HDFS 5442(3 credits)
Latina/o Health Disparities
Overview of health and health care issues among Latina/os in the United States with particular focus on health disparities.

Components: Lecture

HDFS 5545(3 credits)
Aging Policy and Programs
Existing programs at Federal, State, and Community levels as currently deployed under various Titles of the Older Americans Act, Social Security, Medicare, and Medicaid; program objectives, scope, costs, and levels of delivery as they relate to identified needs of present and future groups of the elderly; use of policy-determining data and program evaluation methodologies.

Components: Lecture

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission (RG842).

HDFS 5550(3 credits)
Social Policy, Law, & Child Welfare
Application of theory and research on child development, family relations, and intervention/prevention practices to legal, policy and child welfare contexts.

Components: Seminar

HDFS 5751(3 credits)
Foundations of Marriage and Family Therapy
Theoretical foundations of marriage and family therapy; basic principles of therapy, interactional patterns of marital dyads and families under stress; professional and ethical issues relevant to the practice of marriage and family therapy.

Components: Lecture

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission (RG842).

HDFS 5752(2 credits) Instructor Consent Required
Building Cultural, Contextual, and Integrative Competencies in Marriage and Family Therapy I
Conceptual and applied learning and community immersion experiences that address the cultural, contextual, and integrative competencies considered necessary to serve effectively as marriage and family-therapy scientists/practitioners in today's intercultural society.

Components: Seminar

Requirement Group: Co-requisite: HDFS 5751 (RG4319).

HDFS 5754(3 credits)
Marriage Therapy
Marital interaction and therapy. Theory and technique of contemporary therapeutic approaches.

Components: Seminar

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission. Prerequisite: HDFS 5751 which can be taken concurrently (RG348).

HDFS 5756(3 credits)
Family Therapy
Contemporary clinical conceptualizations of family interaction, major contributions to the development of family therapy as a unique discipline. Issues and problems commonly confronted in conducting family therapy.

Components: Lecture

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission. Prerequisite: HDFS 5751 which can be taken concurrently (RG348).

HDFS 5757(2 credits) Instructor Consent Required
Building Cultural, Contextual, and Integrative Competencies in Marriage and Family Therapy II
Conceptual and applied learning and community immersion experiences that address the cultural, contextual, and integrative competencies considered necessary to serve effectively as marriage and family-therapy scientist/practitioners in today's intercultural society.

Components: Seminar

Requirement Group: Co-requisite: HDFS 5756 (RG4318).

HDFS 5759(3 credits) Instructor Consent Required
Case Seminar in Marriage and Family Therapy
Specialized professional issues and professional problems in the practice of marriage and family therapy.

Case material.

Components: Seminar

Requirement Group: Prerequisites: HDFS 5751 and either HDFS 5754 or HDFS 5756. HDFS 5762 should be taken concurrently (RG349).

HDFS 5761(3 credits)
Introduction to Clinical Practice and Professional Issues
Clinical practice in the Center for Marital and Family Therapy and in approved clinical training centers. Classroom and supervised clinical practice required. Professionalism, ethics, confidentiality, therapeutic techniques, and procedures required for clinical practice.

Components: Clinical, Lecture

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission. Prerequisite: HDFS 5751 which can be taken concurrently (RG348).

HDFS 5762(1 - 6 credits) Instructor Consent Required
Practicum in Marriage and Family Therapy
Supervised group experience in marriage and family therapy related to clinical practice in the Center for Marital and Family Therapy or other approved clinical training centers. May be repeated to a maximum of 24 credits.

Components: Practicum

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission. Prerequisites: HDFS 5761 and either HDFS 5754 or HDFS 5756 (RG350).

HDFS 5763(1 - 6 credits) Instructor Consent Required
Individual Supervision in Marriage and Family Therapy
May be repeated to a maximum of 24 credits.

Components: Independent Study

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission. Prerequisites: HDFS 5761 and either HDFS 5754 or HDFS 5756 (RG350).

HDFS 5764(3 credits) Instructor Consent Required
Clinical Assessment and Practice
Diagnosis and treatment of dysfunctional marital and family relationship patterns, nervous and mental disorders; major family therapy assessment methods and instruments.

Components: Seminar

HDFS 5790(3 credits) Instructor Consent Required
Theories and World Views Informing Marriage and Family Therapy
Underlying theories and conceptualizations informing marriage and family therapy.

Components: Lecture

HDFS 6710(3 credits)
Family Therapy Research
Family therapy research methods; research design and methodological issues in analyzing treatment interventions, family interaction processes, and change.

Components: Lecture

Requirement Group: Open to graduate students in Human Development and Family Studies, others with permission. Prerequisite: HDFS 5003 (RG346).
HDFS 6720 (3 credits) Instructor Consent Required
Family Therapy Supervision
Major models and methods of marriage and family therapy supervision; ethical and legal responsibilities faced by marital and family therapy supervisors. Development of perceptual, conceptual, and executive skills needed to supervise and train practitioners in the field of marriage and family therapy.
Components: Seminar

HDFS 6730 (3 credits) Instructor Consent Required
Advanced Family Therapy
Current trends and issues in the field of family therapy; integration of clinical theory, research, and practice.
Components: Seminar
Requirement Group: Prerequisite: HDFS 5751 and HDFS 5756 (RG531).

HDFS 6895 (1 - 6 credits) Instructor Consent Required
Internship in Marital and Family Therapy
Nine to twelve month period of full-time clinical experience in a cooperating institution. Open only with consent of instructor to students of advanced standing in marital and family therapy. Offered at approved clinical training centers. The student assumes a full range of professional responsibilities associated with practice of marital and family therapy. Minimum of 500 hours of direct client contact and receipt of 100 hours of supervision.
Components: Clinical
Requirement Group: Open to graduate students in Human Development and Family Studies; others by permission (RG 4584).

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(GRAD 397) 3 credits.

†GRAD 5950. Master’s Thesis Research
(GRAD 3951) - 9 credits.

†GRAD 5960. Full-Time Master’s Research
(GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master’s)
(GRAD 398) Non-credit.

GRAD 5999. Thesis Preparation
(GRAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GRAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(GRAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(GRAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(GRAD 498) Non-credit.

GRAD 6999. Dissertation Preparation
(GRAD 499) Non-credit.

HUMAN RIGHTS COURSES

HRTS 5005. Special Topics in Human Rights
3 credits. Seminar. With a change of topic, students may enroll up to three times for a maximum of 9 credits.
In-depth investigation of an issue in human rights research.

HRTS 5301. Contemporary Debates in Human Rights
(HRTS 301) 3 credits. Seminar. Instructor consent required.
Key debates in human rights will introduce students to the main modern debates in the academic field of human rights. It is interdisciplinary in scope, including recent intellectual contributions from philosophy, law, political science, sociology, anthropology, literature and history. It will address a number of central issues and questions, including the normative philosophical foundations of human rights, whether human rights are universal or relative, whether human rights can be held collectively, and the justifications for women’s rights and cultural rights.

HRTS 5390. Economic Rights
(HRTS 390) 3 credits. Seminar. Instructor consent required. Also offered as ECON 5128 and POLS 5390.
Economic rights include the right to an adequate standard of living, the right to work, and the right to basic income guarantees for those unable to work. These rights are grounded in international law - particularly in the Universal Declaration of Human Rights and the International Covenant on Economic, Social, and Cultural Rights. This class will explore the conceptual bases, measurement, and policy applications of economic rights. Specific topics will include: child labor, the right to development, non-governmental initiatives, and the institutionalization of economic rights (e.g., constitutionalization versus statutory implementation versus discretion- ary policies).

INTERNATIONAL STUDIES

Interim Executive Director: Associate Extension Professor Elizabeth Mahan
Emilianna Pasca Noether Professor of Italian History: Professor John Davis
UNESCO Chair for Human Rights: Associate Professor Ami Omara-Otunnu
Associate Professors: Bouchard, Caner, Chinchilla, Coundouriots, Ditnensfass, Gouveens, Greeley, Hertel, Kimenyi, Kingstone, Lefebvre, Loss, Mahan, Martinez, Overmyer-Velázquez, Pardo, Phillips, Randolph, Reyes, Schaefer, Scraggs, Seda Ramirez, Snyder, Sterling-Folker, Travis, Watson, and Weidauer
Assistant Professors: Bayulgen, Bystrum Casamayor-Cisneros, Gaztambide-Geigel, Gebelein, Gilligan, Kane, Lansing, Libal, Medina, Mitoma, Pappademos, Rojas, Singer, Turcotte, Venator, Santiago, Vernal, Wogenstein

Study is offered leading to the degree of Master of Arts in the field of International Studies. Students may pursue a general program emphasis or pursue one of the following areas of concentration: European Studies or Latin American Studies. Offered also is a dual program which combines the master’s degree in International Studies with the Master of Business Administration degree.

The M.A. in International Studies.

The master’s degree program is available in two plans: Plan A requires a minimum of 21 credits of course work plus a thesis; Plan B requires 30 credits of course work plus a comprehensive exam. Course work must be distributed over three academic disciplines. Students are required to demonstrate proficiency in appropriate languages adequate both for conversation and research. Scores from the General Test of the Graduate Record Examination and three letters of recommendation are required for admission. As each program (European Studies, Latin American Studies, and the general program) has additional guidelines regarding required and elective courses, language proficiency, and comprehensive examinations, to fully understand program requirements students must contact area studies Centers or the Office of International Affairs.

Information concerning the European Studies may be obtained from Dr. Elizabeth Mahan (Unit 1182). Information regarding the Latin American concentration may be obtained from Dr. Mark Overmyer-Velázquez, Director of the Center for Latin American and Caribbean Studies (Unit 1161). Information concerning other areas of emphasis may...
be obtained from the Associate Executive Director of the Office of International Affairs (Unit 1182).

M.A. in International Studies and M.B.A.

The dual M.A. and M.B.A. degree program consists of 72 credits of course work distributed between International Studies and Business Administration. The M.B.A. portion of the program consists of 42 credits in business, plus fifteen credits of electives. The M.A. portion of the program comprises 30 credits of course work, of which 15 credits count as electives in the M.B.A. portion.

The M.A. program is available in two plans: Plan A requires a minimum of 21 credits of course work, plus a nine credit thesis; Plan B requires 30 credits of course work, plus a comprehensive examination. M.A. students must also demonstrate language proficiency sufficient for conversation and to conduct research in an appropriate second language. Students in the M.A. program select either an area of concentration or an interdisciplinary field of study as the focus of their work.

When completing the application form, applicants to the joint M.A. in International Studies and M.B.A. must indicate clearly as Degree Sought that pursuit of the “Dual M.A. in International Studies and M.B.A. Program” is intended. Applicants are expected to provide three letters of recommendation and scores from both the Graduate Management Admissions Test (GMAT) and from the General Test of the Graduate Record Examinations (GRE).

For information about the M.B.A. program, students should write to the Director of the M.B.A. Program, School of Business Administration (Unit 1041-041MBA).

Special Facilities

Concerning the study of Latin America, library resources are especially strong for the study of Mexico, the Southern Cone, and the Caribbean. The Thomas J. Dodd Research Center has a number of special collections that are particularly strong in relation to the area studies programs. The Latin American Survey Data Bank in the Roper Center for Public Opinion Research maintains and acquires historical and current national-level surveys from throughout the region.

COURSES OF STUDY

International Studies

INTS 5000 (3 credits) Instructor Consent Required Seminar in International Studies This seminar introduced the various disciplines that constitute International Studies at the University of Connecticut. Area Studies faculty from relevant departments will conduct the individual seminar sessions. Area Studies faculty from relevant departments will conduct the individual seminar sessions. The seminar has three goals: (1) to introduce concepts and theoretical issues of the fields introduced (2) to introduce research approaches and the formulation of research questions in each of the fields introduced; and (3) to help students develop analytical thinking and writing skills in an interdisciplinary context. These goals inform the basic structure of the course and will be met through a combination of reading, discussion, short papers, presentations, and research exercises. Library research and on-line resources are also covered. Components: Seminar

INTS 5110(1 - 6 credits) Instructor Consent Required Independent Study Instructor consent required. May be repeated to a maximum of 15 credits with a change of content. Components: Independent Study

African

AFRI 5105. Special Topics in African Studies (AFRI 305) 1-9 credits. Seminar.

AFRI 5110. Independent Study (AFRI 300) 1-9 credits. Independent Study.

European

ES 5105. Independent Study in European Studies (ES 300) 1-6 credits. Independent Study.

Latin American

LAMS 5000. Seminar in Latin American Studies (LAMS 390) 3 credits. Seminar. Interdisciplinary introduction to graduate level study of Latin America.

LAMS 5105. Special Topics (LAMS 300) 3 credits. Seminar. This course may be repeated to a maximum of 12 credits.

LAMS 5110. Independent Study (LAMS 310) 1-6 credits. Independent Study. Instructor consent required. May be repeated to a maximum of 15 credits with a change of content.

LAMS 5570. Latin American Popular Culture (LAMS 370) 3 credits. Seminar. Culture, subcultures, and culture industries in Latin America. Conditions which affect the mass production, dissemination and reception of entertainment products. Reading knowledge of Portuguese or Spanish required.

LAMS 5890 Latin American Studies Project (LAMS 380) 3 credits. Independent Study.

Independent, interdisciplinary research project culminating in a written paper, developed by the student under the supervision of a committee consisting of a first and second reader. The first reader will be the major advisor on the project. This course is intended to be the capstone course for the master's degree, to be taken after all other course requirements are completed.

All Areas

†GRAD 5930. Full-Time Directed Studies (Master’s Level) (GRAD 397) 3 credits.

†GRAD 5950. Master’s Thesis Research (GRAD 395) 1-9 credits.

†GRAD 5960. Full-Time Master’s Research (GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master’s) (GRAD 398) Non-credit.

GRAD 5999. Thesis Preparation (GRAD 399) Non-credit.
Judaic Studies

Director: Professor Arnold Dashefsky
Associate Director: Professor Stuart Miller
Professor: Aschenasy
Associate Professor: S. Johnson
Adjunct Professors: Freund, Kassow, and Lang
Adjunct Associate Professors: Berkovitz, Elukin, and Kiener,

Master of Arts in Judaic studies is offered by the Departments of English, History, Modern and Classical Languages, and Sociology. This degree is administered by the Center for Judaic Studies and Contemporary Jewish Life, which is housed in the Thomas J. Dodd Research Center. Since the program in Judaic Studies is intended to provide a synthesis of broad areas of Jewish culture and thought as a basis for constructive research in specialized aspects of Jewish civilization, students normally are required to include in their programs courses offered by the supporting departments.

Admission to the Degree Program

The Judaic Studies Admissions Committee considers applications for admission to the Master's program. An undergraduate major in the area is not necessarily required, but, before admission, students must show evidence of adequate preparation.

The M.A. Program

Wok leading to the degree of Master of Arts in Judaic Studies may be undertaken either with Plan A (with thesis) or Plan B (without thesis). In either case, coursework in Judaic Studies is to be distributed among several departments, and the student’s advisory committee is composed of representatives of these departments. The M.A. degree is offered in consorstial relationship with the University of Hartford and draws on faculty from neighboring colleges and universities.

Courses of Study

Course offerings and faculty are listed under Judaic Studies and Hebrew as well as the cooperating and supporting departments referred to above: English, History, Modern and Classical Languages and Sociology. The Committee for Judaic Studies organizes a number of colloquia featuring staff members and visiting lecturers and encourages graduate students to attend. Two years of college-level Hebrew language instruction (or its equivalent) is required in order to receive the Master's degree.

Support

Sistidps are available through the Center for Judaic Studies and Contemporary Jewish Life.

COURSES OF STUDY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Components</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUDS 5301(3 credits)</td>
<td>Hebrew Wisdom Literature</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>JUDS 5303(3 credits)</td>
<td>Religion of Ancient Israel</td>
<td>Seminar</td>
<td>3</td>
</tr>
<tr>
<td>JUDS 5305(3 credits)</td>
<td>Instructor Consent Required Bible and Archaeology</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>JUDS 5311(3 credits)</td>
<td>History and Literature of Talmudic Palestine</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>JUDS 5313(3 credits)</td>
<td>Instructor Consent Required Israel and the Ancient Near East</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>JUDS 5315(3 credits)</td>
<td>Instructor Consent Required Ancient Jewish Fictions</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>JUDS 5325(3 credits)</td>
<td>Seminar on the Holocaust: Philosophical and Historical Issues</td>
<td>Seminar</td>
<td>3</td>
</tr>
<tr>
<td>JUDS 5351(3 credits)</td>
<td>Seminar on Modern Jewish Philosophy</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

Topics Considered Include

- Nature (and possibility) of Jewish philosophy, the concepts of God, nature, and the world, the status of religious knowledge, law and practice, the concept of election in relation to the people and land of Israel. Thinkers to be considered and read include Moses Mendelssohn, Solomon Maimon, S.R. Hirsch, Hermann Cohen, Franz Rosenzweig, Ahad Ha’am, Martin Buber, Emanuel Levinas, A.J. Heschel, and Joseph Soloveitchik.

- Modern European Jewish History
- Selected topics in Modern European Jewish History between the Enlightenment and the establishment of the State of Israel.

Course Equivalents:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Components</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEB 5303</td>
<td>Seminar on Modern Jewish Philosophy</td>
<td>Seminar</td>
<td>3</td>
</tr>
<tr>
<td>HEB 5311</td>
<td>Bible and Archaeology</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>HEB 5313</td>
<td>Instructor Consent Required Bible and Archaeology</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Courses

- GrAD 399: Non-credit
- GrAD 396: 3 credits
- GrAD 397: 3 credits
- GrAD 398: Non-credit
- GrAD 399: Thesis Preparation
- GrAD 496: 3 credits
- GrAD 497: 3 credits
- GrAD 498: Non-credit
- GrAD 499: Non-credit
- GrAD 5930: Full-Time Directed Studies (Master's Level)
- GrAD 5950: Master's Thesis Research
- GrAD 5960: Full-Time Master's Research
- GrAD 5998: Special Readings (Master's)
- GrAD 5999: Thesis Preparation
- GrAD 6930: Full-Time Directed Studies (Doctoral Level)
- GrAD 6950: Doctoral Dissertation Research
- GrAD 6960: Full-Time Doctoral Research

Associated Grad School Courses

- GRAD 5930: Full-Time Directed Studies (Master's Level)
- GRAD 5950: Master's Thesis Research
- GRAD 5960: Full-Time Master's Research
- GRAD 5998: Special Readings (Master's)
- GRAD 5999: Thesis Preparation
- GRAD 6930: Full-Time Directed Studies (Doctoral Level)
- GRAD 6950: Doctoral Dissertation Research
- GRAD 6960: Full-Time Doctoral Research
KINESIOLOGY

Dean: Professor Thomas C. DeFranco
Department Head: Professor Carl M. Mares
Professors: Armstrong, Bohannon, Casa, Denegar, Kraemer, and Pescatello
Associate Professor: Bruening, Burning, Fink, Kinsella-Shaw, Volek, and Zito
Assistant Professors: DiStefano, Bhat, Bubela, Joseph, and Mazerolle
Adjunct Professor: Lieberman, Kuchel
Adjunct Associate Professor: Nindl, Seip
Adjunct Assistant Professor: Lee

The Department of Kinesiology in the Neag School of Education offers graduate programs leading to the degrees of Master of Arts and Doctor of Philosophy in the field of Kinesiology and to the Doctor of Physical Therapy degree (D.P.T.). All information concerning the D.P.T. degree program can be found in this Catalog under the heading Physical Therapy. All students should consult the statement under Education for information pertaining to admissions requirements.

The majority of graduate courses given during the academic year are taught afternoons or in the evenings. Full-time master's degree students must attend at least one summer session to accumulate in one calendar year the minimum of 30 credits required for graduation. Master's degree programs emphasizing exercise science are two-year programs and require a master's thesis.

COURSES OF STUDY

EKin 5085(1 - 6 credits) Instructor Consent Required
Research Project in Sport Management and Sociology
This course will require students to develop and present a semester-long research project in an area of sport management and sociology.
Components: Independent Study
Requirement Group: Restricted to master's students in Kinesiology (sport management and sociology concentration) who have completed all course work toward the degree and are in the final semester (RG 3375).

EKin 5091(6 credits)
Internship
The application and implementation in a work situation of theories and practices related to the student's area of specialization.
Components: Practicum

EKin 5094(3 credits)
Seminar
Issues and research in the biological and social science fields.
Components: Seminar

EKin 5099(1 - 6 credits) Instructor Consent Required
Independent Study
Components: Independent Study

EKin 5300(3 credits)
Management of Sport Services
Management processes and practices involved in operating sport organizations.
Components: Lecture

EKin 5310(3 credits)
Sport Marketing
This course examines the application of marketing principles to collegiate and professional sport, event promotions, and commercial and public organizations.
Components: Lecture

EKin 5315(3 credits)
Sport in Society
The structure and function of sport as an institution, including issues and controversies involving gender, race, and intercollegiate, professional, and children's sports.
Components: Lecture

EKin 5320(3 credits)
Psychological Aspects of Sport
The behavioral variables that affect an individual's performance in sport.
Components: Lecture

EKin 5325(3 credits)
Legal Aspects of Sport
Tort law principles specific to sport, fitness and recreational activities.
Components: Lecture

EKin 5330(3 credits) Instructor Consent Required
Analysis of Amateur Sport
This course will acknowledge the complexity and scope of the sport industry while addressing all segments of amateur sport including, intercollegiate athletics, youth sport, and community sport and recreation.
Components: Discussion

EKin 5335(3 credits) Instructor Consent Required
Analysis of Professional Sport
This course will acknowledge the complexity and scope of the sport industry while specifically addressing professional sport.
Components: Discussion

EKin 5340(3 credits)
Sport Facility and Event Management
This course will examine all aspects of the management of sport facilities and events, including development, planning, staffing, operations, and evaluation.
Components: Lecture

EKin 5345(3 credits)
Theory and Methods of Research
Theoretical and empirical foundations of quantitative and qualitative research in sport and leisure science including research design, implementation
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Components</th>
<th>Requirement Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKin 5500(3 credits)</td>
<td>Research Techniques and Experimental Designs in Exercise Science</td>
<td></td>
<td>Lecture</td>
<td>Open only to graduate students in Kinesiology (RG3351).</td>
</tr>
<tr>
<td>EKin 5507(3 credits)</td>
<td>Instructor Consent Required Exercise Prescription for Special Populations</td>
<td></td>
<td>Lecture</td>
<td>Open only to graduate students in Kinesiology (RG3351).</td>
</tr>
<tr>
<td>EKin 5510(3 credits)</td>
<td>Exercise Metabolism</td>
<td></td>
<td>Lecture</td>
<td>Open only to graduate students in Kinesiology (RG3351).</td>
</tr>
<tr>
<td>EKin 5512(3 credits)</td>
<td>Instructor Consent Required Preventing Sudden Death in Sport</td>
<td></td>
<td>Lecture</td>
<td>Open only to graduate students in Kinesiology (RG3351).</td>
</tr>
<tr>
<td>EKin 5515(3 credits)</td>
<td>Scientific Presentations</td>
<td></td>
<td>Lecture</td>
<td>Open only to graduate students in Kinesiology (RG3351).</td>
</tr>
<tr>
<td>EKin 5518(3 credits)</td>
<td>Instructor Consent Required Service Learning through Sport and Physical Activity</td>
<td></td>
<td>Lecture</td>
<td>Only to doctoral students.</td>
</tr>
<tr>
<td>EKin 5520(3 credits)</td>
<td>Scientific Instrumentation</td>
<td></td>
<td>Lecture</td>
<td>Only to doctoral students.</td>
</tr>
<tr>
<td>EKin 5525(3 credits)</td>
<td>Laboratory Analytical Techniques</td>
<td></td>
<td>Laboratory</td>
<td>Only to graduate students.</td>
</tr>
<tr>
<td>EKin 5530(3 credits)</td>
<td>Physiology of Stressful Environments</td>
<td></td>
<td>Lecture</td>
<td>Only to graduate students.</td>
</tr>
<tr>
<td>EKin 5533(3 credits)</td>
<td>Instructor Consent Required Current Research and Issues in Athletic Training</td>
<td></td>
<td>Lecture</td>
<td>Only to graduate students.</td>
</tr>
<tr>
<td>EKin 5534(3 credits)</td>
<td>Advanced Clinical Care in Sports Medicine</td>
<td></td>
<td>Seminar</td>
<td>Only to graduate students.</td>
</tr>
<tr>
<td>EKin 5535(3 credits)</td>
<td>Biomechanical Analysis of Sport Performance</td>
<td></td>
<td>Seminar</td>
<td>Only to graduate students.</td>
</tr>
<tr>
<td>EKin 5550(3 credits)</td>
<td>Children and Physical Activity</td>
<td></td>
<td>Lecture</td>
<td>Only to doctoral students.</td>
</tr>
<tr>
<td>EKin 6094(1 - 6 credits)</td>
<td>Seminar</td>
<td></td>
<td>Seminar</td>
<td>Only to doctoral students.</td>
</tr>
<tr>
<td>EKin 6300(3 credits)</td>
<td>Instructor Consent Required Organizational Theory in Sport</td>
<td></td>
<td>Lecture</td>
<td>Open only to doctoral students.</td>
</tr>
</tbody>
</table>

Description:
- **University of Connecticut**
- **Components:** Lecture, Seminar, Laboratory, Discussion
- **Course Requirements:**
 - Instructor Consent Required
 - Open only to graduate students in Kinesiology (RG3351)
- **Course Focus:**
 - Research Techniques
 - Experimental Designs
 - Exercise Prescription
 - Scientific Presentations
 - Service Learning through Sport and Physical Activity
 - Scientific Instrumentation
 - Laboratory Analytical Techniques
 - Physiology of Stressful Environments
 - Advanced Clinical Care in Sports Medicine
 - Biomechanical Analysis of Sport Performance
 - Children and Physical Activity
 - Organizational Theory in Sport
- **Program:**
 - Only to doctoral students
 - Open only to graduate students in Kinesiology (RG3351)
LINGUISTICS

Department Head: Associate Professor William Snyder

Distinguished Professor: Lillo-Martin
Professors: Bobaljik, Calabrese, and van der Hulst
Associate Professor: Gajewski and Wurmbrand

The Department of Linguistics offers study leading to the degrees of Master of Arts and Doctor of Philosophy, emphasizing theoretical research in syntax, semantics and phonology and experimental research in child language acquisition.

Admission Requirements.

All applicants must submit a sample research paper (such as a thesis or term paper) written in English. It is strongly recommended that this paper be on a topic in linguistics. This research paper and three letters of recommendation are to be sent directly to the Department of Linguistics.

Application forms for admission may be obtained by writing to the Graduate Admissions Office.

Suitable undergraduate major fields include linguistics, cognitive science, computer science, languages, mathematics, philosophy, and psychology. Applicants are required, however, to have completed some prior course work in formal generative grammar.

Special Facilities.

Resources for experimental research in child language acquisition include the excellent facilities at the University's Child Development Laboratories, as well as the Department's own Psycholinguistics Laboratory. Federal research grants to faculty members, and a long-standing association with Haskins Laboratories in New Haven, Connecticut, also provide significant research opportunities for doctoral students.

COURSES OF STUDY

LING 5010(1 credits)
Research Seminar in Language and Psychology
Also offered as PSYC 305.
Components: Seminar
Course Equivalents: PSYC 5500
Requirement Group: Open to graduate students in Linguistics, others with permission (RG793).

LING 5110(3 credits)
The Acquisition of Syntax
Relationship between the syntax of children's language and linguistic theory.
Components: Seminar
Requirement Group: Prerequisite: LING 5110 (RG361).

LING 5120(3 credits)
Readings and Research in Acquisition
Lectures and discussion of classic and current articles in first language acquisition; presentation of ongoing student research.
Components: Seminar

LING 5310(3 credits)
Phonology I
The analysis of sound patterns in languages within a generative framework: distinctive features, segmental and prosodic analysis, word formation, the theory of markedness.
Components: Seminar
Requirement Group: Open to graduate students in Linguistics, others with permission (RG793).

LING 5320(3 credits)
Phonology II
The analysis of sound patterns in languages within a generative framework: distinctive features, segmental and prosodic analysis, word formation, the theory of markedness.
Components: Seminar
Requirement Group: Prerequisite: LING 5310 (RG790).

LING 5410(3 credits)
Semantics I
The bases of formal models of syntax and semantics. Compositionality; quantification; Logical Form.
Components: Seminar
Requirement Group: Open to graduate students in Linguistics, others with permission (RG793).

LING 5420(3 credits)
Semantics II
Theories of meaning and reference. Formal treatment of meaning in a generative grammar.
Components: Seminar
Requirement Group: Prerequisite: LING 5410 (RG367).

LING 5510(3 credits)
Syntax I
Transformational analysis within a Chomskyan framework; deep structure, surface structure, universal conditions on the form and application of transformational rules.
Components: Seminar
Requirement Group: Open to graduate students in Linguistics, others with permission (RG793).

LING 5520(3 credits)
Syntax II
Transformational analysis within a Chomskyan framework; deep structure, surface structure, universal conditions on the form and application of transformational rules.
Components: Seminar
Requirement Group: Prerequisite: LING 5510 (RG792).

LING 5799(1 - 6 credits)
Directed Reading in Linguistics
Components: Independent Study

LING 6010(1 - 3 credits)
General Exam Workshop
Weekly forum for second-and third-year doctoral
students to present and receive feedback on their research for General Examination papers. Regular presentations and participation in discussions required.

Previous completion of three semesters of full-time course work in Linguistics recommended. Open to graduate students in Linguistics, others with permission. Components: Seminar

Requirement Group: Open to graduate students in Linguistics, others with permission (RG 4106).

LING 6020(1 credit) Professional Methods
Practice in writing abstracts for academic conferences. Preparation for academic job market: C.V.s, letters of application, interviews, job talks. Previous completion of three semesters of full-time graduate course work in Linguistics recommended. Open to graduate students in Linguistics, others with permission. Components: Seminar

Requirement Group: Open to graduate students in Linguistics, others with permission (RG 4106).

LING 6040(3 credits) Structure of a Selected Language
Phonological and syntactic problems of a given language. Components: Seminar

Requirement Group: Prerequisites: LING 5310 and LING 5510 (RG366).

LING 6050(3 credits) Field Methods in Linguistics
Collection and analysis of linguistic data from native consultants. Components: Seminar

Requirement Group: Prerequisites: LING 5310 and LING 5510 (RG357).

LING 6060(3 credits) Historical Linguistics
Introduction to the theories and techniques of studying linguistic change. The comparative method of reconstructing languages. Internal reconstruction. Rule change. Components: Seminar

Requirement Group: Prerequisites: LING 5320 and LING 5520 (RG365).

LING 6110(3 credits) Methods in Acquisition
Experimental methods for first language acquisition research. Components: Seminar

Requirement Group: Prerequisite: LING 5110 (RG364).

LING 6120(3 credits) Topics in Acquisition
Current topics in first language acquisition research. Components: Seminar

Requirement Group: Prerequisite: LING 5110 (RG364).

LING 6160(3 credits) Second Language Acquisition
Current research on theories of second language acquisition. Differences between first and second language development, including views on the availability of universal grammar. Linguistic input and the effect of age of immersion in a second language. Research methodologies and their validity will be discussed. Pedagogical implications derivable from this research will be addressed. Student research component.

Components: Lecture

LING 6210(3 credits) Instructor Consent Required Morphology
Introduction to morphological analysis and to the methods of linguistic segmentation. The Lexicon. The relationships between Phonology and Morphology and between Syntax and Morphology. The nature of clitics. Components: Lecture

Requirement Group: Prerequisite: LING 5310 (308) or 5510 (321) (RG3507)

LING 6310(3 credits) Problems in Phonology
Advanced work in phonology. Components: Seminar

Requirement Group: Prerequisite: LING 5320 (RG360).

LING 6410(3 credits) Semantics Seminar
Classical and recent literature and current research in semantics. Components: Seminar

Requirement Group: Prerequisite: LING 5420 (RG368).

LING 6420(3 credits) Topics in Semantics
Current topics in semantic research. Components: Seminar

Requirement Group: Prerequisite: LING 5420 (RG368).

LING 6510(3 credits) Readings and Research in Syntax
Examination and discussion of classic articles in syntactic theory; presentation of ongoing student research. Components: Seminar

Requirement Group: Prerequisite: LING 5520 (RG362).

LING 6520(3 credits) Problems in Syntax
Advanced work in syntax. Components: Seminar

Requirement Group: Prerequisite: LING 5520 (RG362).

LING 6530(3 credits) Comparative Syntax
Cross-linguistic study of syntactic structure; implications for linguistic theory. Components: Seminar

Requirement Group: Prerequisite: LING 5520 (RG362).

LING 6798(3 credits) Special Topics in Linguistics
Topics in general linguistics at an advanced level. Components: Seminar

Requirement Group: Prerequisites: LING 5310 and LING 5510 (RG365).

LING 6799(1 - 6 credits) Instructor Consent Required Independent Study in Linguistics
May be repeated for credit with a change of content. Components: Independent Study

(Grad 5930). Full-Time Directed Studies (Master's Level) (Grad 397) 3 credits.

†Grad 5950. Master's Thesis Research (Grad 395) 1 - 9 credits.

†Grad 5960. Full-Time Master's Research (Grad 396) 3 credits.

Grad 5998. Special Readings (Master's) (Grad 398) Non-credit.

Grad 5999. Thesis Preparation (Grad 399) Non-credit.

†Grad 6930. Full-Time Directed Studies (Doctoral Level) (Grad 497) 3 credits.

†Grad 6950. Doctoral Dissertation Research (Grad 495) 1 - 9 credits.

†Grad 6960. Full-Time Doctoral Research (Grad 496) 3 credits.

Grad 6998. Special Readings (Doctoral) (Grad 498) Non-credit.

Grad 6999. Dissertation Preparation (Grad 499) Non-credit.
MARINE SCIENCES

Department Head: Professor Ann Bucklin
Professors: Bohlen, Crivello, Dam, Fitzgerald, Mason, McManus, O’Donnell, Shumway, Torgersen, Visscher, Whittal, and Yarish
Associate Professors: Auster, Byrne, Edson, Lin, Romano, Skoog, and Ward
Assistant Professors: Dupraz, Vlahos and Whitney

The Department of Marine Sciences offers study and research programs leading to the degrees of Master of Science and Doctor of Philosophy in the field of oceanography. Areas of special interest include biological, chemical, geological and physical oceanography and marine biology, geochemistry, and geophysics.

Because of the varied training of students and the interdisciplinary nature of marine sciences, plans of graduate study are flexible in focus and scope, and are designed to meet the needs of the individual student. The department offers several courses which serve as a core curriculum in the study of marine sciences, in addition to an array of other offerings in specific areas of the field.

Master of Science. For admission, a bachelor’s degree in a related science normally is required; there are no special requirements for admission beyond those of the Graduate School. Selection of a Plan A (thesis) or Plan B (course work) degree normally is made after consultation with the student’s advisory committee. Since the faculty conduct laboratory and field research programs, most students complete a research project.

Doctor of Philosophy. Students entering the doctoral program normally have a master’s degree in a related science. Specific course requirements for the Ph.D. degree in oceanography are established by the student’s advisory committee. Depending upon the student’s committee, a foreign language or a related area of study (e.g., statistics, computer science) outside the student’s major program emphasis is required. A written qualifying exam covering selected topics in oceanography must be passed for advancement to candidacy.

The Department also actively participates in several interdisciplinary academic programs at the M.S. and Ph.D. level:

Biological Sciences. Certain members of the faculty also are members of the Department of Ecology and Evolutionary Biology. Work in marine ecology, botany, and evolution is available.

Marine Geophysics. Appointments of several Department faculty allow work in marine geophysics, geology, and sedimentology.

Special Facilities and Educational Opportunities. The Department maintains laboratories on the UConn-Avery Point campus in Groton, Connecticut. Research vessels, an ultra-clean analytical chemistry laboratory and seawater facilities are available through the Marine Sciences and Technology Center. Additional research and education facilities are provided by Connecticut Sea Grant, the National Undersea Research Center, the Long Island Sound Resource Center, and the Avery Point campus.

COURSES OF STUDY

MARN 5010 (3 credits)
Biological Oceanography
An advanced course in biological processes in oceanic and coastal waters. Emphasis is on empirical and theoretical concepts of marine ecosystem dynamics, primary and secondary production and detrital cycling.
Components: Lecture

MARN 5011 (3 credits)
Instructor Consent Required
Biogenic Fluxes in the Oceans
Processes regulating the export of organic matter from the surface of the ocean to the sea bed. New and export production; role of the biotic and abiotic processes in downward transport of particulate and dissolved organic matter; current topics of research on the biological pump.
Components: Lecture

MARN 5012 (3 credits)
Instructor Consent Required
Ecology of Marine Invertebrates
Functional responses of organisms to abiotic factors in the marine environment (light, temperature, salinity, oxygen tension, intertidal exposure).
Components: Lecture

MARN 5013 (4 credits)
Instructor Consent Required
Marine Systems Ecology
Effects of biotic and abiotic parameters on the structure and function of marine ecosystems. Techniques for the analysis of energetics, nutrient cycles, and trophic characteristics in both theoretical and applied problems. Field trips are required.
Components: Laboratory, Lecture

MARN 5014 (3 credits)
Marine Phytoplankton Ecology and Physiology
The physiology of marine phytoplankton, environmental factors affecting their growth and photosynthesis in the ocean, the oceanographic processes responsible for the temporal and spatial distributions of phytoplankton biomass and production, and current topics in phytoplankton research.
Components: Lecture

MARN 5015 (3 credits)
Principles and technology in nucleic acid purification and manipulation, DNA fingerprinting, gene cloning and sequencing, phylogenetic analysis, and detection of gene expression (mRNA and protein). Application examples in marine ecological studies.
Components: Laboratory, Lecture

MARN 5016 (3 credits)
Instructor Consent Required
Marine Zooplankton
Bioenergetics, life history, population and community ecology of zooplankton, and role of zooplankton in aquatic biogeochemical cycles.
Components: Lecture

MARN 5017 (3 credits)
Instructor Consent Required
Plankton Ecology
Recommended preparation: The equivalent of one year of biology, chemistry and physics course, or consent of instructor. Ecology of planktonic organisms (bacteria, protista and metazoa). The evolutionary ecology concept, methods of research, special features of aquatic habitats; adaptations to aquatic environments; population biology; predation, competition, life histories, community structure, and role of plankton in ecosystem metabolism.
Components: Laboratory, Lecture

MARN 5020 (3 credits)
Marine Bioorganic Chemistry
Overview of the molecular basis of metabolic and bioenergetic pathways and processes with emphasis on life in the marine environment. Synthesis of marine natural products. Laboratory demonstrations of selected molecular and physiological techniques used in oceanography.
Components: Laboratory, Lecture

MARN 5030 (3 credits)
Chemical Oceanography
The role of the oceans in the major global biogeochemical cycles of carbon, sulfur, nutrients, gases and trace elements. Studies include reaction rates, chemical speciation, equilibrium, solubility, oxidation-reduction, absorption, complexation and their effects on the composition of seawater and the transfer of substances at the Earth’s surface.
Components: Lecture

MARN 5031 (3 credits)
Aqueous Geochemistry
Application of chemical theory (thermodynamic equilibrium approaches and kinetics) to understanding the geochemistry of the Earth's aqueous systems, with a focus on the ocean and coastal ecosystems.
Components: Lecture

MARN 5032 (3 credits)
Coastal Pollution and Bioremediation
Overview of processes and compounds leading to pollution in the nearshore marine environment. The impact of pollution on the marine foodweb and its response is emphasized. Alleviation of pollution through metabolism of organisms, including bacteria, seagrasses and salt marshes.
Components: Laboratory, Lecture

MARN 5033 (3 credits)
Marine and Atmospheric Processes of Global Change
Fundamentals of marine and atmospheric processes in global biogeochemistry. Evaluation of atmospheric, biological and chemical processes that contribute to global change.
Components: Lecture
MARN 5036 (3 credits)
Marine Biogeochemistry
Composition, origin and solution chemistry of sea water. Marine biogeochemical cycles of water, salt, carbon, nutrients, gases and trace elements. Effects of ocean circulation, biological cycles and crustal exchanges on the distribution and transfer of substances in the marine environment.
Components: Lecture

MARN 5050 (3 credits)
Marine Geology
Relationships between physical and chemical processes and the occurrences and distribution of rock types and compositions in the oceanic environment.
Components: Lecture

MARN 5051 (3 credits) Instructor Consent Required
Radiotracer Applications in Natural Systems
Applications of radiotracers in the environment for environmental engineers, environmental scientists, geologists, hydrologists and oceanographers. Use of radionuclides in the interpretation and quantification of aqueous transport processes. The interaction of geochemistry, mass transport and flux balances in Earth, ocean and environmental systems.
Components: Lecture

MARN 5060 (3 credits)
Dynamic Physical Oceanography
Components: Lecture

MARN 5061 (3 credits) Instructor Consent Required
Advanced Dynamical Oceanography
Ocean thermodynamics; dynamics of rotating; homogeneous fluids; ocean circulation; western boundary currents; the thermocline, oceanic fronts. Components: Lecture
Requirement Group: Prerequisite: MARN 5060 (RG373).

MARN 5062 (3 credits)
Sediment Transport
The mechanics of sediment transport with particular emphasis on the processes governing transport in coastal and estuarine areas. Initiation of motion for cohesive and noncohesive materials, bed and suspended load transport, bed forms, sediment-flow interactions, modeling considerations.
Components: Lecture
Course Equivalents: GSCI 5110

MARN 5063 (3 credits)
Estuarine Circulation
The physical characteristics of estuaries, river and tidal interactions, turbulence and mixing, salt balance, circulation dynamics, mass transport and flushing, modeling considerations.

Components: Lecture
Requirement Group: Prerequisite: MARN 5060 (RG373).

MARN 5064 (3 credits)
Ocean Waves
General methods of wave analysis; surface gravity waves; tidal wave dynamics; internal waves and tides; planetary, edge and topographic Rossby waves.
Components: Lecture
Requirement Group: Prerequisite: MARN 5060 (RG373).

MARN 5065 (3 credits)
Physical Oceanography
Overview of physical properties and dynamics influencing the oceans and coastal waters. Descriptions of ocean properties and distributions, surface mixed layer, pycnocline, surface heat fluxes, and major ocean currents. Introduction to dynamics of ocean circulation, waves, tides, and coastal circulation.
Components: Lecture

MARN 5066 (3 credits)
Ocean Waves
General methods of wave analysis; surface gravity waves; tidal wave dynamics; internal waves and tides; planetary, edge and topographic Rossby waves.
Components: Lecture

MARN 5067 (3 credits)
Marine Geology
Relationships between physical and chemical processes and the occurrences and distribution of rock types and compositions in the oceanic environment.
Components: Lecture

MARN 5080 (3 credits)
Radiotracer Applications in Natural Systems
Applications of radiotracers in the environment for environmental engineers, environmental scientists, geologists, hydrologists and oceanographers. Use of radionuclides in the interpretation and quantification of aqueous transport processes. The interaction of geochemistry, mass transport and flux balances in Earth, ocean and environmental systems.
Components: Lecture

MARN 5830 (3 credits) Instructor Consent Required
Advanced Student Seminar in Chemical Oceanography
Readings and discussions of current literature in chemical oceanography. For graduate and advanced students in oceanography or related fields.
Components: Lecture

MARN 5893 (1 - 3 credits) Instructor Consent Required
Research
Conferences and laboratory work covering selected fields of marine sciences.
Components: Independent Study

MARN 5895 (1 credits) Instructor Consent Required
Independent Study
A reading course for those wishing to pursue special work in marine sciences. It may also be elected by undergraduate students preparing to be candidates for degrees with distinction. Designate the field of special interest by use of the appropriate section symbol.
Components: Independent Study

MARN 5898 (1 - 6 credits) Instructor Consent Required
Special Topics in Marine Sciences
Components: Lecture

MARN 6001 (2 credits)
Mathematical Models in Marine Sciences
Examples of the formulation of quantitative models of marine systems with a review of some particularly useful mathematical methods (differential equations, operational methods, numerical solution techniques), emphasizing the computation of predictions.
Components: Lecture
Requirement Group: Prerequisite: 9 graduate credits in Marine Science (RG374).
Areas of concentration within the Materials Science field of study are offered in Alloy Science, Biomaterials, Corrosion Science, Crystal Science, Dental Materials, Metallurgy, and Polymer Science.

*Note: Course offerings are listed under the Departments referred to above.

COURSES OF STUDY

Course offerings are listed under the departments referred to above. The Institute of Materials Science also sponsors visiting professors and adjunct professors from industry in these departments, who usually offer graduate courses in their areas of expertise. In addition, the Institute sponsors a colloquium series of outstanding speakers representing various study areas in materials science not specifically covered by the regular faculty.

MATERIALS SCIENCE

Director: Professor Harris L. Marcus
Associate Director: Professor Fotios Papadimitrakopoulos
Distinguished Professors: Brody, Stwalley, Subi, and Weiss
Professors: Aindow, Braswell, Coughlin, Cutlip, Goldberg, F. Jain, Kattamis, Kessel, Pease, L. Shaw, M. Shaw, and Sung
Associate Professors: Adamson, Alpay, Asandei, Burkhard, Dobrynin, Parnas, Rossetti, Seery, Sozizing, Wei and Zhu
Assistant Professors: Gao, Hebert, Huey, M. Jain, Kasi Lin, Ramprasad, and Wang
Research Professors: Boggs, Gell, and Scola
Assistant Research Professor: Smirnova

Work leading to the degrees of Master of Science and Doctor of Philosophy is offered in the interdisciplinary field of Materials Science through the Departments of Chemical, Materials and Biomolecular Engineering, Chemistry, Electrical and Computer Engineering and Physics, as well as departments in the biological sciences.

The M.S. Program.

There are no special requirements for admission to the master's program beyond those of the Graduate School. Selection of Plan A (thesis) or Plan B (non-thesis) is made after consultation with the advisory committee.

The Ph.D. Program.

Admission to the doctoral program is based upon a careful assessment of the student's potential for creative research in materials science. There are no special requirements for the doctoral program beyond those of the Graduate School.

Special Facilities.

The Institute of Materials Science, organized in 1965, aids in the development and coordination of the graduate programs in materials science. In addition to the laboratories of the participating academic departments, the Institute provides special laboratories for alloy chemistry, optical studies, magnetic susceptibility, electron paramagnetic resonance, nuclear magnetic resonance, ion implantation, microprobe analyses, atomic force microscopies, electron microscopy, crystal growth, mechanical properties, optical microscopy, metallography, solidification, chromatography, low-temperature studies, X-ray diffraction, soft X-ray spectroscopy, surface studies, surface modification, ultrasonics, IR, UV, and VUV spectroscopy, nanotechnology, and polymer research. A multi-million-dollar building houses these and additional laboratories and facilities designed for graduate research in the materials sciences.

Extensive capability for computational materials science is available within the Institute of Materials Science and other University facilities.

MATERIALS SCIENCE AND ENGINEERING

Department Head: Professor C. Barry Carter
Distinguished Professor: Brody
Professors: Aindow, Alpay, Jordan, Kattamis, Marcus, Singh, and Shaw
Associate Professors: Huey, Ramprasad, Rossetti, and Wei
Assistant Professors: Gao, Hebert, M. Jain, Y. Khan Kuhn, Kumbar, Nair, and Nukavarapu
Research Professor: Gell

The goal of the graduate program in Materials Science and Engineering, through its coursework and research programs, is to provide students with a comprehensive understanding of modern materials and to prepare for positions of leadership in engineering, research and development. Graduate instruction is offered which leads to the degrees of Master of Science and Doctor of Philosophy. Emphasis is placed on the relationships between the structure and properties of engineering materials, thermodynamics of materials, phase equilibria, mechanical behavior, electronic behavior and microstructural characterization. The main aspects of these subjects are covered in 4 designated core courses (see the descriptions for courses MSE 5301, 5309, 5322, and 5334 below) offered by the Department of Chemical, Materials and Biomolecular Engineering. Several other departments in the University offer courses in related disciplines, and students are encouraged to include one or more of these courses in their plans of study.

Requirements for the M.S.

There are no special requirements for admission to the master's program beyond those of the Graduate School. Selection of Plan A (thesis) or Plan B (course work) is made after consultation with the advisory committee. For Plan A, the student must successfully complete 5 graduate courses (15 credits), maintaining a GPA of 3.0 or above. At least 4 of these courses must be MSE courses. The student must also complete at least 9 credits of Master's Thesis Research (GRAD 5950). For Plan B, the student must successfully complete at least 8 graduate courses (24 credits), maintaining a GPA of 3.0 or above. At least 6 of these courses (18 credits) must be MSE courses.

Requirements for the Ph.D.

Admission to the doctoral program is based upon a careful assessment of the student's potential for creative research in materials science and engineering. Applicants for this program will normally have first completed an outstanding master's degree program. Students are required to complete all 4 of the graduate core courses as part of their coursework requirements, maintain a minimum GPA of 3.0 in
these courses and to pass a General Examination.

Special Facilities.

The Materials Science and Engineering Program is housed within the Institute of Materials Science. A comprehensive range of modern research equipment is available, including facilities for melting and casting of alloys, mechanical processing and heat treating, mechanical testing, electrical testing, processing and testing of ceramics and composites, transmission electron microscopes, scanning electron microscopes, x-ray diffraction apparatus, surface analysis equipment, thermal analysis equipment, and extensive spectrometry facilities (nuclear magnetic resonance, infra-red / Raman and ultra-violet).

COURSES OF STUDY

MSE 5301 (3 credits)
Thermodynamics of Materials
Classical thermodynamics with emphasis on solutions and phase equilibria. Applications to unary and multicomponent, reacting and nonreacting, homogeneous and heterogeneous systems, including development of phase diagrams.
Components: Lecture

MSE 5303 (3 credits)
Diffusion in Solids
Laws of Diffusion for binary and multicomponent systems, as well as for single and multi-phase systems. Diffusivity measurements and prediction. Modeling of interdiffusion with regard to diffusion couples, high temperature coatings, and gas-solid reactions using equation-solving and finite-difference software.
Components: Lecture
Same As Offering: MTGY 303
Requirement Group: Prerequisite: MSE 5301 (RG425).

MSE 5305 (3 credits)
Phase Transformations in Solids
Components: Lecture

MSE 5307 (3 credits)
Solidification of Metals and Alloys
Thermodynamic and kinetic principles of solidification. Control of structure and properties of pure and multicomponent materials through casting and solidification processes. Application of solidification principles to shaped casting, continuous casting, crystal growth and particulate processes.
Components: Lecture
Requirement Group: Prerequisite: MSE 5301 (RG425).

MSE 5308 (3 credits)
Plasticity of Solids
Basic concepts of dislocations and other defects; relationship between basic deformation, thermal processes, and observable macroscopic properties. Strengthening mechanisms, e.g., solid solution hardening, dispersion hardening, and work hardening.
Components: Lecture

MSE 5309 (3 credits)
Transport Phenomena in Materials Science and Engineering
Mechanisms and quantitative treatment of mass, energy, and momentum transfer will be discussed in the context of materials science and engineering applications. Increasingly complex and open-ended applications will be used to illustrate principles of fluid flow; heat conduction, radiation, and diffusion.
Components: Lecture

MSE 5310. Modeling Materials: (3 credits.) This course is intended to provide an overview of the theory and practices underlying modern electronic structure computations, primarily density functional theory (DFT). Students interested in learning about DFT techniques will benefit from this course.
Components: Lecture

MSE 5311 (3 credits)
Mechanical Properties of Materials
Mechanics of deformation and fracture; dislocation theory; strength of ductile and brittle materials; toughness; strengthening mechanisms; toughening mechanisms; creep mechanisms; fatigue crack initiation and propagation; reliability and lifetime prediction.
Components: Lecture

MSE 5313 (3 credits)
Theory of the Solid State
Components: Lecture

MSE 5316 (3 credits)
Fracture and Fatigue of Materials
Ductile and brittle fracture, fatigue, stress corrosion, and creep rupture. Failure analysis.
Components: Lecture

MSE 5317 (3 credits)
Electronic and Magnetic Properties of Materials
Crystal structures and interatomic forces, lattice vibrations, thermal, acoustic, and optical properties. Semiconductors, dielectric properties, magnetism, and magnetic properties, superconductivity. Device applications.
Components: Lecture

MSE 5337 (3 credits)
Materials Processing
Principles of powder preparation. Colloidal processing. Powder characterization. Consolidation and

MSE 5343(3 credits)
Corrosion

MSE 5345(3 credits)
Theory of Electrochemical Processes

MSE 5364(3 credits)
Advanced Composites
Mechanical properties, analysis and modeling of composite materials. The properties treated include stiffness, strength, fracture toughness, fatigue strength and creep resistance as they relate to fiber, whisker, particulate, and laminated composites. Components: Lecture

MSE 5366(3 credits)
Alloy Casting Processes
Principles and practices of alloy solidification and casting processes are discussed and applied in the context of sand, investment, permanent mold and die casting; continuous and direct chill casting; electro slag and vacuum arc remelting; crystal growth; rapid solidification; and laser coating. Components: Lecture

MSE 5700(3 credits) Instructor Consent Required
Biomaterials and Tissue Engineering
A broad introduction to the field of biomaterials and tissue engineering. Presents basic principles of biological, medical, and material science as applied to implantable medical devices, drug delivery systems and artificial organs. Not open to students who have passed BME 4710. Also offered as BME 5700. Components: Lecture
Course Equivalents: BME 5700
Requirement Group: Not open to students who have taken MSE 4710

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(497) 3 credits.

†GRAD 5950. Master’s Thesis Research
(495) 1 - 9 credits.
engaged in research: actuarial science, algebraic geometry, analysis on fractals, approximation theory, combinatorics, commutative rings theory, complex analysis, differential geometry, discrete groups, number theory, Fourier analysis, functional analysis, Harmonic analysis, homological algebra, inverse problems, logic and computability theory, low-dimensional topology, mathematical physics, mathematical biology, mathematics education, matrix theory, numerical analysis, numerical linear algebra, ordinary and partial differential equations, probability theory and stochastic analysis, representation theory, Riemann surfaces, tomography, wavelet theory. Further details concerning the Ph.D. program and faculty research interests may be obtained by writing directly to the Department of Mathematics at gradadm.math@uconn.edu or by visiting the website www.math.uconn.edu

Special Facilities.

The Homer Babbidge Library has extensive holdings of mathematics books and journals. Subscriptions to numerous mathematical journals are maintained and housed in the Mathematics Department Library. A weekly colloquium featuring visiting lecturers as well as several area-specific seminars are conducted during the academic year. Moreover, because of the easy access to colloquia and seminars at nearby institutions, there is a good potential for scholarly interaction.

COURSES OF STUDY

MATH 5000 (3 credits)
Mathematical Pedagogy

The theory and practice of teaching mathematics at the college level. Basic skills, grading methods, cooperative learning, active learning, use of technology, classroom problems, history of learning theory, reflective practice. Open to graduate students in Mathematics, others with consent of instructor. May not be used to satisfy degree requirements in mathematics.

Components: Seminar

MATH 5010 (3 credits) Instructor Consent Required
Topics in Analysis I

Components: Lecture

MATH 5011 (3 credits) C Instructor Consent Required
Topics in Analysis II

Components: Lecture

MATH 5016 (3 credits)
Topics in Probability

Advanced topics in probability theory, theory of random processes, mathematical statistics, and related fields. With a change of content, this course is repeatable to a maximum of nine credits.

Components: Lecture

MATH 5020 (3 credits)
Topics in Algebra

Advanced Topics chosen from group theory, ring theory, number theory, Lie theory, combinatorics, commutative algebra, algebraic geometry, homological algebra, and representation theory.

Components: Lecture

MATH 5026 (3 credits) Instructor Consent Required
Topics in Mathematical Logic

Topics include, but are not restricted to, Computability Theory, Model Theory, and Set Theory.

Components: Lecture

Requirement Group: Prerequisite: MATH 5260 (RG386).

MATH 5030 (3 credits) Instructor Consent Required
Topics in Geometry and Topology I

Advanced topics from uniform spaces, topological groups, Lie groups, fiber spaces, theory of submanifolds, PL topology, differential topology, cohomology operations, complex manifolds, Riemannian manifolds, transformation groups, fixed point theory.

Components: Lecture

Requirement Group: Prerequisite: MATH 5030 (RG387).

MATH 5040 (3 credits) Instructor Consent Required
Topics in Applied Analysis I

Advanced topics from the theory of ordinary or partial differential equations. Other possible topics: integral equations, optimization theory, the calculus of variations, advanced approximation theory.

Components: Lecture

MATH 5041 (3 credits) Instructor Consent Required
Topics in Applied Analysis II

Advanced topics from the theory of ordinary or partial differential equations. Other possible topics: integral equations, optimization theory, the calculus of variations, advanced approximation theory.

Components: Lecture

MATH 5046 (3 credits)
Introduction to Complex Variables

Functions of a complex variable, integration in the complex plane, conformal mapping. Not open for graduate credit toward degrees in Mathematics. Not open to students who have passed MATH 252.

Components: Lecture

MATH 5050 (3 credits)
Analysis

Introduction to the theory of functions of a real variable. Not open to students who have passed MATH 273.

Components: Lecture

MATH 5070 (3 credits)
Topics in Scientific Computation

Components: Lecture

MATH 5110 (3 credits)
Introduction to Modern Analysis

Metric spaces, sequences and series, continuity, differentiation, the Riemann-Stieltjes integral, functions of several variables.

Components: Lecture

MATH 5111 (3 credits)
Measure and Integration

Components: Lecture

Requirement Group: Prerequisite: MATH 5110 (RG375).

MATH 5120 (3 credits)
Complex Function Theory

An introduction to the theory of analytic functions, with emphasis on modern points of view.

Components: Lecture

Requirement Group: Prerequisite: MATH 5110 (RG375).

MATH 5121 (3 credits)
Topics in Complex Function Theory

Advanced topics of contemporary interest. These include Riemann surfaces, Kleinian groups, entire functions, conformal mapping, several complex variables, and automorphic functions, among others. May be repeated for credit with a change in content and consent of the instructor.

Components: Lecture

Requirement Group: Prerequisite: MATH 5120 (RG388).

MATH 5130 (3 credits)
Functional Analysis I

Normed linear spaces and algebras, the theory of linear operators, spectral analysis.

Components: Lecture

Requirement Group: Prerequisites: MATH 5111 and MATH 5211 (RG391).

MATH 5131 (3 credits)
Functional Analysis II

Normed linear spaces and algebras, the theory of linear operators, spectral analysis.

Components: Lecture

Requirement Group: Prerequisite: MATH 5130 (RG392).

MATH 5140 (3 credits)
Fourier Analysis

Foundations of harmonic analysis developed through the study of Fourier series and Fourier transforms.

Components: Lecture

Requirement Group: Prerequisites: MATH 5111 and MATH 5121 (RG395).
MATH 5141(3 credits)
Fourier Analysis on Groups
Components: Lecture
Requirement Group: Prerequisites: MATH 5111 and MATH 5121 (RG395).

MATH 5160(3 credits)
Probability Theory and Stochastic Processes I
Convergence of random variables and their probability laws, maximal inequalities, series of independent random variables and laws of large numbers, central limit theorems, martingales, Brownian motion.
Components: Lecture
Requirement Group: Prerequisite: MATH 5111 (RG382).

MATH 5161(3 credits)
Probability Theory and Stochastic Processes II
Contemporary theory of stochastic processes, including stopping times, stochastic integration, stochastic differential equations and Markov processes, Gaussian processes, and empirical and related processes with applications in asymptotic statistics.
Components: Lecture
Requirement Group: Prerequisite: MATH 5160 (RG383).

MATH 5210(3 credits)
Abstract Algebra I
Group theory, ring theory and modules, and universal mapping properties.
Components: Lecture

MATH 5211(3 credits)
Abstract Algebra II
Linear and multilinear algebra, Galois theory, category theory, and commutative algebra.
Components: Lecture
Requirement Group: Prerequisite: MATH 5210 (RG380).

MATH 5220(3 credits)
Introduction to Representation Theory
Semi-simple rings, Jacobson radical, density theory, Wedderburn's Theorem, representations and characters of groups, orthogonality relations, Burnside's theorem.
Components: Lecture
Requirement Group: Prerequisite: MATH 5210 (RG380).

MATH 5230(3 credits)
Algebraic Number Theory
Algebraic integers, ideal class group, ramification, Frobenius elements in Galois groups, Dirichlet's unit theorem, localization, and completion. Further topics (zeta-functions, function fields, non-maximal orders) as time permits.
Components: Lecture
Requirement Group: Prerequisite: MATH 5211 (RG381).

MATH 5250(3 credits)
Modern Matrix Theory and Linear Algebra
The LU, QR, symmetric, polar, and singular value matrix decompositions. Schur and Jordan normal forms. Symmetric, positive-definite, normal and unitary matrices. Perron-Frobenius theory and graph criteria in the theory of non-negative matrices.
Components: Lecture

MATH 5260(3 credits)
Mathematical Logic I
Predicate calculus, completeness, compactness, Lowenheim-Skolem theorems, formal theories with applications to algebra, Godel's incompleteness theorem. Further topics chosen from: axiomatic set theory, model theory, recursion theory, computational complexity, automata theory and formal languages.
Components: Lecture
Requirement Group: Prerequisite: MATH 5210 (RG380).

MATH 5310(3 credits)
Introduction to Geometry and Topology I
Topological spaces, connectedness, compactness, separation axioms, Tychonoff theorem, compact-open topology, fundamental group, covering spaces, simplicial complexes, differentiable manifolds, homology theory and the De Rham theory, intrinsic Riemannian geometry of surfaces.
Components: Lecture
Requirement Group: Prerequisite: MATH 5110, which may be taken concurrently (RG376).

MATH 5311(3 credits)
Introduction to Geometry and Topology II
Topological spaces, connectedness, compactness, separation axioms, Tychonoff theorem, compact-open topology, fundamental group, covering spaces, simplicial complexes, differentiable manifolds, homology theory and the De Rham theory, intrinsic Riemannian geometry of surfaces.
Components: Lecture
Requirement Group: Prerequisite: MATH 5310 (RG377).

MATH 5320(3 credits)
Algebraic Topology I
Complexes, homology and cohomology groups, homotopy theory.
Components: Lecture
Requirement Group: Prerequisite: MATH 5211 and MATH 5310, which may be taken concurrently (RG393).

MATH 5321(3 credits)
Algebraic Topology II
Complexes, homology and cohomology groups, homotopy theory.
Components: Lecture
Requirement Group: Prerequisite: MATH 5320 (RG394).

MATH 5360(3 credits)
Differential Geometry
An introduction to the study of differentiable manifolds on which various differential and integral calculus are developed. A special emphasis is placed on the global aspects of modern differential geometry.
Components: Lecture
Requirement Group: Prerequisite: MATH 5120 (RG384).

MATH 5400(3 credits)
Partial Differential Equations
Cauchy-Kowalewsky Theorem, classification of second order equations, systems of hyperbolic equations, the wave equation, the potential equation, the heat equation in Rn.
Components: Lecture
Requirement Group: Prerequisite: MATH 5120 (RG384).
MATH 5510(3 credits)
Numerical Analysis and Approximation Theory I
The study of convergence, numerical stability, roundoff error, and discretization error arising from the approximation of differential and integral operators.
Components: Lecture
Requirement Group: Prerequisite: MATH 5110, which may be taken concurrently (RG376).

MATH 5511(3 credits)
Numerical Analysis and Approximation Theory II
The study of convergence, numerical stability, roundoff error, and discretization error arising from the approximation of differential and integral operators.
Components: Lecture
Requirement Group: Prerequisite: MATH 5510 (RG379).

MATH 5520(3 credits)
Finite Element Solution Methods I
Components: Lecture

MATH 5521(3 credits)
Finite Element Solution Methods II
Components: Lecture
Requirement Group: Prerequisite: MATH 5520 (RG389).

MATH 5530(3 credits) Instructor Consent Required
Mathematical Modeling
Development of mathematical models emphasizing linear algebra, differential equations, graph theory and probability. In-depth study of the model to derive information about phenomena in applied work.
Components: Lecture

MATH 5540(4 credits) Instructor Consent Required
Computerized Modeling in Science
Development and computer-assisted analysis of mathematical models in chemistry, physics, and engineering. Topics include chemical equilibrium, reaction rates, particle scattering, vibrating systems, least squares analysis, quantum chemistry and physics.
Components: Lecture
Course Equivalents: PHYS 5350

MATH 5580(3 credits)
Optimization
Components: Lecture

MATH 5620(3 credits)
Financial Mathematics I
The mathematics of measurement of interest, accumulation and discount, present value, annuities, loans, bonds, and other securities.
Components: Lecture
Requirement Group: Not open to students who have passed MATH 2620 (RG606).

MATH 5621(4 credits)
Financial Mathematics II
Components: Lecture
Requirement Group: Not open to students who have passed MATH 289.

MATH 5630(4 credits)
Actuarial Mathematics I
Survival distributions, claim frequency and severity distributions, life tables, life insurance, life annuities, net premiums, net premium reserves, multiple life functions, and multiple decrement models.
Components: Lecture
Requirement Group: Prerequisite: MATH 2620 or MATH 5620, which may be taken concurrently. Not open to students who have passed MATH 3630 (RG397).

MATH 5631(4 credits)
Actuarial Mathematics II
Survival distributions, claim frequency and severity distributions, life tables, life insurance, life annuities, net premiums, net premium reserves, multiple life functions, and multiple decrement models.
Components: Lecture
Requirement Group: Prerequisite: MATH 5630. Not open to students who have passed MATH 3631 (RG398).

MATH 5633(3 credits)
Survival Models
Analysis, estimation, and validation of lifetime tables.
Components: Lecture
Requirement Group: Prerequisite: MATH 5630 or STAT 3445 (RG399).

MATH 5635(3 credits)
Introduction to Operations Research
Introduction to the use of mathematical and statistical techniques to solve a wide variety of organizational problems. Topics include linear programming, project scheduling, queuing theory, decision analysis, dynamic and integer programming and computer simulation.
Components: Lecture
Requirement Group: Not open to students who have passed MATH 4735, STAT 4535, or STAT 5535 (RG607).

MATH 5637(3 credits)
Risk Theory
Individual risk theory, distribution theory, ruin theory, stoploss, reinsurance and Monte Carlo methods. Emphasis is on problems in insurance.
Components: Lecture

MATH 5640(3 credits) Instructor Consent Required
Advanced Topics in Actuarial Mathematics I
Survival models, mathematical graduation, or demography.
Components: Lecture

MATH 5641(3 credits) Instructor Consent Required
Advanced Topics in Actuarial Mathematics II
Credibility theory or advanced theory of interest.
Components: Lecture

MATH 5660(3 credits)
Advanced Financial Mathematics
An introduction to the standard models of modern financial mathematics including martingales, the binomial asset pricing model, Brownian motion, stochastic integrals, stochastic differential equations, continuous time financial models, completeness of the financial market, the Black-Scholes formula, the fundamental theorem of finance, American options, and term structure models.
Components: Lecture

MATH 5710(3 credits) Instructor Consent Required
Tensor Calculus I
An introduction to tensor algebra and tensor calculus with applications chosen from the fields of the physical sciences and mathematics.
Components: Lecture

MATH 5711(3 credits) Instructor Consent Required
Tensor Calculus II
An introduction to tensor algebra and tensor calculus with applications chosen from the fields of the physical sciences and mathematics.
Components: Lecture

MATH 5720(3 credits) Instructor Consent Required
Vector Field Theory I
Vector algebra and vector calculus with particular emphasis on invariance. Classification of vector fields. Solution of the partial differential equations of field theory.
Components: Lecture

MATH 5721(3 credits) Instructor Consent Required
Vector Field Theory II
Vector algebra and vector calculus with particular emphasis on invariance. Classification of vector fields. Solution of the partial differential equations of field theory.
Components: Lecture
Requirement Group: Prerequisite: MATH 5720 (RG396).
MATH 5800(1 - 6 credits) Instructor Consent
 Required
 Investigation of Special Topics
 Students who have well defined mathematical problems worthy of investigation and advanced reading should submit to the department a semester work plan.
 Components: Lecture

MATH 5850(1 - 3 credits) Instructor Consent Required
 Graduate Field Study Internship Participation in internship and paper describing experiences.
 Components: Practicum

MATH 6000(1 - 6 credits)
 Seminar in Current Mathematical Literature Participation and presentation of mathematical papers in joint student faculty seminars. Variable topics.
 Components: Seminar

MATH 6010(1 - 6 credits)
 Seminar in Analysis Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
 Components: Seminar

MATH 6020(1 - 6 credits)
 Seminar in Algebra Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
 Components: Seminar Requirement Group: Prerequisite: MATH 5211 (RG381).

MATH 6026(1 - 6 credits)
 Seminar in Mathematical Logic Components: Seminar Requirement Group: Prerequisite: MATH 5260 (335) (RG3453).

MATH 6027(1 - 6 credits)
 Seminar in Set Theory Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
 Components: Seminar Requirement Group: Prerequisite: MATH 5310 (RG402).

MATH 6030(1 - 6 credits)
 Seminar in Topology Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
 Components: Seminar Requirement Group: Prerequisite: MATH 5321 (RG401).

MATH 6036(1 - 6 credits)
 Seminar in Geometry Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
 Components: Seminar Requirement Group: Prerequisite: MATH 5360 (RG400).

MATH 6040(1 - 6 credits)
 Seminar in Applied Mathematics Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
 Components: Seminar

MATH 6060(1 credits)
 Computers in Mathematical Research Components: Lecture

†GRAD 5930. Full-Time Directed Studies (Master's Level) (GRAD 397) 3 credits.

†GRAD 5950. Master's Thesis Research (GRAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research (GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master's) (GRAD 398) Non-credit.

GRAD 5999. Thesis Preparation (GRAD 399) Non-credit.

MATH 6000. Seminar in Current Mathematical Literature (MATH 401) 1-6 credits. Seminar. Participation and presentation of mathematical papers in joint student faculty seminars. Variable topics.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level) (GRAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research (GRAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research (GRAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral) (GRAD 498) Non-credit.

GRAD 6999. Dissertation Preparation (GRAD 499) Non-credit.
Facilities.
The laboratories of the Department of Mechanical Engineering are equipped with several major facilities as well as ancillary equipment. A list of Mechanical Engineering laboratories and facilities may be found at the Department website, <http://www.engr.uconn.edu/me>.

COURSES OF STUDY

ME 5105(3 credits)
Basic Concepts of Continuum Mechanics
Components: Lecture

ME 5110(3 credits)
Advanced Thermodynamics
Microscopic view of thermodynamics: probability and statistics of independent events, thermodynamic probabilities and most probable distribution functions, molecular structure and partition function, Ensemble of microstates describing macroscopic behavior, with ideal gas as an example, Macroscopic descriptions of thermodynamic equilibrium and equilibrium states, Reversible processes, Heat and Work interactions, Mixtures of pure substances and chemical equilibrium, Stability and phase transitions, Irreversible thermodynamics, Onsager reciprocity relations and thermo-electric effects, Kinetic theory of gases.
Components: Lecture

ME 5120(3 credits)
Advanced Thermo-Fluids I
Fluid as a continuum, Kinematics and decomposition of fluid motion, Conservation of mass and momentum, Navier-Stokes equations, Conservation of energy, Exact solutions to governing equations, Potential flows, Vorticity dynamics and low Reynolds number flows, Laminar boundary layers including heat transfer, Laminar free shear flows including heat transfer, Flow instabilities and transition.
Components: Lecture

ME 5130(3 credits)
Advanced Heat and Mass Transfer
Components: Lecture

ME 5140(3 credits)
Heat and Mass Transfer in Multiphase Systems
Presentation of basic principles for analysis of transport phenomena in multi-phase systems and how they can be applied to a wide variety of applications. The scope is limited to thermodynamics and heat and mass transfer fundamentals in solid liquid, liquid liquid, vapor and solid vapor with emphasis on condensation, evaporation, sublimation, vapor deposition, boiling, two-phase flow, melting and solidification.
Components: Lecture

ME 5150(3 credits)
Analytical and Applied Kinematics
Analytical methods of coordinate transformation and two and three dimensional motion, analysis of relative motion and relative freedom through kinematics connections, study of finite and instantaneous properties of motion, study of the geometry of single and multi-parameter engineering curves, surfaces and motions. Application in the analysis and design of linkages and mechanisms.
Components: Lecture

ME 5155(3 credits)
Geometric Modeling
This course deals with the mathematical modeling, computer representations and algorithms for manipulating geometry on a computer. It focuses on the basic concepts of solid and geometric modeling from geometry and topology, and uses these concepts to develop computational techniques for creating, editing, rendering, analyzing and computing with models of physical objects, mechanical parts, assembly and processes.
Components: Lecture

ME 5160(3 credits)
Theory and Design of Automatic Control Systems
Design features of a closed loop control system. Laplace domain analysis of electromechanical, pneumatic, hydraulic, thermal, and mechanical systems. Computer simulation of dynamic responses using software tools. Stability issues, Routh analysis, root locus, Bode and Nyquist analyses are addressed. An open-ended, hands-on design project from a current research topic is assigned.
Components: Lecture

ME 5180(3 credits)
Dynamics
Components: Lecture

ME 5190(3 credits)
Advanced Mechanics of Materials
This course covers the fundamental idealizations used in linear solid mechanics and the fundamental principles of the subject. Idealizations covered include beams, circular torsion, struts and thick cylinders. Basic principles include principle of minimum potential energy, principle of minimum complementary energy, virtual work, equations of static equilibrium and direct and potential methods of solving equilibrium equations. Example applications vary but may include, bounding of elastic properties of composites, derivation of finite elements, solution of plate problems by Green's functions and others.
Components: Lecture

ME 5210(3 credits)
Intelligent Material Systems and Structures
Overview of piezoelectric materials and electrostrictive materials, shape memory alloys, magnetostrictive materials, and ER/MR fluids. Development of adaptive structure integrated with piezoelectric material, actuation and sensing, simultaneous optimal design/control of electromechanical integrated system, nonlinear and robust control. Design of shape memory alloy system for position control. Development of semi-active control using ER/MR fluids. Structural health monitoring and system identification research.
Components: Lecture

ME 5220(3 credits)
Principles of Machining and Machine Tools
Theories and applications of machining. Fundamentals of machine tools and machining automation. Physics and mechanics in machining, machining forces and stresses, shear angle theories. Basic phenomena pertinent to process characteristics, such as tribology and tool life, machinability, surface integrity, and economics. Mechanisms of machining and machine tool errors. Machining error compensation with feedback sensors. Machining chatter and vibration analyses. Case studies.
Components: Lecture

ME 5301(3 credits)
Macroscopic Equilibrium Thermodynamics I
Review of zeroth, first and second laws of thermodynamics, development of equilibrium thermodynamics from a postulatory viewpoint, examination of thermodynamic potentials and equilibrium states, stability of thermodynamic systems including implications on phase and chemical equilibrium. Thermodynamic availability analysis.
Components: Lecture

ME 5311(3 credits)
Instructor Consent Required
Computational Methods of Viscous Fluid Dynamics
An advanced course on integral and finite-difference methods of solution of the parabolic and elliptic equations of viscous fluid flow. Method of weighted residuals; Crank-Nicolson; DuFort-Frankel; Peaceman-Rachford alternating direction method; truncation error analysis; stability. Applications to boundary layer and heat transfer problems. A background of FORTRAN programming and numerical analysis is necessary.
Components: Lecture
ME 5320 (3 credits)
Flow of Compressible Fluids I
Components: Lecture

ME 5321 (3 credits)
Flow of Compressible Fluids II
Components: Lecture
Requirement Group: Prerequisite: ME 5320 (RG406).

ME 5340 (3 credits)
Conduction Heat Transfer
Mathematical development of the fundamental equations of heat conduction in the steady and unsteady state, with or without internal heat generation or absorption. Study of exact and approximate methods used in the solution of heat conduction boundary value problems. Analytical, graphical, numerical and experimental evaluation of the temperature field in conducting media.
Components: Lecture

ME 5341 (3 credits)
Radiation Heat Transfer
Fundamentals of radiative emission (black body behavior and Planck’s law), surface properties (emissivity, absorptivity, reflectivity, and transmissivity), electromagnetic theory for prediction of radiative properties, development of the methods of solution for radiant energy interchange between surfaces and in enclosures with and without absorbing, emitting, and scattering media present.
Components: Lecture
Requirement Group: Prerequisite: ME 5307 (RG407).

ME 5410 (3 credits)
Theory of Elasticity
Components: Lecture
Requirement Group: Prerequisite: ME 5105 (RG415).

ME 5412 (3 credits)
Wave Propagation in Continuous Media
General dynamical equations for linear elastic media including both solids and fluids. Wave propagation in elastic rods, plates, cylinders, and semi-infinite and infinite solids. Rayleigh and Love waves; Layered media; reflection and refraction.
Components: Lecture
Requirement Group: Prerequisite: ME 5105 (RG415).

ME 5415 (3 credits)
Advanced Dynamics
Components: Lecture
Requirement Group: Prerequisite: ME 5105 (RG415).

ME 5420 (3 credits)
Mechanical Vibrations I
Components: Lecture

ME 5421 (3 credits)
Mechanical Vibrations II
Components: Lecture

ME 5425 (3 credits)
Principles of Machine Tool Design
Components: Lecture

ME 5430 (3 credits)
Mechanics of Composites and Laminates
Components: Lecture
Requirement Group: Prerequisite: either ME 5410 or CE 5124 (RG418).

ME 5431 (3 credits)
Fatigue in Mechanical Design
Design calculation methods for the fatigue life of engineering components, fundamentals of fracture mechanics. Crack initiation and crack propagation fatigue lives. Neuber analysis, multiaxial stress, cyclic stress-strain behavior, mean and residual stress effects. Selected current research topics, advanced research and design projects.
Components: Lecture
Requirement Group: Not open to students who have passed ME 5328 (RG610).

ME 5432 (3 credits)
Tribology
The theory of fluid film lubrication, including hydrodynamic, externally pressurized and squeeze film mechanisms of load support in bearings. Fixed and pivot pad thrust bearings; air bearings; journal bearings. Elastohydrodynamic lubrication; boundary lubrication; liquid and solid lubricants. Direct solid contact and rolling element contact bearings. Theories of wear. Design considerations in lubrication and wear.
Components: Lecture

ME 5433 (3 credits)
Theory of Plasticity
Introduces the physical basis for inelastic behavior and various mathematical descriptions for non-linear deformation. Provides an overview of plastic deformation in metals, including the role of dislocation behavior in strain hardening and strengthening. Detailed topics include yield surfaces, flow rules, hardening rules and introduction to viscoplastic modeling; emphasis is on finite element computer-based implementation of the concepts and their use in predicting the behavior of structures.
Components: Lecture
Requirement Group: Prerequisite: ME 5410 (RG419).

ME 5440 (3 credits)
Instructor Consent Required
Computer Integrated Manufacturing Systems Topics in Computer Integrated Manufacturing (CIM) including the fundamentals of automated manufacturing systems; production economics; Just-In-Time (JIT) and Shop Floor Control (SFC) techniques; Computer Numerical Control (CNC) and off-line programming; Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), and release and control of the engineering and manufacturing of new products. Advanced design and research projects.
Components: Lecture

ME 5441 (3 credits)
Instructor Consent Required
and Statistical Quality Control. Advanced design and research projects.
Components: Lecture

ME 5507(3 credits)
Engineering Analysis I

ME 5511(3 credits)
Principles of Optimum Design
Engineering modeling and optimization for graduate students in all areas of engineering. Problem formulation, mathematical modeling, constrained and unconstrained optimization, interior and boundary optimal constraint interaction, feasibility and boundedness, model reduction, sensitivity analysis, linear programming, geometric programming, nonlinear programming, and numerical methods in optimization.
Components: Lecture
Requirement Group: Not open to students who have passed ME 334 (RG669).

ME 5513(3 credits)
Modern Computational Mechanics
An advanced course in Computational Mechanics with emphasis on modeling problems using Finite Differences and Finite Element techniques. Projects include initial value problems, ordinary differential equations and partial differential equations. Course evaluation is made by the successful completion of several assigned projects.
Components: Lecture

ME 5520(3 credits)
Finite Element Methods in Applied Mechanics I
This course and CE 365 may not both be taken for credit. This course and CE 366 may not both be taken for credit.
Formulation of finite elements methods for linear static analysis. Development of two and three dimensional continuum elements, axisymmetric elements, plate and shell elements, and heat transfer elements. Evaluation of basic modeling principles including convergence and element distortion. Applications using commercial finite element programs. Also offered as CE 366.
Components: Lecture
Course Equivalents: CE 5164

ME 5521(3 credits)
Finite Element Methods in Applied Mechanics II
Also offered as CE 367.
Components: Lecture
Course Equivalents: CE 5166

ME 5895(1 - 3 credits) Instructor Consent Required
Special Topics in Mechanical Engineering
Classroom and/or laboratory courses in special topics as announced in advance for each semester. The field of study or investigation is to be approved by the Head of the Department before announcement of the course.
Components: Lecture

ME 6100(3 credits)
Statistical Thermodynamics
A microscopic development of thermodynamics including statistical ensembles, quantum statistical mechanics, and a comparison of various molecular models.
Components: Lecture

ME 6130(3 credits)
Advanced Thermo-Fluids II
Review of governing flow equations, instability and transition, Reynolds averaging and closure approximations, Algebraic turbulence models, Two-equation models, Large eddy simulations, Turbulence statistics: probability density function and power spectral densities, Energy cascade and intermittency, Turbulent boundary layers including heat transfer, Turbulent free shear flows, Turbulent internal flows (pipes and channels) including heat transfer, Natural convection.
Components: Lecture

ME 6140(3 credits)
Convection Heat Transfer
A study of heat transfer to laminar and turbulent boundary layers for both compressible and incompressible fluids. Free convection heat transfer is also investigated.
Components: Lecture

ME 6150(3 credits)
Turbines and Centrifugal Machinery
Theory, design and performance of centrifugal and axial flow machinery including turbines, blowers, fans, compressors, superchargers, pumps, fluid couplings and torque converters. A detailed study of the mechanics of the transfer of energy between a fluid and a rotor.
Components: Lecture
Requirement Group: Prerequisite: ME 5320 (RG406).

ME 6160(3 credits)
Combustion and Air Pollution Engineering
Review of thermodynamics and chemical equilibrium. Introduction to chemical kinetics. Studies of combustion processes, including diffusion and premixed flames. Combustion of gases, liquid, and solid phases, with emphasis on pollution minimization from stationary and mobile systems. Air pollution measurement and instrumentation.
Components: Lecture
Course Equivalents: ENVE 5253

ME 6170(3 credits)
Hypersonic Aerodynamics
Components: Lecture
Requirement Group: Prerequisite: ME 5320 (RG406).

ME 6171(3 credits)
Reaction Engines
Dynamics of gas flow, including heat addition of friction. Thermodynamic analysis of ram-jets, gas turbines and rockets and their components. Principles of propulsion systems. Nuclear, thermoelectric, ionic, and high energy propulsion devices.
Components: Lecture

ME 6172(3 credits)
Advanced Internal Combustion Engines
An analytical study of the factors influencing the operation and performance of the internal combustion engine. Spark-ignition and compression ignition engine theory. Emphasis on the latest analytical and experimental developments.
Components: Lecture

ME 6173(3 credits)
Advanced Combustion
Components: Lecture
Course Equivalents: ENVE 6210

ME 6174(3 credits)
Seminar in Combustion Generated Pollution
A study of the mechanism of production of pollutants such as nitrogen oxides, carbon monoxide, sulphur dioxide, soot and unburned hydrocarbons from power plants such as stationary gas turbines, internal combustion engines, and jet engines. Emphasis will be placed on current research problems and recent advances in combustor designs.
Components: Lecture

ME 6175(3 credits) Instructor Consent Required
Physical Acoustics
The basic principles of the generation and propagation of sound. Mathematical theory of vibration and sound, including single and multi-dimensional waves in stationary and moving media. Physical properties of sound waves; propagation of sound in confined and free space; refraction, reflection, and scattering from strong and weak inhomogeneities.
Components: Lecture

ME 6176(3 credits)
Hypersonic Aerodynamics
Components: Lecture

ME 6177(3 credits) Instructor Consent Required
Aerothermal Analysis
High-speed, viscous compressible flow. Equations of

ME 6178(3 credits)
Applied Solar Energy
Study of the technology and economics of solar energy conversion to useful forms. Review of heat transfer and energy storage. Collector design and performance analysis. System design of water heaters and space heating/cooling systems. Review of wind power, wave power, ocean thermal energy conversion and satellite solar power systems. Components: Lecture

ME 6179(3 credits) Instructor Consent Required
Underwater Sound
The propagation of sound in sea-water, including effects of temperature and salinity gradients. Transducers. Flow noise. Components: Lecture

ME 6222(3 credits)
Non-Linear Vibrations

ME 6223(3 credits)
Random Vibrations

ME 6250(3 credits)
Advanced Analysis and Design of Mechanisms
Kinematic analysis and synthesis of planar and spatial linkages with lower pairs. Type and number synthesis. Finite position and higher order design. Unified treatment of position, path-angle and function generation problems. Approximation synthesis and optimization. Defect elimination and performance evaluation, introduction to commercial software. Components: Lecture

ME 6251(3 credits)
Robotic Manipulators

ME 6255(3 credits) Instructor Consent Required
Computer Graphics for Design
A practical study of interactive computer graphics as applied to engineering design. Graphics hardware, interactive techniques, transformations, remote graphic systems, and stand-alone minicomputer based systems are discussed emphasizing their application in engineering design. Practical experience is gained through assignments involving various graphics systems. Components: Lecture

ME 6260(3 credits)
Advances in Control Systems Design

ME 6300(3 credits) Instructor Consent Required
Independent Study in Mechanical Engineering
Individual exploration of special topics as arranged by student and instructor. Components: Independent Study

ME 6301(3 credits)
Macroscopic Equilibrium Thermodynamics II
Review of zeroth, first and second laws of thermodynamics, development of equilibrium thermodynamics from a postulatory viewpoint, examination of thermodynamic potentials and equilibrium states, stability of thermodynamic systems including implications on phase and chemical equilibrium. Thermodynamic availability analysis. Components: Lecture

ME 6303(3 credits) Instructor Consent Required
Macroscopic Non-equilibrium Thermodynamics I
A study of the laws and equations applicable to non-equilibrium processes of a very general nature; this will include the conservation laws, entropy law and entropy balance, the phenomenological equations. Onsager's relations and the fluctuation dissipation theorem. Selected application of the foundations will include heat conduction, diffusion and cross effects, viscous flow and relaxation phenomena, and discontinuous system processes. Components: Lecture

ME 6304(3 credits) Instructor Consent Required
Macroscopic Non-equilibrium Thermodynamics II
A study of the laws and equations applicable to non-equilibrium processes of a very general nature; this will include the conservation laws, entropy law and entropy balance, the phenomenological equations. Onsager's Relations and the fluctuation dissipation theorem. Selected application of the foundations will include heat conduction, diffusion and cross effects, viscous flow and relaxation phenomena, and discontinuous system processes. Components: Lecture

ME 6320(3 credits)
Environmental Engineering
Design and arrangement of heating, air conditioning and refrigeration equipment and controls to meet comfort and industrial process requirements. Components: Lecture

ME 6330(1 - 3 credits) Instructor Consent Required
Advanced Measurement Techniques
A critical examination of measurement techniques. Principles of operation of various instruments. Estimates of accuracy, precision, and resolution of measurements. Intended primarily for students contemplating experimental theses. When possible, specific topics covered will be structured to the needs of the class. Components: Lecture

ME 6340(0 credits)
Graduate Seminar
Presentations by invited guest speakers on topics of current interest in various Mechanical Engineering and allied fields. Components: Seminar

ME 6508(3 credits) Instructor Consent Required
Engineering Analysis II
Calculus of variations including transversality conditions, constraints, Lagrange multipliers, Rayleigh-Ritz and Galerkin methods. Integral transform techniques including Laplace, Fourier, Hankel, and Mellin transforms, Integral equations. Components: Lecture

ME 6511(3 credits)
Advanced Optimum Design
Advanced techniques in engineering design and process modeling optimization for graduate students in all areas of engineering. Review of theories of multi-variable constrained and unconstrained optimization, and computational techniques in nonlinear programming, structured programming, including integer programming, quadratic programming, genetic algorithms, theories of multivariable optimization from calculus of variations, computational techniques in functional optimization. Components: Lecture

ME 6511 (rG410). Instructor Consent Required
Mechanical Design
A study of the principles and theories of mechanical design. Components: Lecture

ME 5160 or ME 5507 (rG423).

†GrAD 5930. full-time Directed studies (master's)
†GrAD 5950. master's thesis research
†GrAD 5960. full-time master's research
†GrAD 5998. Special Readings (Master's)
†GrAD 5999. Non-credit.
Medieval Studies

Interdisciplinary work leading to the degrees of Master of Arts and Doctor of Philosophy in medieval studies is offered by the Departments of Art and Art History, English, History, Modern and Classical Languages, and Philosophy. Since the program in medieval studies is intended to provide a synthesis of broad areas of medieval culture and thought as a basis for constructive research in specialized aspects of cultural and intellectual history, students normally are required to include in their programs courses offered by the supporting departments.

Admission to Degree Programs.
The Medieval Studies Admissions Committee accepts students either to the master’s or Ph.D. program. An undergraduate major in the area of study is not necessarily required, but before admission students must give evidence of adequate preparation to work in their proposed area of emphasis.

The M.A. Program.
Work leading to the degree of Master of Arts in medieval studies may be undertaken under either Plan A (with thesis) or Plan B (without thesis). In either case, course work in medieval studies should be distributed among several departments, and the student’s advisory committee is composed of representatives of three departments.

The Ph.D. Program.
Approximately one half of the course work required for the degree of Doctor of Philosophy in medieval studies should be in the department of emphasis, the remaining half to be taken in two or more other cooperating departments. In addition to the Graduate School’s requirements for the doctorate, reading examinations in three foreign languages, Latin and two languages significant to the student’s program. It is expected that the student will pass these examinations immediately upon admission and in no case later than the end of the first year of study in the Ph.D. program. The student’s advisory committee will consist of representatives of three different cooperating departments.

Courses of Study.
Course offerings and staff are listed under the cooperating and supporting departments referred to above. The Committee for Medieval Studies organizes a number of colloquia open to graduate students, featuring staff members or visitors.

Support.
University Predoctoral Fellowships and graduate assistantships for teaching or research are available through cooperating departments for qualified students in the medieval studies program. Other support available for graduate students is described under "University Fellowships and Other Aid."

Modern and Classical Languages

Department Head: Associate Professor Norma Bouchard
Professors: Berthelot, Celestin, DalMolin, Gomes, Gordon, Guénoun, Masciandaro, Miller, and von Hammerstein
Associate Professors: Caner, Chinchilla, Finger, Johnson, Irizarry, Loss, Mcneece, Pardo, Seda, Travis, and Weidauer
Assistant Professors: Balma, Casamayor-Cisneros, Diaz-Marcos, Nanclares, Urios-Aparisi, Van Alst, Wagner, and Wogenstein

The Department offers courses in literature and philology leading to the degrees of Master of Arts and Doctor of Philosophy in French, German, Italian, and Spanish. Programs are available in Comparative Literary and Cultural Studies in cooperation with the Department of English and in Medieval Studies in cooperation with the Departments of Art, English, History, and Philosophy (see Comparative Literary and Cultural Studies and Medieval Studies). There also is supporting work in Greek and Latin. Seminars numbered in the 6000’s are designed chiefly for doctoral students, but master’s students occasionally are admitted.

Admission.
All applicants are urged, and some may be required, to submit results of the Graduate Record Examinations for both the General Test and the Subject Test in their field. In the modern languages, applicants are expected to be able to participate in seminars at the graduate level conducted in the foreign languages.

The M.A. Program.

Applicants normally are expected to have a bachelor’s degree or its equivalent in the language. Students with insufficient undergraduate preparation may be accepted provisionally, but they are required to make up deficiencies before being admitted to regular graduate status. A research methodology course and a minimum of one semester of teaching experience are required of all M.A. candidates in German. M.A. students in German who emphasize philology are required to take at least two literature courses; students emphasizing literature or German studies are required to take at least one philology course. Candidates in Spanish are required to take the course in concepts of literary criticism. All master’s candidates must pass a written and/or oral final examination.

Special Requirements for the Ph.D. Doctoral candidates are expected to demonstrate competence in reading scholarly material in two additional languages other than English, as designated by their advisory committees. For candidates in French, these normally are Latin and German.

Students in Spanish are required to present or to take a course in concepts of literary criticism.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Components</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREN 5311</td>
<td>Aesthetic Trends in Twentieth-Century French Literature</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5352</td>
<td>Old French Language</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5353</td>
<td>Old French Literature</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5357</td>
<td>The French Novel in the Eighteenth Century</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5359</td>
<td>Romantic Poetry and Drama</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5361</td>
<td>French Poetry in the Second Half of the Nineteenth Century</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5369</td>
<td>The French Novel in the First Half of the Nineteenth Century</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5370</td>
<td>The French Novel in the Second Half of the Nineteenth Century</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5373</td>
<td>The French Contemporary Novel</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5376</td>
<td>The Prose of the French Renaissance</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5377</td>
<td>The Poetry of the French Renaissance</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5380</td>
<td>Seminar in Francophone Literature</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 5401</td>
<td>Seminar on Villon</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GERM 5305</td>
<td>Studies in Germanic Philology and Linguistics</td>
<td>Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GERM 5306</td>
<td>Topics in Germanic Philology and Linguistics</td>
<td>Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GERM 5314</td>
<td>Studies in German Literature I</td>
<td>Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GERM 5315</td>
<td>Topics in German Studies</td>
<td>Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GERM 5322</td>
<td>Studies in German Literature II</td>
<td>Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GERM 5345</td>
<td>Studies in German Literature III</td>
<td>Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MEDEV 5429</td>
<td>Study of French Style</td>
<td>Lecture</td>
<td>3</td>
<td>FREN 5353</td>
</tr>
<tr>
<td>MEDEV 5429</td>
<td>Problems of French style and writing of critical papers</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MEDEV 5429</td>
<td>Study of French style and writing of critical papers</td>
<td>Lecture</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MEDEV 5429</td>
<td>Seminar on Villon</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MEDEV 5429</td>
<td>Requirement Group: Prerequisite: FREN 5353</td>
<td>Lecture</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Library Facilities.

The Homer Babbidge Library contains outstanding collections of texts and commentaries in the literature of the French Renaissance and a fine collection of texts in the literature of the Spanish Golden Age. The Latin American Collection is particularly strong in the Mexican, Chilean, and Argentine areas. There is a fine collection of German literature of the eighteenth, nineteenth, and twentieth centuries, and the collection of modern drama is outstanding. In addition, the Library houses an extensive collection of videotapes of German literary and cultural materials, and facilities for viewing them. Holdings in Italian literature and in intellectual history are extensive, especially in the modern period. The Risorgimento pamphlet collection stands out as one of the best available outside of Italy. Other holdings in modern and classical languages are sufficient for the pursuit of scholarly research in all languages and literatures offered.

Courses of Study

Classics: Latin

CAMS 5301. Special Topics in Latin Literature (CAMS 301) 1-6 credits. Lecture.

CAMS 5307. Ovid and Elegiac Poets (CAMS 307) 3 credits. Lecture.

CAMS 5328. Advanced Latin Composition (CAMS 328) 3 credits. Lecture.

French

FREN 5302(3 credits)
- The Seventeenth-Century Theatre
 Components: Seminar

FREN 5304(3 credits)
- Seventeenth-Century French Thought
 Components: Seminar
- Religious and Libertin thinkers: Gassendi, Descartes; the Moralists: Pascal, La Roche Foucauld, La Bruyère.
 Components: Lecture

FREN 5306(3 credits)
- The Later French Enlightenment
 Components: Lecture

FREN 5307(1 - 3 credits)
- Problems in French Literature or Philology
 Components: Lecture

FREN 5309(3 credits)
- Provençal Language and Literature
 Components: Lecture

FREN 5310(3 credits)
- Introduction to French Philology
 Components: Lecture

Medieval Studies

FREN 5381(3 credits)
- Study of French Style
- Problems of French style and writing of critical papers.
 Components: Lecture

FREN 5401(3 credits)
- Seminar on Villon
 Components: Lecture
 Requirement Group: Prerequisite: FREN 5353 (RG429).

GERM 5305(3 credits)
- Studies in Germanic Philology and Linguistics
 Study of a coherent body of material related to older Germanic languages; to diachronic or synchronic phonology, morphology, syntax, and lexicology of Germanic languages; or to other areas of theoretical or applied linguistics.
 Components: Seminar

GERM 5306(1 credits)
- Topics in Germanic Philology and Linguistics
 Focus on a specific topic, problem, controversy, research methodology, etc. in Germanic philology and linguistics.
 Components: Seminar

GERM 5314(3 credits)
- German Studies
 Exploration of the field of German Studies as an “Interdiscipline”; analysis of a coherent body of material drawn from the social sciences, humanities, natural sciences, or other fields that helps to illuminate the German-speaking world.
 Components: Seminar

GERM 5315(1 credits)
- Topics in German Studies
 Focus on a particular theme (e.g. “revolution,” “family and society”), approach (e.g. critical theory, feminist interpretations), genre (e.g. lyric, autobiographical essay), skill (e.g. research methodology) or other aspect of German Studies.
 Components: Seminar

GERM 5322(3 credits)
- Studies in German Literature I
 Study of a coherent body of texts drawn from the period from the beginnings of German literature to approximately 1700.
 Components: Seminar

GERM 5332(3 credits)
- Studies in German Literature II
 Study of a coherent body of texts drawn from the period from approximately 1700 to 1890.
 Components: Seminar

GERM 5345(3 credits)
- Studies in German Literature III
 Study of a coherent body of texts drawn from the
period from approximately 1890 to the present.

Components: Seminar

GERM 5360(3 credits)
Research Methodology
Introduction to the methods of literary research and bibliography.
Components: Seminar

GERM 5365(3 credits)
German Film Studies
Study of a coherent body of films and related materials (e.g. fiction, theory, reviews) organized to illuminate particular themes (e.g. representations of postwar Germany), relationships (e.g. between films and literature or film and social context), cinematic styles (e.g. Expressionism), etc.
Components: Seminar

GERM 5368(3 credits)
The German-Speaking World
Landeskunde of the German-speaking world. The physical geography as well as cultural heritage, traditions, and contemporary customs of Austria, Germany, Switzerland, and other German-speaking regions of the world.
Components: Lecture

GERM 5369(1 credits)
Topics in Landeskunde of the German-Speaking World
Focus on a specific topic or problem related to diachronic or contemporary Landeskunde of Austria, Germany, Switzerland, or another German-speaking region of the world.
Components: Seminar

GERM 5375(3 credits)
Advanced Conversation and Composition
Practice in oral and written expression, with an emphasis on current idiomatic usage, grammatical structure, and stylistics.
Components: Lecture

GERM 5376(3 credits)
Rhetoric and Writing
In-depth introduction to the rhetorical resources of the German language; extensive analysis of spoken and written language; application of knowledge in students' own writing and speaking.
Components: Seminar

GERM 5377(1 credits)
Topics in Rhetoric and Writing
Components: Seminar

GERM 5378(0 credits)
Preparation for Certification of Proficiency in German
Development of students' proficiency in speaking, listening, reading and writing German in preparation for either the Mittelstufenprüfung or Oberstufenprüfung.
Components: Lecture

GERM 5380(3 credits)
German Language Methodology
Exploration and analysis of a range of theories, issues, and problems in German instruction. Focus on the nature of language acquisition, methods, and implications for practice.
Components: Lecture

GERM 5381(1 credits)
Topics in German Language Methodology
Focus on such special areas as content-based instruction, language for specific purposes (LSP), instructional technologies, development of teaching materials, proficiency, testing techniques, etc.
Components: Seminar

GERM 5385(3 credits)
German Literary Criticism and Theory
Systematic study of literary criticism, including such topics as the contributions of particular critical approaches to the understanding of significant German-language literary works; the philosophies, implicit or explicit, underlying various critical approaches; and the German contribution to international critical discourse.
Components: Seminar

GERM 5388(1 credits)
Topics in German Literature
Focus on a specific topic, problem, controversy, methodology, etc. in German literature studies or criticism.
Components: Seminar

GERM 5390(1 - 6 credits)
Independent Study
Components: Independent Study

GERM 6410(3 credits)
Seminar in Germanic Philology and Linguistics
Components: Lecture

GERM 6420(3 credits)
Seminar in Medieval Literature
Components: Seminar

GERM 6430(3 credits)
Seminar in Sixteenth- and Seventeenth-Century Literature
Components: Seminar

GERM 6450(3 credits)
Seminar in Nineteenth-Century Literature
Components: Seminar

GERM 6460(3 credits)
Seminar in Twentieth-Century Literature
Components: Seminar

GERM 6480(1 - 6 credits)
Investigation of Special Topics
Components: Lecture

HEB 5303. Religion of Ancient Israel (HEB 303) 3 credits. Lecture.
Significant aspects of the religion of ancient Israel: The God-human relationship, the origins of good and evil, law and covenant, kingship, prophecy, ritual and morality, repentance and redemption. Taught in English.
Portuguese

PORT 5301. Studies in Portuguese and Brazilian Literature
(3 credits) Seminar.
The major poets, novelists, dramatists, and essayists from Portugal and Brazil.

Romance Languages

ROML 5395. Applied Linguistics for Teachers of Romance Languages
(3 credits) Seminar.

Spanish

SPAN 5320(1 - 6 credits)
Independent Study
Components: Independent Study

SPAN 5321(3 credits)
Theatre of the Golden Age
A study of the origin, formation and development of the Spanish comedia. Representative works of Lope de Vega, Calderón, Tirso de Molina, and Alarcón will be analyzed with special emphasis on individual characteristics.
Components: Lecture

SPAN 5322(3 credits)
History of the Spanish Language
The development of Castilian and its relation to its congeners in the Iberian Peninsula and Hispanic America.
Components: Seminar

SPAN 5323(3 credits)
Concepts of Literary Criticism
A practical approach to the theories and methods of literary criticism with particular reference to Hispanic literature.
Components: Seminar

SPAN 5325(3 credits)
Cervantes Studies
Don Quixote I and II and the critical corpus. The Novelas Ejemplares, Entremeses and other works.
Components: Lecture

SPAN 5328(3 credits)
Medieval Spanish Literature (1100-1350)
Major works in prose and poetry from 1100-1350 in medieval Iberia.
Components: Lecture

SPAN 5329(3 credits)
Medieval Spanish Literature (1350-1500)
Major works in prose and poetry written in Spain from 1350-1500.
Components: Lecture

SPAN 5332(3 credits)
Special Topics in Early Modern Spanish Literature
The novel, the short story, and other prose genres in the early modern period.
Components: Lecture

SPAN 6339 (3 credits)
Seminar on Sixteenth or Seventeenth Century Studies
Open topics.
Components: Seminar

SPAN 6402 (3 credits)
Studies in Spanish-American Literature
Components: Lecture

SPAN 6403 (3 credits)
Studies in Spanish Literature
May be repeated for up to nine credits with a change of topic.
Components: Lecture

SPAN 6404 (3 credits)
Special Topics in Nineteenth-Century Spanish-American Literature and Cultural Production
Nineteenth century Spanish-American cultural production from Independence to the end of the nineteenth century. Emphasis on the interaction of literature and social thought, on the relations between literature and other forms of art, or on the role of artistic and intellectual practices in shaping the new nations.
Components: Seminar

SPAN 6405 (3 credits)
Special Topics in Twentieth-Century Spanish-American Literature and Cultural Production
Twentieth century Spanish-American cultural production. Emphasis on the interaction of artistic practices and social thought, or on the relations between literature, other forms of art, and social or political movements.
Components: Seminar

SPAN 6407 (3 credits)
Special Topics in Modern Spanish Cultural Production
Spanish culture from the Enlightenment to the present. Emphasis on the interaction of art and social thought, on the relations between art and the media, or on the role of intellectual practices in shaping or challenging notions of gender, ethnic, and national identity.
Components: Seminar

SPAN 6408 (3 credits)
Special Topics in Nineteenth Century Spanish Literature
Nineteenth century Spanish literature. Emphasis on the interaction of literature and social thought or the relations between literature and other forms of art.
Components: Seminar

SPAN 6416 (3 credits)
Theoretical Debates and the Hispanic Tradition
Aspects of methodology, theory, and history relevant to the study of cultural production in Hispanic societies.
Components: Seminar

All Master’s and Doctoral Fields

+GRAD 5930. Full-Time Directed Studies (Master’s Level)
GRAD 397) 3 credits.
+GRAD 5950. Master’s Thesis Research
GRAD 395) 1 - 9 credits.
+GRAD 5960. Full-Time Master’s Research
GRAD 396) 3 credits.
GRAD 5998. Special Readings (Master’s)
GRAD 398) Non-credit.
GRAD 5999. Thesis Preparation
GRAD 399) Non-credit.
+GRAD 6930. Full-Time Directed Studies (Doctoral Level)
GRAD 497) 3 credits.
+GRAD 6950. Doctoral Dissertation Research
GRAD 495) 1 - 9 credits.
+GRAD 6960. Full-Time Doctoral Research
GRAD 496) 3 credits.
GRAD 6998. Special Readings (Doctoral)
GRAD 498) Non-credit.
GRAD 6999. Dissertation Preparation
GRAD 499) Non-credit.

Molecular and Cell Biology

Department Head: Professor David R. Benson
Associate Department Head for Research and Graduate Education: Professor Michael A. Lynes
Associate Department Head for Undergraduate Education and Research: Professor Kenneth M. Noll
Professors: Albert, Birge, Chen, Frank, Freake, Geary, Gogarten, Kendall, King, Knecht, Lalande, LoTurco, Lynes, Marcus, Noll, Reiter, Rosenberg, Sekellick, Setlow, Silbart, Strausbaugh, Teschke, Visscher, Weller, Yang, and Zinn

Assistant Professors: Abbott, Adler, Bruno, Fridell, Gascon, Gryk, Hsu, Nelson, Nyholm, Papke, Papolouls, Robinson, Vinogradova, and Yao
Adjunct Professors: Bush, Craig, Denoya, Laue, and Oates
Adjunct Associate Professor: Perdrizet
Adjunct Assistant Professors: Arnold and Ladd

Molecular and Cell Biology offers graduate programs in the following fields of study:

1. Biochemistry – protein transport through membranes, receptor/ligand interactions, biochemical signalling, transcriptional and translational regulation, protein folding, molecular chaperones and response to stress, plant cell molecular biology;
2. Structural Biology and Biophysics – enzyme mechanisms, x-ray structural and kinetic analyses of enzymes, structure of membrane interactive peptides and proteins, macromolecular interactions, mechanisms of virus assembly;
3. Cell Biology – signal transduction, cytoskeleton and cell motility, developmental and stem cell biology, molecular endocrinology, hormones and morphogenesis, mechanisms of immune function, stress responses, molecular virology and interferons;
4. Genetics and Genomics – organization and regulation of genes and gene families in microbial, plant, virus and animal model systems; genome analysis; molecular evolution; chromosome structure and function; developmental genetics; transposable genetic elements and gene transfer; genetic responses to stress; applied genetics;
5. Microbiology – microbial diversity and ecology, evolution, genetics and physiology, microbial biotransformations, symbiosis.

Interdisciplinary Study

Applied Genomics.
The professional M.S. degree program in Genomics trains scientists with interdisciplinary competency in genetics, molecular biology, and computational analysis. The program provides substantial cross-training elements for successful performance in a business or corporate environment. The program has its foundations in the existing
Laboratory experience in the characterization of macromolecules in solution. Methods such as velocity- and equilibrium-sedimentation, density determination, refractometry and light scattering are covered.

Components: Laboratory

MCB 5008(3 credits)
Techniques of Biophysical Chemistry
Theory and applications of biophysical methods for the analysis of the size, shape and interactions of proteins and nucleic acids. Topics include analytical ultracentrifugation, light scattering, X-ray scattering, calorimetry, surface plasmon resonance and single molecule approaches.

Components: Lecture

MCB 5010(2 credits)
Biological Optical Spectroscopy: Practical Applications
If a student has taken MCB 5038, this course may only be taken if the content is different. Practical applications of spectroscopy in biochemistry and the biological sciences. Topics include fluorescence, circular dichroism and various spectroscopic techniques with particular emphasis on biological macromolecules. Analysis of raw data and interpretation of published results will be used to define the suitability and limits of these techniques.

Components: Lecture

MCB 5011(3 credits)
Enzyme Structure and Function
Information at the molecular level derived from protein chemistry, equilibria, kinetics and X-ray diffraction.

Components: Lecture

MCB 5012(3 credits)
Foundations of Structural Biochemistry
Comprehensive introduction to the molecular aspects and dynamics of structural biochemistry. Examination of nucleic acid, protein, and lipid structures including current topics in conformation and folding, enzyme kinetics, nucleic acid stability, ligand/receptor binding, and bioenergetics. Overviews of experimental strategies used to study macromolecular structure and interactions.

Components: Lecture

MCB 5013(3 credits)
Structure and Function of Biological Macromolecules

Components: Lecture

MCB 5015(3 credits) Instructor Consent Required
X-ray Structure Analysis
The determination of three-dimensional atomic-level structure by diffraction methods. Small-angle solution scattering. Protein crystallography.

Components: Lecture

MCB 5019(3 credits) Instructor Consent Required
X-ray Diffraction Laboratory
Analysis of low- and high-angle X-ray data from both synthetic and biological macromolecules in amorphous and crystalline states.

Components: Laboratory

MCB 5022(3 credits)
Human Disease and the Development of Therapeutic Agents
Molecular basis of human disease and strategies for developing therapeutic treatments. Applications of genetic, cellular, and biochemical information in treating different disease states. Especially appropriate for students interested in biomedical research and the health professions.

Components: Lecture

Course Equivalents: PHAR 5308

MCB 5034(2 credits)
Human Metabolism and Disease
A thorough analysis of the inter-relationships of metabolic pathways in connection with human health and disease, including inherited metabolic diseases and the role of hormones in metabolic pathways.

Components: Lecture

MCB 5035(3 credits)
Protein Folding
In-depth examination of protein folding in vitro and in vivo. Kinetics and thermodynamics of protein folding and assembly; chaperones in folding and misfolding; misfolding in human disease and biotechnology. Experimental methods used to study protein folding, including NMR, mutagenic and spectroscopic techniques.

Components: Lecture

MCB 5038(2 credits) Instructor Consent Required
Techniques in Structural Biology
Also offered as MEDS 338.
A short course to introduce graduate students and selected undergraduates to modern techniques in structural biology. Each course offering covers a specific technique: NMR, computational and graphical analysis of biomolecules, X-ray crystallography, analytical ultracentrifugation, spectroscopy, calorimetry, and others.

Components: Lecture

Course Equivalents: MEDS 5338
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCB 5076(2 credits)</td>
<td>Biomolecular Nuclear Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>MCB 5099(1 credits)</td>
<td>Graduate Seminar in Biochemistry</td>
</tr>
<tr>
<td>MCB 5210(3 credits)</td>
<td>Molecular Endocrinology</td>
</tr>
<tr>
<td>MCB 5217(3 credits)</td>
<td>Biosynthesis of Nucleic Acids and Proteins</td>
</tr>
<tr>
<td>MCB 5233(3 credits)</td>
<td>Plant Metabolism</td>
</tr>
<tr>
<td>MCB 5240(3 credits)</td>
<td>Virology</td>
</tr>
<tr>
<td>MCB 5243(3 credits)</td>
<td>Molecular Analysis of Development</td>
</tr>
<tr>
<td>MCB 5253(2 credits)</td>
<td>Instructor Consent Required Eukaryotic Molecular Biology</td>
</tr>
<tr>
<td>MCB 5255(2 credits)</td>
<td>Instructor Consent Required Cellular and Molecular Immunology</td>
</tr>
<tr>
<td>MCB 5256(5 credits)</td>
<td>Instructor Consent Required Cellular and Molecular Immunology</td>
</tr>
<tr>
<td>MCB 5257(2 credits)</td>
<td>Instructor Consent Required Animal Cell Culture Laboratory</td>
</tr>
<tr>
<td>MCB 5258(3 credits)</td>
<td>Advanced Cell Biology</td>
</tr>
<tr>
<td>MCB 5259(1 - 2 credits)</td>
<td>Instructor Consent Required Current Topics in Cell Biology</td>
</tr>
<tr>
<td>MCB 5260(3 credits)</td>
<td>Advanced Cell Biology</td>
</tr>
<tr>
<td>MCB 5261(3 credits)</td>
<td>Genetic Engineering and Functional Genomics</td>
</tr>
<tr>
<td>MCB 5262(3 credits)</td>
<td>Genetic Engineering and Functional Genomics</td>
</tr>
<tr>
<td>MCB 5263(3 credits)</td>
<td>Genetic Engineering and Functional Genomics</td>
</tr>
<tr>
<td>MCB 5264(2 credits)</td>
<td>Instructor Consent Required Theory and Practice of Forensic Identification Methods</td>
</tr>
<tr>
<td>MCB 5265(2 credits)</td>
<td>Instructor Consent Required Theory and Practice of Forensic Identification Methods</td>
</tr>
</tbody>
</table>

Components:
- **Lecture**
- **Laboratory**
- **Seminar**
- **Discussion of papers from recent literature. topics include cytoskeletal function, cell motility, gene expression, and signal transduction, with special focus on their relationship to development, the immune system, and cancer.**

Course Content:
- Advanced study of eukaryotic cell biology emphasizing structure, function, and dynamics of the cytoskeleton, membrane, and extracellular matrix.
- Discussion of papers from recent literature. Topics include cytoskeletal function, cell motility, gene expression, and signal transduction, with special focus on their relationship to development, the immune system, and cancer.

Additional Information:
- May be repeated for credit.
- Course prerequisites: courses in biochemistry, organic chemistry, and physical chemistry.
- Recommended preparation: courses in biochemistry, organic chemistry, and physical chemistry.
- Instructor consent required.

Course Description:
- Advanced consideration of the theory, practice, and analysis of various techniques used in forensic identification strategies. Taught as a series of stand-alone, "executive format" modules with each module focused on a different methodology and consisting of hands-on laboratory combined with lectures and data analysis, problem solving, and/or case studies. With change of content, may be repeated for credit.

Course Objectives:
- Advanced training in experimental design, sample preparation, quality control, high throughput sequence acquisition and analysis of data sets for a variety of genomics applications. Taught as a series of modules with each focused on a different aspect of the practice of next-generation genome analysis.

Components:
- Laboratory, Lecture

Course Content:
- Advanced training in experimental design, sample preparation, quality control, high throughput sequence acquisition and analysis of data sets for a variety of genomics applications. Taught as a series of modules with each focused on a different aspect of the practice of next-generation genome analysis.

Additional Information:
- May be repeated for credit.
- Instructor consent required.

Course Description:
- Advanced training in experimental design, sample preparation, quality control, high throughput sequence acquisition and analysis of data sets for a variety of genomics applications. Taught as a series of modules with each focused on a different aspect of the practice of next-generation genome analysis.

Components:
- Laboratory, Lecture

Course Content:
- Advanced training in experimental design, sample preparation, quality control, high throughput sequence acquisition and analysis of data sets for a variety of genomics applications. Taught as a series of modules with each focused on a different aspect of the practice of next-generation genome analysis.

Additional Information:
- May be repeated for credit.
- Instructor consent required.

Course Description:
- Advanced training in experimental design, sample preparation, quality control, high throughput sequence acquisition and analysis of data sets for a variety of genomics applications. Taught as a series of modules with each focused on a different aspect of the practice of next-generation genome analysis.

Components:
- Laboratory, Lecture
MCB 5470 (1 credits) Instructor Consent Required
Current Advances in Epigenetics
Also offered as ANSC 370.
Epigenetics is a field of modern biological research that is concerned with influences on gene expression, developmental biology, and disease that are mediated by mechanisms independent of DNA sequence. This course is a literature review course in which each student will present and critically analyze primary literature in epigenetics. All students will present and participate in detailed technical evaluations of selected papers, and develop a written proposal for future research based on the paper(s) that they present individually. Topics will include imprinting, X chromosome inactivation, chromatin dynamics, and cloning (nuclear transfer).
Components: Seminar

MCB 5471 (1 credits)
Current Topics in Molecular Evolution and Systemics
Current concepts, ideas and techniques in the field of molecular evolution, and theoretical problems peculiar to the phylogenetic analysis of molecular data.
Components: Lecture
Course Equivalents: EEB 5371

MCB 5472 (3 credits)
Computer Methods in Molecular Evolution
Practical aspects of molecular data analyses. Databank searches, sequence alignments, statistical analyses of sequence data. Parsimony, distance matrix, and spectral analysis methods. Students compile and analyze a data set of their choice.
Components: Lecture
Course Equivalents: EEB 5372

MCB 5490 (2 credits) Instructor Consent Required
Industrial Insights
Instruction in the research and development, regulation, intellectual property protection, and production of commercial services and products from the vantage point of genomics-related industries. Taught as a series of specialized courses with each focused on a different topic related to the genomics, biotechnology, and pharmaceutical industries.
Components: Lecture

MCB 5499 (2 credits)
Special Topics in Genetics
Intensive reading and discussion in current topics in genetics. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).
Components: Seminar

MCB 5616 (3 credits) Instructor Consent Required
Experiments in Bacterial Genetics
Experiments in bacterial genetics emphasizing genetic manipulations using modern techniques for mutant isolation, DNA characterization and cloning. These include the use of transposons, DNA isolation, restriction analysis, gel electrophoresis, PCR and DNA sequencing. Each student conducts an independent project.
Components: Laboratory

MCB 5621 (3 credits) Instructor Consent Required
Molecular Biology and Genetics of Prokaryotes
Molecular genetics of bacteria, archaeabacteria, and their viruses. Transcription and replication of DNA, transformation, transduction, conjugation, genetic mapping, mutagenesis, regulation of gene expression, genome organization. Recommended preparation: a course in general microbiology.
Components: Lecture

MCB 5636 (3 credits)
Industrial Microbiology
Biology of industrial microorganisms, including their physiology, selection, and biochemical and genetic manipulation. Primary and secondary metabolite biosynthesis and production. Pollution microbiology and biodegradation.
Components: Laboratory, Lecture

MCB 5650 (3 credits)
Genetics of Microorganisms
Basic genetic processes in microorganisms including homologous and nonhomologous recombination, chromosome mechanics, and mutation; genome organization; transposable elements, their uses in genetic analyses and their role in microbial evolution.
Components: Lecture

MCB 5679 (3 credits) Instructor Consent Required
Microbial Physiology
Topics in microbial cell organization, growth, and intermediary metabolism with emphasis on specialized physiological adaptations.
Components: Lecture

MCB 5681 (3 credits) Instructor Consent Required
Mechanisms of Bacterial Pathogenicity
An in-depth examination of several host-parasite relationships as models of disease states.
Components: Lecture

MCB 5682 (3 credits) Instructor Consent Required
Physiological Genetics of Bacteria
The use of mutants in investigating metabolic pathways and homeostatic mechanisms in bacteria, with extensive reference to Escherichia coli and its genetic map.
Components: Lecture

MCB 5683 (1 credits)
Biotechnology Seminar
Current topics in biotechnology.
Components: Seminar

MCB 5684 (3 credits) Instructor Consent Required
Fermentation and Separation Technology Laboratory
Introduction to techniques used for industrial mass culture of prokaryotic and eukaryotic cells and methods used to extract useful products from these cultures.
Music

Interim Department Head: Professor Karla Fox
Professors: Arm, Bass, Frogley, Fuchs, Junda, Miller, Mills, Renshaw, Stanley, and Stephens
Associate Professors: Kaminsky, Larrabee, Lee, McClain, Neely, Rock, and Squibbs
Assistant Professors: Hanzlik and Rice

The Master’s Program.

The Master of Music degree is offered with a concentration in performance (including an area of emphasis in conducting). Areas of concentration leading to the Master of Arts degree are historical musicology and theory.

Admission requirements in addition to those of the Graduate School are as follows: Applicants in historical musicology and theory are required to submit a writing sample, and Graduate Record Examination scores (General Test). All applicants must submit the University of Connecticut Graduate Theory Placement Exam. Applicants in applied performance and conducting are required to audition for admission. While a personal audition is preferred, a recorded audition may be submitted by applicants who find it prohibitive to travel to Storrs.

The M.A. degree programs require a minimum of 24 credits plus nine credits of GRAD 5950—Thesis Research and a master’s thesis. M.Mus. programs require a minimum of 30 credits.

The D.M.A. Program.

Areas of Concentration in conducting (instrumental, choral) and performance are offered. The program includes applied study, a minor field in theory or history, and electives suited to the student’s objectives and needs. For specific information with regard to admission to the D.M.A. program, students should write to the Director of Graduate Studies in Music, Department of Music, Unit 1012, Storrs, Connecticut 06269-1012.

The Ph.D. Program.

Concentrations in Music Theory and History. Plans of study are constructed through consultation between the student and advisory committee, so that the program is uniquely suited to the student’s objectives and needs. For specific information with regard to admission to the Ph.D. program, students should write to the Director of Graduate Studies in Music, Department of Music, Unit 1012, Storrs, Connecticut 06269-1012.

Graduate Performer’s Certificate.

For information concerning the Graduate Performer’s Certificate, write to the Department of Music, Unit 1012, Storrs, Connecticut 06269-1012.

Special Facilities.

The Music and Dramatic Arts Library maintains an extensive collection of books, scores, periodicals, audio and video recordings, and electronic resources. Listening facilities are available to students in the library. Unique research facilities include the department computer laboratory, the music recording studio, and the Professor Bruce Bellingham Collection of Period Instruments. The von der Mehden Recital Hall, seating 500, is used for student and faculty performances and houses digital recording facilities. A concert hall seating 3,000 provides a full season of concerts, including performances by major symphony orchestras, chamber musicians and internationally known solo artists.

COURSES OF STUDY

MUSI 5300(1 - 3 credits) Instructor Consent Required Investigation of Special Topics
Components: Independent Study
Requirement Group: Open to graduate students in Music, others with permission (RG812).

MUSI 5301(3 credits)
Research Procedures in Music Education
Research methods and sources.
Components: Lecture

MUSI 5302(3 credits)
Analytic Techniques
Structure and style in works from the 18th through the 20th Centuries.
Components: Lecture

MUSI 5305(1 credits)
Graduate Performing ensemble
Symphony Orchestra, Symphonic Wind Ensemble, Concert Band, Concert Choir, Chamber Singers, University Chorale, Voices of Freedom Gospel Choir, Jazz Ensemble, Jazz Lab Band.
Components: Laboratory
Requirement Group: Open to graduate students in Music, others with permission (RG812).

MUSI 5306(3 credits)
Seminar in Opera Literature
Literature of the opera from the Early Baroque to the present. Course content can change from a general survey to a study of selected works by a composer, or works in a specific country or style period.
Components: Seminar
Requirement Group: Open to graduate students in Music, others with permission (RG812).

MUSI 5309(3 credits)
Seminar in Woodwind Literature
Historical development of the woodwind instruments; of representative solo and ensemble literature.
Components: Seminar
Requirement Group: Open to graduate students in Music, others with permission (RG812).

MUSI 5315(2 credits)
Seminar in Suzuki String Pedagogy
Philosophy, repertoire and pedagogy of the Suzuki Method, including guided observation and supervised teaching.
Components: Seminar
Requirement Group: Open to graduate students in Music, others with permission (RG812).

MUSI 5319(3 credits)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUS 5322</td>
<td>Experimental Research in Music</td>
<td>3 credits</td>
<td>Investigates the problems and techniques employed in experimental studies of music.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 5323</td>
<td>(1 - 4 credits) Program Director Consent Read</td>
<td></td>
<td>Applied Music</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Applied Music Fee fee is charged all students receiving private instrumental, vocal, or conducting instruction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Participation in an appropriate major ensemble, advanced standing in performance, recommendation by an instructor in this department, and consent of the department head are required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Practicum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 5324</td>
<td>(1 credits) Graduate Chamber Ensemble</td>
<td></td>
<td>Study and performance of chamber music for various ensembles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 5325</td>
<td>(1 credits) Opera Theater</td>
<td></td>
<td>Study and performance of roles in major opera productions and/or work in production technique. May be repeated for credit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 5330</td>
<td>(2 credits) Advanced Instrumental Conducting</td>
<td></td>
<td>Score study, conducting, and rehearsal techniques of selected instrumental literature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 5331</td>
<td>(1 credits) Conducting Seminar</td>
<td></td>
<td>Special topics in instrumental and choral conducting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Seminar</td>
</tr>
<tr>
<td>MUS 5333</td>
<td>(3 credits) Foundations and Principles of Music Education</td>
<td></td>
<td>Historical, sociological and philosophical foundations of music education in American elementary and secondary schools.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td>MUS 5340</td>
<td>(2 credits) Musical Skills for Teachers</td>
<td></td>
<td>Aural, sight-singing and keyboard skills for public school music teachers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 5348</td>
<td>(3 credits) Schenkerian Theory and Analysis</td>
<td></td>
<td>Readings and analytical projects based on the theories of Heinrich Schenker and his followers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission.</td>
</tr>
<tr>
<td>MUS 5353</td>
<td>(3 credits) Theory Seminar</td>
<td></td>
<td>Analysis of specific styles and the work of particular theorists: variable topics.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission.</td>
</tr>
<tr>
<td>MUS 5354</td>
<td>(3 credits) Advanced Analysis</td>
<td></td>
<td>Methods and models of music analysis applied to selected works from the Middle Ages to the 20th Century.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission.</td>
</tr>
<tr>
<td>MUS 5359</td>
<td>(3 credits) History of Music Theory</td>
<td></td>
<td>Speculative pedagogical and analytical thought on the music in theoretical treatises from antiquity to the twentieth century.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Prerequisite: MUS 5302 (R812).</td>
</tr>
<tr>
<td>MUS 5364</td>
<td>(2 credits) Advanced Choral Techniques</td>
<td></td>
<td>Score study, conducting, and rehearsal techniques of selected choral literature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 5365</td>
<td>(2 credits) Choral Literature to 1600</td>
<td></td>
<td>Historical-analytical study of choral compositions: c. 1000 A.D. to 1600.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 5366</td>
<td>(2 credits) Choral Literature from 1600 to 1800</td>
<td></td>
<td>Historical-analytical study of choral compositions: 1600 to 1800.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 6400</td>
<td>(1 - 3 credits) Instructor Consent Required Tutorial in Music</td>
<td></td>
<td>A project-oriented approach to bibliographic tools and research methods applicable to the historical study of music.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Laboratory</td>
</tr>
<tr>
<td>MUS 6411</td>
<td>(3 credits) Seminar: The Life and Works of Individual Composers</td>
<td></td>
<td>Concerted individualized study and research.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Independent Study</td>
</tr>
<tr>
<td>MUS 6412</td>
<td>(3 credits) Seminar: Style Periods in Music History</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
<tr>
<td>MUS 6413</td>
<td>(3 credits) Seminar: History of Musical Forms</td>
<td></td>
<td>Sonata, concerto, madrigal, motet or other musical forms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Open to graduate students in Music, others with permission (R812).</td>
</tr>
</tbody>
</table>
MUSI 6491 (3 credits)
Seminar: Advanced Research Procedures in Musicology
Critical reading and original research in recent historical musicology.
Components: Seminar
Requirement Group: Open to graduate students in Music, others with permission (RGB12).

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(GRAD 397) 3 credits.

†GRAD 5950. Master’s Thesis Research
(GRAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master’s Research
(GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master’s)
(GRAD 398) Non-credit.

GRAD 5999. Thesis Preparation
(GRAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GRAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(GRAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(GRAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(GRAD 498) Non-credit.

GRAD 6999. Dissertation Preparation
(GRAD 499) Non-credit.

NATURAL RESOURCES

Department Head: Professor John C. Volin
Professors: Civco, Clausen, Miller, Robbins, Warner, and Yang
Associate Professors: Barclay, Meyer, and Ortega
Assistant Professors: Anyah, Rudnicki, and Vokoun

The Department of Natural Resources and the Environment offers study leading to the Master of Science and Doctor of Philosophy degrees in Natural Resources: Land, Water, and Air.

The M.S. Program.

The purpose of the program is to provide advanced study in one of the following specialty areas: atmospheric resources, earth resource information systems, fisheries management, forest resources, water resources, and wildlife management. Both thesis (Plan A) and non-thesis (Plan B) options are available.

The Ph.D. Program.

The purpose of the Ph.D. program is to educate scientists with a broad experience in natural resources and to prepare them to do independent research in one of the following specialties: air resources, earth resources, forest resources, water resources, and wildlife resources. The program requires at least 20 credits beyond the master’s degree, exclusive of the related or supporting area. All Ph.D. candidates are required to take NRME 5800 and NRME 6000. Ordinarily, students enrolled in this program will have completed the master’s degree. Students are required to have at least six credits of advanced work in a related or supporting area or have a competent reading knowledge of at least one foreign language appropriate to the general area of study. Candidates should be versed in natural resources management, science and technology, and analytical methods.

Special Facilities.

The Department has state-of-the-art laboratories for atmospheric resources, aquatic resources, fisheries resources, terrestrial resources and the Laboratory for Earth Resources Information (LERR). The Department also houses the Wildlife Conservation Research Center, The Center for Land Use Education and Research (CLEAR), and the Connecticut Water Resources Institute. The Department manages the 2,100 Acre UConn Forest for teaching, research, and demonstration.

COURSES OF STUDY

NRE 5105 (3 credits) Instructor Consent Required
Micrometeorology I
Study of basic processes of the atmospheric boundary layer including turbulent flow and the exchanges of heat, water vapor, and pollutants.
Components: Lecture

NRE 5110 (3 credits) Instructor Consent Required
Micrometeorology II
Study of current literature on processes in the atmospheric boundary layer
Components: Lecture

NRE 5115 (3 credits)
Field Methods in Hydrogeology
Field methods associated with ground water and contamination assessments. Not open to students who have passed GEOL 357.
Components: Lecture

NRE 5125 (3 credits)
Environmental Measurements and Instrumentation
Principles that govern the selection and use of both field sensors and recording data systems for field research and environmental monitoring.
Components: Lecture

NRE 5135 (3 credits)
Water Transport in Soils
Application of the principles of transport of water in soil for various physical properties of soils and fluids, initial conditions and boundary conditions. The differential equations describing the movement of energy and mass for both saturated and unsaturated flow conditions will be applied to soil evaporation and plant transpiration, infiltration and percolation of wetting fronts, and movement of tracers and chemical constituents of water. Both uniform flow and preferential flow will be examined.
Components: Lecture

NRE 5145 (3 credits)
Environmental Biophysics
Components: Lecture

NRE 5155 (3 credits)
Principles of Nonpoint Source Pollution
An advanced investigation of sources, impacts, modeling and management of nonpoint sources of water pollution.
Components: Lecture

NRE 5165 (3 credits)
Advanced Ground Water Hydrology
Covers ground water resource assessment, management and protection, understanding the flow of ground water in fractured rock, application of tracer studies in evaluating flow conditions. Not open to students who have passed GEOL 355.
Components: Lecture

NRE 5175 (3 credits) Instructor Consent Required
Climate and Environmental Systems Modeling
Recommended preparation: Undergraduate Calculus I,II. How physical processes in climate and environmental systems such as atmospheric motion, hydrological processes and transport of atmospheric constituents are represented in numerical models. Topics include classification of numerical models, steps in climate and environmental (mathematical) modeling, conservation theories of mass and energy, mass balance equations, numerical techniques, and initial and boundary conditions.
Components: Lecture
NRE 5252 (3 credits) Instructor Consent Required
Physiology and Ecology of Trees
Also offered as PLSC 5252.
An examination of the interactions between trees and their environment at the molecular, individual and forest stand scales. Lectures and reviews of current research span at least two spatial scales of organization for each course topic. Course topics include tree carbon balance, water relations, mineral nutrition, morphology, genomics, phenology, climate change and modeling.
Components: Lecture
Course Equivalents: PLSC 5252

NRE 5325 (1 - 6 credits)
Wildlife Management
The application of ecological principles as practiced by natural resource agencies throughout North America.
Components: Laboratory, Lecture

NRE 5335 (2 - 3 credits) Instructor Consent Required
Advanced Stream Ecology
Advanced Stream Ecology is intended to introduce graduate students to the current state of knowledge and research in rivers and streams. Topics will include both basic structure and function of stream habitats and biotic assemblages as well as branch into the management and conservation applications of ecological information. Term project and paper is required. Instructor consent required - students with previous stream ecology coursework (such as NRME 205) may take the course for 2 credits and attend the single weekly meeting. Students lacking a basic introduction to stream ecology may take the course for 3 credits and will attend NRME 205 lectures in addition to the weekly meeting.
Components: Lecture

NRE 5345 (3 credits)
Advanced Fisheries Management
Principles, practices, and current trends in fisheries science and management.
Components: Lecture

NRE 5461 (3 credits)
Landscape Ecology
Interdisciplinary focus on the effect of landscape pattern on environmental processes and conditions and the influence of disturbance and underlying geomorphology on landscape pattern. Consideration of landscape ecology principles in planning and management of pattern and processes in which conservation and production land uses are intermingled.
Components: Lecture

NRE 5555 (3 credits)
GPS Surveying
Theory and practice of global positioning system (GPS) surveying. Includes network design, control, geodetic coordinate systems, field collection of measurements, data processing, and interpretation of results.
Components: Lecture

NRE 5565 (3 credits) Instructor Consent Required
Digital Terrain Modeling
Theory and practice of digital terrain modeling. Topics include topographic surveying, topographic surface modeling, derivative estimation, and selected applications of digital terrain models. Suggested preparation: NRE 252 (GIS), NRE 253 (Introduction to Geodesy) or equivalent.
Components: Lecture

NRE 5575 (3 credits)
Natural Resource Applications of Geographic Information Systems
The principles and applications of computer-assisted spatial data analysis in natural resources management will be covered. Both hypothetical and actual case studies of the use of geographic information systems (GIS) to solve natural resource problems will be discussed. Raster- and vector-oriented, microcomputer-based GIS software will serve as the hands-on tools for students.
Components: Lecture

NRE 5585 (3 credits)
Geospatial Data Processing Techniques
Research approaches and techniques in geospatial analysis, enabling students to pursue integrated research in earth resources data geoprocessing applications. A variety of computer-based tools, including remote sensing, geographic information systems (GIS), and global positioning satellite (GPS), will be utilized in the acquisition, analysis, and presentation of digital earth resource data and information.
Components: Lecture

NRE 5605 (3 credits)
Environmental Data Analysis
Topics on natural resources and environmental data analysis, including: random variables and probability distributions, parameter estimation and Monte Carlo simulation, hypothesis testing, simple regression and curve fitting, wavelet analysis, factor analysis; formulation and classification of optimization problems with and without constraints, linear programming; models for stationary and non-stationary time series; solution of ordinary differential equations with Laplace transforms and Euler integration; solution of partial differential equations with finite differences; basics of modeling.
Components: Lecture

NRE 5675 (3 credits)
Area Water Modeling Applications
Application of Modflow to groundwater flow and contaminant problems. Well head protection modeling. Not open to students who have passed GEOL 356.
Components: Lecture

NRE 5698 (1 - 6 credits)
Independent Study
Study and discussion of readings (journal articles, books, current research) on a selected topic in natural resources.
Components: Seminar

NRE 5699 (1 - 3 credits) Instructor Consent Required
Independent Study
Components: Independent Study

NRE 5800 (1 credits)
Graduate Seminar
The mechanism of presenting and moderating a professional presentation. Topics include: presentation, organization, speaking skills, use of media technology, formulation of questions, and moderator activities. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Seminar

NRE 6000 (3 credits)
Research Methods in Natural Resources
General research techniques, writing scientific articles and grant proposals, problem solving approaches, experimental design and modeling concepts, and research ethics.
Components: Lecture

NRE 6135 (3 credits)
Small Watershed Modeling
Components: Lecture

NRE 6175 (3 credits)
Ground Water Modeling Applications
Application of MODFLOW to ground water flow and contaminant problems. Well head protection modeling. Not open to students who have passed GEOL 356.
Components: Lecture

NRE 6325 (1 - 6 credits)
Wildlife Ecology
A discussion of the principles upon which wildlife conservation is based.
Components: Lecture

NRE 6450 (3 credits) Instructor Consent Required
Teaching Practicum
Doctoral students in the Natural Resources: Land, Water, and Air program take primary teaching responsibility for a course under the supervision of a faculty liaison. May be repeated once for a total of 6 credits
Components: Practicum
NURSING

Dean: Professor Anne R. Bavier
Associate Dean for Academic Affairs and Advanced Practice: Professor Regina Cusson
Associate Dean for Pre-licensure Programs:
Assistant Professors: Allchin, Barta, Bassi, Bellini, Bavier, Beck, Cusson, Neafsey, Shelton, Engler, Hegedu, Kenefick, Long, McDonald, Polifroni, Sanford, Shelton, Van Hoof, and Walsh
Assistant Professors: Alchlin, Barta, Bassi, Bellini, Breitkreuz, Cong, Daisy, Gacad, Judge, Ohalate, Pearson, Reilly, and Telford
Clinical Assistant Professors: Espelin, McCauley, Panosky
The School of Nursing offers study leading to the Master of Science, Doctor of Nursing Practice, and Doctor of Philosophy degrees in nursing.

The M.S. Program.
The plan of study includes nursing and supportive courses according to the plan of study for each specialty. The program is accredited by Commission on Collegiate Nursing Education.

The purpose of the master’s program is to prepare advanced practice nurses with specialized knowledge, skills, and values. Graduates assume leadership roles in the health care system and advance practice and the discipline of nursing by applying existing knowledge and using a spirit of inquiry to examine and test knowledge. Areas of study include the following: clinical nurse leader, acute care, neonatal, and primary care.

Each student completes a 15-credit core curriculum in theory, research, statistics, needs assessment and legal, regulatory and policy aspects of advanced nursing practice. All students are required to enroll in NURS 5010 and NURS 5020 as their first two courses. Additional courses supportive to the core or selected area of emphasis are mutually agreed upon by the student and their faculty advisor. Students need 2,080 hours of clinical experience as an RN in direct patient care prior to beginning their first practicum course. All master’s specialty track programs are transitioning to the Doctor of Nursing Practice degree. The Clinical Nurse Leader Program prepares nurses as generalists in designing change at the micro systems level. It will remain at the master’s level.

An accelerated master’s program is available for nurses with diplomas or associate degrees or baccalaureate degrees in another field.

No student may take more than six (6) credits as a non-degree student.

Admission Requirements for the M.S. Program.
In addition to those of the Graduate School, requirements for admission are: An earned masters degree in nursing from an accredited college or university, national advanced practice certification in the applicant’s area of specialty, submission of graduate record examination scores (GRE’s), a personal statement from the applicant addressing his or her reasons for applying and his or her plans for the future, three letters of reference from faculty or others who can address the candidate’s potential for success in the graduate program.

Additional D.N.P. Requirements.
Evidence of tetanus immunization within the past ten years, one poliomyelitis booster following initial immunization, PPD test (chest x-ray required biennially for positive reactors), rubella, rubeola, varicella, hepatitis B titers (with vaccine if titer is negative) are required for clinical practicum coursework. CPR certification must remain current as well. A criminal background check may be required prior to placement in a clinical assignment. In certain circumstances evidence of a criminal record may prevent a student from fulfilling clinical requirements and/or requirements for professional licensure.

The D.N.P. Program.
The Doctor of Nursing Practice program is a post-master’s program. The Bachelors - Doctor of Nursing Practice program, is in the approvals stages. The D.N.P. program provides a terminal degree in nursing practice for those currently engaged in advanced practice, offering an alternative to doctoral programs focused on the science of research. D.N.P.-prepared advanced practice nurses focus on the science of clinical scholarship. D.N.P.-prepared advanced practice nurses will be well-equipped to fully implement the science developed by nurse researchers prepared in Ph.D., D.N.Sc. and other research-focused nursing doctorates. The D.N.P. program consists of a total of 38 credits including: 22 credits of required core course work related to the science of nursing, evidenced-based practice, health care policy, health services research methods, responsible conduct of research, information systems, and inter-professional collaboration; 6 credits of clinical practice coursework and 10 credits of end of program project coursework. The end of program project will involve an implementation of a change in practice initiative which will result in the dissertation, a poster, in addition to 1 - 6 credits of elective credits may be needed in the DNP residency if the applicant has fewer than 1000 hours of supervised clinical rotation experienced in the Master’s Program and a final oral examination.

Admission Requirements for the D.N.P. Program.
In addition to those of the Graduate School, requirements for admission are: An earned masters degree in nursing from an accredited college or university, national advanced practice certification in the applicant’s area of specialty, submission of graduate record examination scores (GRE’s), a personal statement from the applicant addressing his or her reasons for applying and his or her plans for the future, three letters of reference from faculty or others who can address the candidate’s potential for success in the graduate program.
ally for positive reactors), rubella, rubeola, varicella, hepatitis B titers (with vaccine if titer is negative) are required for clinical practicum coursework. CPR certification must remain current as well. A criminal background check may be required prior to placement in a clinical assignment.

The Ph.D. Program.

The purpose of the Ph.D. Program is to prepare nurse leaders who will advance the scientific body of knowledge that is unique to professional nursing practice. Educational experiences are offered in nursing theory development, philosophy of nursing science, qualitative and quantitative research methods, and in advanced statistics. Study in specialty areas further supports the individual's area of clinical interest.

Admission Requirements for the Ph.D. Program.

In addition to those of the Graduate School, requirements for admission are: graduation from an accredited master's program; eligibility for licensure as a registered nurse in Connecticut; a cumulative master's grade point average of 3.25 or higher; submission of Graduate Record Examination scores; completion of a graduate level inferential statistics course; three reference letters; a personal statement; a personal interview; and submission of published works or scholarly papers. Additional information may be obtained by contacting the School of Nursing Office of Admissions and Enrollment Services, 231 Glenbrook Road, Unit 2026, Storrs, Connecticut 06269-2026.

Program information and admission procedures are online at www.nursing.uconn.edu

COURSES OF STUDY

NURS 5000 (1 - 6 credits) Instructor Consent Required
Investigation of Special Topics
Components: Lecture

NURS 5010 (3 credits)
Nursing Science
Analysis of the current state of nursing science and the application of knowledge from this science and other disciplines to advanced nursing practice from historical, contemporary and futuristic perspectives. Open to non-degree students.
Components: Lecture

NURS 5011 (3 credits) Instructor Consent Required
Nursing Theories and Patterns of Knowing
This survey course introduces the student to the art and science of nursing practice. It explores the historical, empirical, ethical, esthetical, and personal knowing aspects of nursing praxis. The legal, educational, regulatory, and financial world of nursing is examined. The major theorists influencing the development and advancement of the profession are explored. MBEIN students only. Instructor consent required. Offered in the spring semester.
Components: Lecture

NURS 5020 (3 credits)
Statistical Methods in Nursing
Quantitative procedures including descriptive and inferential statistics, nonparametric approaches to data, and parametric analyses through factorial analysis of variance. Open to MBEIN students only. Cross listed with CLTR 5020.
Components: Lecture
Course Equivalents: CLTR 5020

NURS 5030 (3 credits)
Nursing Research in Advanced Practice
Analysis of qualitative and quantitative methods employed to answer questions in nursing practice. Emphasis on problem identification; design principles; and accessing, analyzing, disseminating and utilizing research.
Components: Lecture
Requirement Group: Prerequisite: NURS 5020 or EPSY 5605 and NURS 5010 or NURS 5011 (RG 4108).

NURS 5040 (3 credits)
Needs Assessment and Planning
An interdisciplinary survey course that prepares students to conduct a needs assessment on a selected population. Includes elements of epidemiology, identification of populations at risk and the development of plans to market, implement and evaluate programs to enhance the health and well-being of selected populations.
Components: Lecture
Requirement Group: Prerequisite: NURS 5020 or EPSY 5605 and NURS 5030 (RG 4109).

NURS 5050 (3 credits)
Policy Aspects of Advanced Nursing Practice
Analysis and evaluation of legal, regulatory, policy and economic aspects of advanced nursing practice from historical, contemporary and futuristic perspective. Understand the interrelationships among change, power and politics.
Components: Lecture

NURS 5060 (3 - 4 credits)
Advanced Pathophysiology across the Lifespan
Advanced level analysis of the etiology and pathogenesis of diseases that alter the health status of adults. This analysis will be realed to adults’ clinical and pathophysiological manifestations of diseases. Course is designed for nurses studying for advanced nursing practice to care for adults with chronic, acute, and life-threatening diseases. Open to non-degree students with consent of instructor.
Components: Lecture

NURS 5062 (3 credits)
Advanced Health Assessment across the Lifespan
The clinical management of individuals experiencing common acute and chronic health problems, focusing on the cardiovascular and respiratory systems and mental health. Principles and techniques of advanced physical assessment are emphasized.
Components: Laboratory, Lecture, Practicum Requirement Group: Prerequisite: Either NURS 5350 or NURS 5060, which may be taken concurrently (RGS589).

NURS 5070 (3 credits)
Pharmacotherapeutics Across the Lifespan
Emphasis is placed on pharmacodynamics, on nursing measures that support desired drug responses or reduce side effects which must be tolerated, and on client teaching indicated by pharmacotherapy. Open to non-degree students.
Components: Lecture
Requirement Group: Prerequisite: Either NURS 5350 or NURS 5060 (RG 584).

NURS 5080 (1 - 3 credits)
Health Care Financing
An analysis of economic theory as it relates to health care. Incorporation of expert support systems in the design of nursing department and unit financial plans. Compare and contrast various budgeting systems. Open to non-degree students.
Components: Lecture

NURS 5090 (3 credits)
Intellectual Leadership in Nursing Education and Practice
Study of the history, philosophy, and theory of nursing education from the Nightingale Training School to the initiation of the associate and baccalaureate degree nursing programs. Analysis of curriculum development with emphasis on professional practice. Consideration of the articulation of associate and baccalaureate education. Non-traditional, futuristic curricular models are examined. Evaluation of professional ethics, intellectual leadership behaviors and clinical practice skills.
Components: Lecture

NURS 5098 (1 - 6 credits) Instructor Consent Required
Independent Study
Components: Independent Study

NURS 5099 (1 - 7 credits)
Teaching, Learning, and Evaluation in Baccalaureate Nursing Programs
Study of advanced methods of curriculum design and testing related to classroom, simulation lab, and clinical learning. Emphasis on selection and organization of content, teaching methodologies, learning activities, the practice environment, simulation laboratory and computer generated learning. Development of instruments and tests to measure learning outcomes and evidence-based practice outcomes. Guided practice teaching.
Components: Laboratory, Lecture
Requirement Group: Prerequisite: NURS 5090 (RG 4107).

NURS 5100 (3 credits) Instructor Consent Required
Advanced Physical Diagnosis
The diagnosis of patients with acute health problems with a focus on data collection through history, physical examination, laboratory, radiology, and electronic and hemodynamic monitoring.
Components: Laboratory, Lecture
Requirement Group: Prerequisite: NURS 5062 (RG 439).
NURS 5160(2 credits)
Advanced Practice: Acute Care Nursing I
The focus of this course will be the introduction of critical thinking, analysis and application of theories and concepts to care for acutely ill clients. A strong emphasis will be placed on pathophysiology and assessment. Interpretation and management of treatment plans will be explored.
Components: Lecture
Requirement Group: Prerequisites: NURS 5070, NURS 5150, NURS 5060, and NURS 5062 (RG616).

NURS 5169(4 credits)
Acute Care Nurse Practitioner Practicum I
The focus of this practicum will be critical thinking, assessment and diagnosis of acutely/critically ill patients. Database creation, formulating a plan of care, and evaluation of outcomes will be explored. Diagnostics and therapeutics will be emphasized.
Components: Lecture, Practicum
Requirement Group: Prerequisite: NURS 5160 and NURS 5010; NURS 5010 may be taken concurrently (RG959).

NURS 5170(2 credits)
Advanced Practice: Acute Care Nursing II
This course continues to refine the analysis and application of theories for the nurse practitioner and clinical nurse specialist in acute care. The focus is on role development, trends, issues and research into common problems of the acutely ill client.
Components: Lecture
Requirement Group: Prerequisite: NURS 5160 (RG177).

NURS 5179(4 credits)
Acute Care Nurse Practitioner Practicum II
The focus of this practicum will be the refinement of pertinent management abilities and skill for the nurse practitioner student. The student will expand their management to multiple patients. Collaboration within a multidisciplinary team, providing holistic care and evaluation of current research will be explored.
Components: Practicum
Requirement Group: Prerequisite: NURS 5160 and NURS 5010; NURS 5010 may be taken concurrently (RG959).

NURS 5200(1 - 3 credits) Instructor Consent Required
Nursing Administration I
Introduction to the process of nursing administration. Emphasis is placed on theories of leadership, motivation, evaluation, organizational design and problem solving.
Offered in odd-numbered fall semesters.
Components: Lecture
NURS 5215(1 - 4 credits) Instructor Consent Required
Nursing Administration II
Application of management theories to nursing administration focusing on staff development, labor relations, staffing and scheduling, patient classification systems, quality management, performance and program evaluation, and human resource management. Offered in even-numbered spring semesters. Practicum applications are due October 1st for spring enrollment.
Components: Lecture, Practicum

NURS 5220(2 credits)
Health Care Outcome Management
An examination and utilization of variance analysis and outcome measurement skills to achieve cost effective quality health care delivery through outcome management. Open to nondegree students. Offered in even-numbered fall semesters.
Components: Lecture
NURS 5225(1 - 5 credits) Instructor Consent Required
Nursing Administration III
Synthesis of nursing and multidisciplinary theories in the system of nursing administration. Strategic planning, ethics, marketing, entre/intrapreneurship, and multysystem corporations are analyzed and the role of the administrator examined.
Offered in even-numbered fall semesters. Practicum applications are due March 1st for fall enrollment.
Components: Lecture
Requirement Group: Prerequisite: NURS 5010, NURS 5030, and NURS 5215 (RG447).

NURS 5250(2 credits)
Community Health Nursing Theory: Enhancing Wellness
Theoretical formulations from nursing, public health, and related sciences are used to enhance the levels of wellness of selected population groups in the community. A needs assessment is conducted to develop a community diagnosis as the basis for developing a plan for health promotion. Offered in odd-numbered fall semesters.
Components: Lecture, Practicum
Requirement Group: Prerequisites or Co-requisites: NURS 5010 (350) and PUBH 5401. Both may be taken concurrently (RG3730).

NURS 5259(4 credits)
Community Health Nursing Practicum I: Enhancing Wellness
Practicum experience in community care and consultation focusing on health promotion and disease prevention under the supervision of an advanced practice nurse. A weekly seminar addressing the teaching, coaching, and interdisciplinary collaboration elements of role development is incorporated.
Components: Practicum
Requirement Group: Prerequisites: NURS 5250 (334), NURS 5010 (350), and PUBH 5401, which may be taken concurrently (RG4127)

NURS 5265(4 credits)
Community Health Nursing Theory and Practice: Risk Reduction
Analysis of risk factors for selected populations/communities through an integration of nursing and public health theories. Opportunity for development, implementation, and evaluation of risk reduction interventions is provided.
Components: Lecture, Practicum
Requirement Group: Prerequisite: NURS 5250. Prerequisite or co-requisite: NURS 5080 (RG441).

NURS 5269(4 credits)
Community Health Nursing Practicum II: Risk Reduction
Apply integrated knowledge of nursing and public health principles in the appraisal of health risks; development and implementation of risk reduction strategies; and evaluation of plans to promote self-care activities for a selected population
Components: Practicum
Requirement Group: Prerequisites: NURS 5250 and NURS 5259. Co-requisite: NURS 5265 (RG4302)

NURS 5275(4 credits)
Community Health Nursing Theory and Practice: Health Maintenance
Analysis of health maintenance issues and interventions for groups sharing a common health problem. Opportunity to apply integrated knowledge of nursing and public health principles in the development and evaluation of plans to maintain optimum levels of health is provided.
Components: Lecture, Practicum
Requirement Group: Prerequisite: NURS 5265 (RG442).

NURS 5279(4 credits)
Community Health Nursing Practicum III: Health Maintenance
Provide interventions for groups sharing a common health problem. Identify, discuss, and apply various theories and methodologies related to the processes of behavior change.
Components: Practicum
Requirement Group: Prerequisites: NURS 5265 and NURS 5269. Co-requisite: NURS 5275 (RG4303)

NURS 5350(3 credits)
Advanced Neonatal Embryology/Physiology
This course examines fetal, transitional, and neonatal physiology. Embryology is also discussed, as the basis for neonatal development.
Components: Lecture

NURS 5362(3 credits)
Neonatal Advanced Health Assessment
This course is designed to enable students to put into practice the principles and skills needed for advanced health assessment of the neonate.
Components: Lecture

NURS 5365(3 credits)
Advanced Neonatal Nursing Theory I
The purpose of this first clinical course is to intro-
duce the role of the neonatal nurse practitioner clinician in the management of normal and high-risk families and infants. The focus of the course is to develop skills in the physical and psychosocial assessment of high-risk childbearing families during all phases of the childbearing process: antenatal, intrapartum, postpartum, and the neonatal period. Special emphasis will be placed on events during the antenatal, intrapartum, and postpartum periods that impact the neonate.

Components: Lecture

Requirement Group: Prerequisites or Co-requisites: NURS 5350 and NURS 5010, both may be taken concurrently (RG385).

NURS 5369(2 credits) Instructor Consent Required
Advanced Neonatal Practicum I

The focus of this practicum is the assessment and management of moderately ill infants and their families.

Components: Practicum

NURS 5370(3 credits)
Neonatal Pharmacotherapeutics and Implications for Nursing Action

Emphasis is placed on neonatal pharmacodynamics, on nursing measures that support desired drug responses or reduce side effects which must be tolerated.

Components: Lecture

Requirement Group: Prerequisite: NURS 5350 or NURS 5060 (RG 4110).

NURS 5375(4 credits)
Advanced Neonatal Nursing Theory II

Focuses on the acquisition and application of in-depth physiological and psychological knowledge to the nursing care of high-risk neonates and their families. Emphasis is placed on the role of the advanced practice nursing management of high-risk neonatal populations.

Components: Lecture

Requirement Group: Prerequisite: NURS 5365 (RG433).

NURS 5379(1 - 3 credits)
Advanced Neonatal Practicum II

The focus of this practicum is the assessment and management of high-risk neonates and families.

Components: Practicum

Requirement Group: Prerequisite: NURS 5369 (RG 4111).

NURS 5385(2 credits)
Advanced Neonatal Nursing III

This course focuses on the components essential for preparation of students for advanced practice in neonatal nursing.

Components: Lecture

Requirement Group: Prerequisite: NURS 5375 (RG434).

NURS 5389(2 credits)
Advanced Neonatal Practicum III

The focus of this course is the assessment and management of critically ill high-risk neonates and their families.

Components: Practicum

Requirement Group: Prerequisite: NURS 5379 (RG 4112)

NURS 5400(3 credits)
Management of Common Health Problems

Focus is on the health promotion/disease prevention and the assessment and management of selected acute and chronic health problems, including respiratory, cardiovascular, and endocrine systems. Assessment skills applied to diagnosis and treatment of human responses to acute and chronic health problems are emphasized. Family theory is introduced.

Components: Lecture

Requirement Group: Prerequisite: NURS 5062 (RG590).

NURS 5409(3 - 4 credits)
APN Practicum I

Focus is health promotion/disease prevention and the clinical diagnosis and management of individuals/families experiencing common acute and chronic health problems. The role of the nurse in primary care is examined. Includes a seminar and clinical hours per week.

Components: Lecture, Practicum

NURS 5410(3 credits)
Primary Care II

Assessment and management of selected acute and chronic health problems, focusing on endocrine, gastrointestinal, integumentary and genitourinary systems, women's health and behavioral health.

Components: Lecture

Requirement Group: Prerequisite: Grades of B or higher in NURS 5400, NURS 5062 and NURS 5409 (RG448).

NURS 5419(4 credits)
Primary Care Practicum II

Assessment and management of selected acute and chronic health problems, focusing on gastrointestinal, integumentary, genitourinary systems, women's health, and behavioral health. Includes seminar and 12 clinical hours per week.

Components: Lecture, Practicum

Requirement Group: Prerequisites: NURS 5410, which may be taken concurrently (RG449).

NURS 5420(3 credits)
Management in Adult Primary Care Nursing

Special focus will be on assessment and management of adolescents and adults with acute and chronic health problems. Violence, ethics, and genetic counseling will be addressed. A grade of B or higher is required to receive endorsement for certification examination.

Components: Lecture

Requirement Group: Prerequisite: Grades of B or higher in NURS 5410 and NURS 5419 (RG450).

NURS 5430(3 credits)
Primary Care Practicum III

Components: Practicum

Requirement Group: Prerequisites: NURS 5410, which may be taken concurrently (RG449).

NURS 5440(4 credits)
Psychiatric Treatment Modalities

This course addresses the treatment modalities available to advance practice psychiatric nurses-individual, family, and group treatment. Case management is addressed. Students would focus the course paper on one treatment modality and do an in-depth analysis of the principles and practice associated with modality.

Components: Lecture

NURS 5480(3 credits)
Advanced Psychiatric Nursing II

Specific advanced psychiatric disorders, etiology and treatment will be explored. The course project involves planning and implementing a primary
mental health prevention project with a defined population.
Components: Lecture
Requirement Group: Prerequisite: NURS 5460 (342) (RG3733)

NURS 5489(5 credits)
Advanced Psychiatric Practicum II
The provision of advanced psychiatric mental health nursing care and consultation under the supervision of an ARNP utilizing a new modality of care and enhancing the application of a previous modality of care. A weekly seminar addressing the case management and leadership elements of role development is incorporated.
Components: Practicum

NURS 5811(3 credits)
Application of Genetics to Healthcare
Open to graduate students in Nursing.
The role of the Human Genome Project in genetic diagnostics, health promotion, disease prevention, therapeutic interventions and counseling, as well as the mechanisms of genetic inheritance and the genetic contribution to common and complex disorders, will be analyzed using a multidisciplinary context. Students will evaluate the ethical, financial, cultural, moral issues and legal issues that arise using case study discussion and analysis to augment didactic knowledge.
Components: Lecture
Requirement Group: Open to graduate students in Nursing (RG 4704).

NURS 5845(3 credits)
Health Services Statistics & Research Methods for the Scholarship of Application
This course will encompass elements of statistical analysis, research methods/design, and epidemiology/populations health serving as the foundation for subsequent development of clinical scholarship.
Components: Lecture

NURS 5850(3 credits)
Scientific and Theoretical Underpinnings for the Scholarship of Application
This course explores foundational theories applicable to the practice arena. Topics include: Systems theory, organizational development theory, complexity theory, social worlds theory, nursing mid-range theory and nursing model/s of evidence-based practice.
Components: Lecture

NURS 5855(3 credits)
Evidence-Based Practice for the Scholarship of Application
This course focuses on the development of skills in the translation, application, and evaluation of research, with an emphasis on evidenced-based practice. Skills in the integration of knowledge from diverse sources and disciplines and its application to solve clinical problems and improve health outcomes will be emphasized.
Components: Lecture

NURS 5860(3 credits)
Quality and Organizational/Systems Leadership for the Scholarship of Application
This course addresses assessment and diagnosis of organizations, facilitation of system-wide change, development of political skill for change, engagement in the process of quality and performance improvement methodologies, and application of leadership theory within organizations.
Components: Lecture

NURS 5865(3 credits)
Information Systems for the Scholarship of Application
This course focuses on the evaluation and use of information systems/technology and patient care technology supportive of clinical and administrative decision-making relevant to patient care, case systems, and quality improvement.
Components: Lecture

NURS 5869(1 - 6 credits)
Doctor of Nursing Practice Residency Elective
This course requires the student to complete a nursing practicum in the specialty area of their choice with hours as necessary for total of 1,000 post-BSN.
Components: Clinical

NURS 5870(3 credits)
Health Policy and Populations-based Advocacy for the Scholarship of Application
This course focuses on the role of the advanced practice nurse in collaborative health care teams pertaining to health policy, health promotion, risk reduction, and illness prevention for population health. The role of the advanced practice nurse as advocate is explored. Educational strategies necessary for transformation of clinical education to decrease preventable deaths will be incorporated.
Components: Lecture

NURS 5875(3 credits)
Advanced Pathophysiology and Diagnosis
This course provides an advanced level synthesis of the pathophysiology of diseases, the predicted trajectory of illnesses, and the therapeutic options for cure of diseases and control of illness. It is designed for nurses studying for advanced nursing practice to care for adults with chronic, acute, and life-threatening diseases.
Components: Lecture

NURS 5879(3 credits)
Doctor of Nursing Practice Residency I
The first of 2 clinical courses, NURS 5879 requires the student to complete a nursing practicum in the specialty area of their choice. Students will select an area of specialization, develop individual objectives, and plan their project, which will be implemented during the subsequent clinical semester.
Components: Practicum

NURS 5880(3 credits)
Advanced Pharmacodynamics
This course provides an advanced level synthesis of the pharmacotherapy of diseases and control of illnesses. It is designed for nurses studying for advanced nursing practice to care for adults with chronic, acute, and life-threatening disease.
Components: Lecture

NURS 5889(3 credits)
Doctor of Nursing Practice Residency II
The second of 2 clinical courses, NURS 5889 requires the student to complete a nursing practicum in the specialty area of their choice. Students will select an area of specialization, develop individual objectives, and implement their project, which was designed in NURS 5879.
Components: Practicum

NURS 6001(1 - 3 credits)
Special Topics in Doctoral Methods
Variable credit course in doctoral research methods.
Components: Seminar
Requirement Group: Prerequisite: Open only to D.N.P. and Ph.D. students in Nursing (RG 4378).

NURS 6100(3 credits)
Philosophy of Science in Nursing
A critical examination of the meanings, methods, and logical structure of science. Contemporary and historical views pertaining to the nature of truth, explanation, logic and methodology will be analyzed and compared. Examples drawn from nursing epistemology as well as that of other disciplines will be utilized to depict the presuppositions of modern science.
Components: Lecture

NURS 6101(1 credits)
Introduction to Grantsmanship
This course presents an introduction to the process of securing grants. Practical application is stressed to enhance the development of skills needed to secure funding for scholarly research endeavors.
Components: Seminar

NURS 6110(3 credits)
Analysis of Contemporary Nursing Knowledge
Methods of analysis and evaluation of the concepts and theories in nursing both grand and mid range.
Components: Lecture

NURS 6115(3 credits)
Experimental Design and Analysis in Nursing Research
This course will focus on the study and applica-
tion of quantitative research methods from design through statistical analysis for experimental designs in nursing and healthcare. Options for the structures of quasi and non experimental designs and techniques of data analysis appropriate to experimental studies of varying complexity, including emerging research methodologies, will be addressed. Students will conduct a pilot study using the most appropriate experimental design.

Components: Lecture
Requirements: Prerequisite or Co-requisite: NURS 6100 (RG 4399).

NURS 6120(3 credits)
Constructing Nursing Theory
Integrates the student's experiential worldview into the construction of knowledge relevant to the evolving epistemology in nursing. Provides a forum for dialogue focused on the process of caring in the human health experience as informed by research and theoretical developments.

Components: Lecture
Requirements: Prerequisite: NURS 6110 (RG 455).

NURS 6130(3 credits)
Qualitative Methodology in Nursing Inquiry
The study of the relationship among philosophy, theory, and qualitative methodology within the human science of nursing. Techniques related to sampling, research design, data collection, and data analysis will be explored through a combination of lecture, class discussion and course assignments.

Components: Lecture
Requirements: Prerequisite: NURS 6110 (RG 455).

NURS 6135(3 credits)
Exploring the Nature of Nursing Knowledge
The course is a critical examination of the development of nursing’s disciplinary knowledge as it relates to the nature of nursing and its epistemic, ontologic, and ethical claims. This examination will include historical analysis and evaluation of nursing’s meta-paradigm (meta-language), conceptual models, and theories both grand and middle range.

Components: Lecture
Requirements: Prerequisite: NURS 6100 (RG 4426).

NURS 6140(3 credits)
Quantitative Methodology Applied to Nursing Study and application of theories of sampling and probability testing to nursing research. Different approaches to research design, variable specification, data collection and analysis are explored within quantitative methods of scientific inquiry.

Components: Lecture
Requirements: Prerequisite: EPSY 5613 (RG 457).

NURS 6145(3 credits)
Quasi and Non Experimental Design and Analysis in Nursing Research
This course focuses on application of quantitative research methods from design through statistical analysis for quasi and non experimental designs in nursing and healthcare. Options for the structures of quasi and non experimental designs and techniques of data analysis appropriate to studies of varying complexity, including emerging research method innovations, will be addressed. Limitations to the justification/feasibility of applying an experimental approach to human subjects will be included. Students will conduct a pilot study utilizing the most appropriate research design.

Components: Lecture
Requirements: Prerequisite: NURS 6115 (RG 4506).

NURS 6150(3 credits)
Instrument Development in Nursing
A study of the theories and methods of instrument development as applied to nursing. The basic psychometric properties to be assessed and built into a useful measure for clinical or research applications are explored.

Components: Lecture
Requirements: Prerequisite: EPSY 5613 (RG 458).

NURS 6160(3 credits)
Advanced Qualitative Methods
This seminar is designed for students in nursing and other disciplines to achieve an advanced level of expertise in selected qualitative approaches. Expected course outcome is a completed qualitative project.

Components: Lecture
Requirements: Prerequisite: NURS 6130 (RG 460).

NURS 6165(3 credits)
Mixed Methods in Nursing Research
This course presents mixed methods as a third paradigm that combines and complements the qualitative and quantitative approaches traditionally used in nursing research. Theoretical, paradigmatic, and programmatic issues, as well as practical application will be discussed.

Components: Lecture
Requirements: Prerequisite: NURS 6145 and NURS 6160 (RG 461).

NURS 6170(3 credits)
Grantsmanship: The Pursuit of Scholarly Support
A pragmatic exploration of the societal and professional realities of grantsmanship. Experiences are practical so as to enhance the development of skills needed to secure funding for scholarly research endeavors.

Components: Lecture
Requirements: Prerequisites: NURS 6130 and NURS 6140 (RG 461).

NURS 6175(3 credits)
Advancing Nursing Knowledge Development
The course is a critical application of nursing knowledge to nursing research. Each student will identify and justify the epistemology, theoretical perspective, methodology, and methods that will provide a scaffold for his/her dissertation topic.

Components: Lecture
Requirements: Prerequisite: NURS 6135 (RG 4427).

NURS 6180(1 - 3 credits)
Research Internship in Nursing
The research internship will be completed under the mentorship of an experienced researcher. The course will meet in seminar format to provide direction and support during the internship.

Components: Seminar
Requirements: Prerequisite: NURS 6135 (RG 4427).

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(Grad 397) 3 credits.

†GRAD 5950. Master’s Thesis Research
(Grad 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master’s Research
(Grad 396) 3 credits.

GRAD 5998. Special Readings (Master’s)
(Grad 398) Non-credit.

GRAD 5999. Thesis Preparation
(Grad 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(Grad 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(Grad 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(Grad 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(Grad 498) Non-credit.

GRAD 6999. Dissertation Preparation
(Grad 499) Non-credit.
NUTRITIONAL SCIENCES

Department Head: Professor Sung I. Koo
Professors: Fernandez, Freake, and Rodriguez
Associate Professors: Kerstetter, Lee, McGrane, and Volek
Assistant Professors: Bolling, Bruno, and Chun

The degrees of Master of Science (Plan A thesis and Plan B non-thesis options) and Doctor of Philosophy in the field of Nutritional Science are offered.

Admission to Degree Programs.

In addition to the standard requirements of the Graduate School, applicants also should submit scores from the Graduate Records Examinations (GRE). Prior study in the biological sciences and nutrition is required, however, some prerequisites may be taken after matriculation in the program. More detailed information can be obtained from the department.

Program of Study.

There are three major areas of expertise within the Department: molecular nutrition, nutritional biochemistry and metabolism, and community nutrition and health. Molecular nutrition is based on laboratory studies utilizing molecular biological techniques to examine mechanisms of nutrient action and metabolism in the cell, tissue, and whole animal. Nutritional biochemistry and metabolism involves human and animal studies to examine nutrient metabolism in health and disease. Community nutrition and health focuses on public health areas of nutrition including community-level nutrition assessment, education and intervention programs. These areas are interdisciplinary in approach and are supported by other departments as well as by collaborative arrangements with other institutions. Opportunities for interdisciplinary research and study exist. All programs require a thesis, dissertation, or expanded paper, in addition to the successful completion of the appropriate graduate courses and examinations.

COURSES OF STUDY

NUSC 5100 (2 credits)

Concepts of Nutrition

An introduction to the broad field of nutrition. Intended for entering graduate students, the course provides a conceptual framework for research and study in the nutritional sciences. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).

Components: Lecture

NUSC 5200 (3 credits)

Macronutrient Metabolism

The function and metabolic pathways of energy, carbohydrates, protein and lipids; their interrelationships and factors controlling their metabolism. Methodologies for studying metabolism and assessing nutrient requirements in man and animals.

Components: Lecture

Requirement Group: Prerequisite: MCB 5001 (RG462).

NUSC 5300 (3 credits)

Vitamins and Minerals

Comprehensive study of vitamins, trace elements, and selected macrominerals, including biochemical function(s), metabolic pathways, interactions, and toxicities.

Components: Lecture

Requirement Group: Prerequisite: MCB 5001 (RG462).

NUSC 5312 (3 credits)

Instructor Consent Required

Assessment of Nutritional Status

This course is designed to discuss and critique the methodologies of nutritional status assessment, namely dietary, anthropometric and biochemical. Analysis of human blood and urine samples provides exposure to laboratory techniques and equipment used in nutritional assessment.

Components: Laboratory, Lecture

Requirement Group: Prerequisite: NUSC 5200 (RG463)

NUSC 5314 (3 credits)

Instructor Consent Required

Nutrition for Healthy Communities

Development of knowledge and skill in public nutrition, including community assessment, development of program policies, and program planning, implementation, and evaluation.

Components: Lecture

Course Equivalents: GPAH 5331

NUSC 5390 (1-6 credits)

Field Work on Community Nutrition

Supervised field studies of community nutrition problems and visits with community agencies and families. Readings, conferences and reports required.

Components: Practicum

NUSC 5394 (1 credit)

Seminar

Students develop the skills required for the analysis and presentation of current literature and research problems.

Components: Seminar

Requirement Group: Prerequisite: NUSC 5100 (RG464).

NUSC 5398 (1-6 credits)

Instructor Consent Required

Special Topics in Nutrition

Advanced study in a given area of nutritional science.

Components: Lecture

NUSC 5399 (1-6 credits)

Instructor Consent Required

Independent Study in Nutritional Science

Research problems or critical review of literature in any area of nutrition.

Components: Independent Study

NUSC 6313 (3 credits)

Nutrition and Gene Expression

Regulation of eukaryotic gene expression by specific nutrients, hormones, and metabolites. Transcriptional, post-transcriptional, and translational mechanisms.

Components: Lecture

Requirement Group: Prerequisite: MCB 5001 (RG462).

NUSC 6315 (3 credits)

Lipid Metabolism in Health and Disease

Comprehensive study of lipid and lipoprotein metabolism. Influence of diet, drugs, exercise and obesity. Overview of relationship between genetics, lifestyle factors and chronic disease.

Components: Lecture

NUSC 6317 (3 credits)

Instructor Consent Required

Nutritional Epidemiology

Principles and applications of nutritional epidemiology with emphasis on research design.

Components: Lecture

NUSC 6365 (3 credits)

Instructor Consent Required

Advanced Clinical Nutrition

A study of topics of current clinical interest. Lectures, readings, reports and discussion.

Components: Lecture

Requirement Group: Prerequisite: NUSC 5200 (RG463)

†GRAD 5930. Full-Time Directed Studies (Master’s Level)

(GrAD 397) 3 credits.

†GRAD 5950. Master’s Thesis Research

(GrAD 395) 1-9 credits.

†GRAD 5960. Full-Time Master’s Research

(GrAD 396) 3 credits.

GRAD 5998. Special Readings (Master’s)

(GrAD 398) Non-credit.

GRAD 5999. Thesis Preparation

(GrAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)

(GrAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research

(GrAD 495) 1-9 credits.

†GRAD 6960. Full-Time Doctoral Research

(GrAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)

(GrAD 498) Non-credit.

GRAD 6999. Dissertation Preparation

(GrAD 499) Non-credit.
P A T H O B I O L O G Y

Department Head: Professor Herbert J. Van Kuin-ingen
Professors: Bushmich, Garmendia, Geary, and Khan
Associate Professors: De Guise, Frasca, French, and Smyth
Assistant Professors: Risatti and Tufts
Adjunct Assistant Professors: Borca and Smolowitz

Graduate instruction leading to the M.S. and Ph.D. degrees is offered by the Department of Pathobiology and Veterinary Science. All M.S. degrees are granted in Pathobiology. Ph.D. degrees are granted in Pathobiology with areas of concentration in bacteriology, pathology, virology, and toxicology. Standard admission requirements are maintained for these programs. There also is a study area offered in veterinary pathology, which is open only to Ph.D. students with the D.V.M. degree. In all of these areas, the accent is on basic sciences as related to diseases of animals.

Requirements.

For the M.S. degree, generally 15 credits of course work and a thesis are required. No established sequence of courses is required for the Ph.D. degree. Since students possessing the D.V.M. degree usually have four more years of advanced education than the typical Ph.D. applicant, fewer courses may be required. In addition to graduate courses offered within the Department, the candidate is expected to take graduate courses in biochemistry, nutrition, toxicology, immunology, pharmacology, cell biology, genetics, statistics, and molecular biology in appropriate departments.

Special Facilities.

The Department houses the Connecticut Veterinary Medical Diagnostic Laboratory which is equipped with a fully functioning mammalian and avian necropsy laboratory, histology laboratory and diagnostic microbiology, virology and serology laboratories. State of the art molecular biology facilities are present in the Department for research on infectious, immunologic, toxic and metabolic diseases. The Department also houses the Northeastern Research Center for Wildlife Diseases. Collaborative opportunities exist with the USDA Plum Island Animal Disease Center and the School of Pharmacy

C O U R S E S O F S T U D Y

PVS 5094(1 credits) Instructor Consent Required Pathobiology Seminar
Components: Seminar

PVS 5099(1 - 6 credits) Instructor Consent Required Research and Independent Study in Animal Diseases
Components: Independent Study

PVS 5201(2 credits) Microbiology of Atypical Bacteria
An in-depth presentation of current information on medically significant atypical bacteria, with empha-
sis on molecular aspects of pathogenesis.
Components: Lecture

PVS 5202(2 credits) Viral Pathogenesis
Disease processes of the virus and host at the organic and molecular levels. Various aspects of selected viral infections will be covered, including contemporary topics of interest. Active student participation through presentations and discussion of literature.
Components: Lecture

PVS 5331(2 credits) Instructor Consent Required Toxicological Pathology
Principles of toxicological pathology are covered, with special attention to chemical carcinogenesis and systemic toxicological pathology. For the different systems, the particularities of structure and function of the system are reviewed, along with the particular mechanisms of toxicity to that system, the specific responses of that system to injury, and the methods to test for toxicity. The discussion of related scientific journal articles supplement the textbook information reviewed in lectures.
Components: Lecture

PVS 5392(3 credits) Instructor Consent Required Practicum in Veterinary Anatomic Pathology
Open only to veterinarians accepted into the residency program in veterinary pathology.
Service-based learning of veterinary anatomic pathology through gross and histologic evaluation of necropsy and biopsy case material by direct review with faculty pathologists.
Components: Practicum

PVS 5394(2 credits) Instructor Consent Required Veterinary Pathology Seminar
Blinded examination of gross and histologic lesions with emphasis on lesion recognition, description and disease diagnosis, followed by group discussion of each case.
Components: Seminar

PVS 5401(3 credits) Instructor Consent Required Immunobiology
Principles of basic and clinical immunobiology; phylogeny and ontogeny of the immune response, characteristics of the immune response, cellular and humoral immunity; central and peripheral lymphoid tissues; mechanisms of immunologic injury and immunologic diseases; comparative and veterinary immunology; transplantation and tumor immunology.
Components: Lecture

PVS 5431(2 credits) Instructor Consent Required Avian Pathology
A comprehensive study of systemic avian patholo-
gy, stressing the correlation of pathological changes with clinical and microbiological findings.
Components: Lecture

PVS 5502(2 credits) Instructor Consent Required Evaluation of Diagnostic Test
The Department has well-equipped laboratories in diverse research areas. Equipment available includes ultra-violet, F. T. infrared, dual wavelength, and fluorescence spectrophotometers, liquid scintillation spectrometers, analytical and preparative gas-liquid chromatographs, high-pressure liquid chromatographs, preparative and ultra centifuges, low and high voltage electrophoresis apparatus, differential thermal analytical and scanning calorimeter, thermal gravimetric and analytical equipment. Langmuir film balance, atomic absorption, gas chromatography-mass spectrometry unit, mass spectrometers and electron microscopy are available on campus. Animal quarters and cold rooms are located in or adjacent to the School of Pharmacy. The Department has a nuclear Magnetic Resonance Facility with Bruker Avance 300, 400, and 500 MHz spectrometers and a Varian Inova 600 MHz spectrometer equipped with a cryoprobe.

COURSES OF STUDY

PHAR 5115 (3 credits) Instructor Consent Required Pharmaceutical Biotechnology

A survey of medicinal chemistry and pharmacuetics of pharmaceutical products derived from modern methods of molecular biology. This course will consider products in use or in clinical trials to emphasize the conceptual basis, design, and synthesis of biotech products in the context of current practical applications.

Components: Lecture

PHAR 5169 (3 credits)

Dosage Forms I

Introduces the student to the principles of thermodynamics, ionic equilibrium, chemical kinetics and diffusion. Application of these principles to formulation, stability and dissolution of a drug product, and release from the dosage form for optimum therapeutic outcome. Required of entering graduate students in Pharmacuetics who do not have a Pharmacy background as well as those who do not pass the qualifying examination within the first year of the program.

Components: Lecture

PHAR 5217 (3 credits)

Dosage Forms II

Covers the basic principles of the surface and colloid chemistry and rheology, as these relates to the performance of dispersed system dosage forms including colloids, suspensions, emulsions, suppositories, aerosols, ointments, and transdermals. Required of entering graduate students in Pharmacuetics who do not have a Pharmacy background, and those who do not pass the qualifying...
PHAR 5219 (3 credits)
Biopharmaceutics and Pharmacokinetics
Basic principles of biopharmaceutics, bioavailability, and pharmacokinetics, including their application to the rational design of both dosage forms and maximally effective dosing regimens. Intended for graduate students who may not have sufficient previous exposure to biopharmaceutics and pharmacokinetics.
Components: Lecture

PHAR 5293 (1 credits)
Current Literature in Pharmaceutics
Designed to familiarize students with current pharmaceutics literature and to educate students in critical peer review in the pharmaceutics literature.
Components: Discussion

PHAR 5295 (1 credits)
Seminar in Pharmaceutics
Reports and discussions. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Seminar

PHAR 5296 (1 - 4 credits) Instructor Consent Required
Special Problems in Pharmaceutics
Individualized course for students desiring research experience in any of the areas of pharmacy other than the area chosen by the student for thesis research.
Components: Independent Study

PHAR 5297 (1 - 6 credits)
Special Topics in Pharmaceutics
Includes topics not presently covered in courses which are pertinent to current departmental research and areas of recent development in the literature.
Components: Lecture

PHAR 5301 (3 credits) Instructor Consent Required
Drug Design
A cooperative presentation of the fundamentals of medicinal chemistry.
Components: Lecture

PHAR 5308 (3 credits)
Structure and Function of Biological Membranes
Overview of cell membrane structure and function based on a foundation of physical and biochemistry principles. Topics include lipid bilayers, vesicles and liposomes, cholesterol, membrane protein structure and function, transport, membrane fusion, receptors, drug/membrane interactions and membranes in cell regulation.
Components: Lecture
Course Equivalents: MCB 5025

PHAR 5393 (1 credits)
Seminar in Medicinal Chemistry
Reports and discussions. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Seminar

PHAR 5395 (1 - 4 credits) Instructor Consent Required
Special Problems in Medicinal Chemistry
Individualized course for students desiring research experience in any of the areas of medicinal chemistry other than the area chosen by the student for thesis research.
Components: Lecture

PHAR 5397 (1 - 6 credits)
Special Topics in Medicinal Chemistry
Current developments in Medicinal Chemistry. A course for students needing exposure to topics not covered in other department offerings.
Components: Lecture

PHAR 5403 (1 credits)
Current Toxicology Literature
Designed to familiarize students with current toxicology literature and to educate students in critical peer review of this toxicology literature. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Lecture

PHAR 5451 (1 credits)
Principles of Safety Evaluation
Introduction to toxicologic risk assessment. Fundamentals of dose-response relationships and risk characterization, and their application in the establishment of permissible exposure limits for drugs and other chemicals in the environment or workplace.
Components: Lecture

PHAR 5458 (2 credits) Instructor Consent Required
Analytical Toxicology
Qualitative and quantitative determination of xenobiotics. Isolation techniques; principles of chromatography and spectrometry; theory, instrumentation and analysis of data.
Components: Lecture

PHAR 5471 (3 credits) Instructor Consent Required
Advanced Pharmacology I: Basic Principles
Molecular mechanisms of drug action including occupation and rate theories. Characterization of receptors in-situ and in-vitro.
Components: Lecture

PHAR 5472 (2 credits)
Advanced Pharmacology II: Drug Disposition
Drug absorption, distribution, excretion, metabolism, interaction, allergy, resistance, tolerance, idiosyncrasy and toxicity.
Components: Lecture

PHAR 5475 (1 credits)
Toxicology Scholars Colloquium
Reviews, discussions and seminars focused on the research of scientists who have made significant contributions to the science of toxicology.
Components: Lecture

PHAR 5493 (1 credits)
Seminar in Pharmacology and Toxicology
Reports and discussions on journal and review articles and presentation of personal research results. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Seminar

PHAR 5494 (1 credits)
Seminar in Immunology
Reports and discussions.

PHAR 5495 (1 - 4 credits) Instructor Consent Required
Special Problems in Pharmacology I
The course is individualized for students desiring research experience in any of the areas of pharmacology.
Components: Independent Study

PHAR 5496 (1 - 4 credits) Instructor Consent Required
Special Problems in Toxicology
Individualized course for students desiring research experience in any of the areas of toxicology.
Components: Independent Study

PHAR 5497 (1 - 6 credits) Instructor Consent Required
Special Topics in Pharmacology
Includes topics not presently covered in courses, which are pertinent to current departmental research and areas of recent development in the literature.
Components: Lecture

PHAR 5498 (1 - 6 credits) Instructor Consent Required
Special Topics in Toxicology
Basic principles of toxicology as emphasized by recent developments in the biochemical toxicology literature.
Components: Lecture

PHAR 5746 (3 credits) Instructor Consent Required
Introduction to Managed Care Pharmacy
A study of managed care pharmacy within the United States health care system, with emphasis on managed care organization and control, pharmacy benefits design and management, outcomes measurement, pharmacoconomics, health care provider and client education, benefits plan financing and marketing, and legal issues of managed care pharmacy.
Components: Lecture

PHAR 5748 (3 credits) Instructor Consent Required
Advanced Pharmacy Administration
A study of modern management techniques applicable to terminal drug distribution. Special emphasis is placed upon quantitative methods and the utilization of electronic data processing.
Components: Lecture
PHAR 6286(3 credits) Instructor Consent Required
Transport Processes
Emphasis is on the application of the laws of diffusion to dissolution, membrane transport and release of drugs from dosage forms.
Components: Lecture

PHAR 6287(4 credits) Instructor Consent Required
Advanced Toxicology
A study of the harmful effects of toxic chemicals on biological systems. Emphasis is on mechanisms of toxicant action and on practical applications of modern techniques to assess toxicity and hazard.
Components: Lecture

PHAR 6288(3 credits) Instructor Consent Required
Kinetics and Mechanisms of Drug Degradation and Stability
A study of the kinetics and mechanisms of drug degradation in the solid and liquid states and drug stabilization.
Components: Lecture

PHAR 6290(3 credits) Instructor Consent Required
Colloid Chemistry and Interfacial Phenomena
Interfacial phenomena, colloid chemistry.
Components: Lecture

PHARM 6234(3 credits)
Advanced Biopharmaceutics
Overview of physico-chemical, biopharmaceutic, and physiologic factors controlling the delivery of drug and their sites of action.
Components: Lecture

PHARM 6241(2 credits) Instructor Consent Required
Advanced Kinetics and Mechanisms of Drug Degradation
An advanced treatment of the physical organic chemistry critical to the characterization and understanding of stability in pharmaceutical products.
Components: Lecture

PHARM 6242(2 credits) Instructor Consent Required
Freeze Drying of Pharmaceuticals
The science and technology of freeze drying, including fundamentals of heat and mass transfer gas systems, process design considerations, and formulation strategies with emphasis on stabilization of therapeutic proteins.
Components: Lecture

PHARM 6291(3 credits)
Complex Equilibria
A study of the physico-chemical and mathematical treatment in pharmaceutical systems. Topics center on thermodynamics, activity coefficients, acids and bases, solubility, complexation solubilization and protein binding.
Components: Lecture

PHARM 6292(3 credits) Instructor Consent Required
Membrane Transport
Emphasis is on the application of the laws of diffusion to dissolution, membrane transport and release of drugs from dosage forms.
Components: Lecture

PHARM 6293(3 credits) Instructor Consent Required
Pharmacokinetics
A discussion of absorption, distribution, and clearance mechanisms, and their impact on concentration-time profiles and drug response.
Components: Lecture

PHARM 6294(3 credits) Instructor Consent Required
Membrane Transport and Release
Emphasis is on the application of the laws of diffusion to dissolution, membrane transport and release of drugs from dosage forms.
Components: Lecture

PHARM 6456(2 credits) Instructor Consent Required
Pharmacokinetics
A study of the kinetics and mechanisms of drug degradation in the solid and liquid states and drug stabilization.
Components: Lecture

PHARM 6465(2 credits) Instructor Consent Required
Toxicology of the Respiratory System
Anatomic and functional aspects of toxic injury to the respiratory tract with an emphasis on biochemical and physiologic mechanisms of toxic pulmonary injury. Lectures and student presentations.
Components: Lecture

PHARM 6452(2 credits) Instructor Consent Required
Toxicology of the Respiratory System
Anatomic and functional aspects of toxic injury to the respiratory tract with an emphasis on biochemical and physiologic mechanisms of toxic pulmonary injury. Lectures and student presentations.
Components: Lecture

PHARM 6453(4 credits)
Advanced Toxicology
A study of the harmful effects of toxic chemicals on biological systems. Emphasis is on mechanisms of toxicant action and on practical applications of modern techniques to assess toxicity and hazard.
Components: Lecture

PHARM 6454(2 credits) Instructor Consent Required
Immunotoxicology
Demonstrates the detrimental effects on the immune system and/or inflammatory response, by a variety of physical and chemical xenobiotics. Emphasis is placed on the mechanisms of chemical and drug-induced immnosuppression, autoimmune response, and allergic response.
Components: Lecture

PHARM 6455(4 credits)
Advanced Toxicology
A study of the harmful effects of toxic chemicals on biological systems. Emphasis is on mechanisms of toxicant action and on practical applications of modern techniques to assess toxicity and hazard.
Components: Lecture

PHARM 6456(2 credits) Instructor Consent Required
Pharmacokinetics
A discussion of absorption, distribution, and clearance mechanisms, and their impact on concentration-time profiles and drug response.
Components: Lecture

PHARM 6459(2 credits) Instructor Consent Required
Toxicology of the Respiratory System
Anatomic and functional aspects of toxic injury to the respiratory tract with an emphasis on biochemical and physiologic mechanisms of toxic pulmonary injury. Lectures and student presentations.
Components: Lecture

PHARM 6465(2 credits) Instructor Consent Required
Toxicology of the Respiratory System
Anatomic and functional aspects of toxic injury to the respiratory tract with an emphasis on biochemical and physiologic mechanisms of toxic pulmonary injury. Lectures and student presentations.
Components: Lecture
The Department of Philosophy offers study leading to the degree of Master of Arts and Doctor of Philosophy. The department is primarily an Analytic Philosophy department. Courses of study typically focus on philosophy of psychology and mind, philosophy of language and philosophical logic, or on ethics. However, students can plan a dissertation on metaphysics, history of philosophy, Asian philosophy, or other areas. The instruction is broad enough to make students versatile undergraduate instructors, and concentrated enough to enable students to do significant research. Students are able to work closely with the faculty at every stage of progress from the initial construction of a plan of study to the completion of a dissertation.

Admission.

After reviewing the basic requirements for admission to the Graduate School, applicants should present to the Philosophy Department their scores for the General Test of the Graduate Record Examinations, three letters of recommendation from individuals (preferably philosophy professors) familiar with their academic work, and a philosophical writing sample. Students admitted to the program normally are awarded full graduate assistantships.

The M.A. Program.

The Department generally offers only Plan B (non-thesis) for the M.A. Thus a student must have 24 credits in Philosophy in order to take the MA examination. First year students must satisfy a formal logic requirement, normally by taking Philosophy 5307. First year students also should take Philosophy 5301 unless they have a strong background in contemporary analytic philosophy.

The M.A. examination consists of turning in two papers written for seminars in philosophy at UConn. On the basis of these papers, the students record, and recommendations from professors under whom the student has worked, the student is either passed with a promise of funding (given satisfactory progress) for three years in the PhD program, passed without such funding, or failed.

The Ph.D. Program.

The Ph.D. degree requires eight graduate seminars beyond the M.A. level. Students who enroll in the Ph.D. program with an M.A. from another institution are reviewed after one year, at which time funding for another two years is either awarded or not.

The General Examination consists of three papers, normally seminar papers, in the three areas of philosophy we have defined, namely (1) Metaphysics and Epistemology, (2) Social and Political Philosophy and Ethics, and (3) History of Philosophy. The papers are read by the examining committee and the student is either passed or failed. General examination papers may be turned in to the Director of Graduate Studies at any time. See the Guide to Graduate Students on the Philosophy Department website <www.philosophy.uconn.edu/grad> for further details and a definition of satisfactory progress.

Special Facilities.

The holdings of the Homer Babbidge Library are adequate for the pursuit of scholarly research in most fields of philosophy. The Library subscribes to all major philosophical journals and has a complete collection of past issues of most journals. The Department conducts informal weekly seminars at which graduate students and faculty discuss current research with their colleagues. It runs a program of colloquia featuring distinguished philosophers from around the country, and presents the yearly Ruth Evelyn Parcells Lecture in ethics. Students interested in logic may participate in the Uconn Logic Group (http://logic.uconn.edu).

COURSES OF STUDY

PHIL 5300(1 - 6 credits)
Independent Study for Graduate Students
Components: Independent Study
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5301(3 credits)
Seminar in Contemporary Philosophy
An introduction to contemporary philosophers such as Russell, Carnap, Ayer, Quine, Putnam, and Kripke.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5305(3 credits)
Seminar in Aesthetics
A consideration of some of the basic problems in aesthetics.
Components: Lecture
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5307(3 credits)
Logic
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5311(3 credits)
Properties of Formal Systems
The development of formal deductive systems. The completeness and consistency of logical systems adequate for the expression of parts of mathematics. A consideration of aspects of the foundations of logic and mathematics.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5312(3 credits)
Seminar in the Philosophy of Science
A discussion of selected current, methodological issues in the philosophy of science. Topics may include scientific realism versus nonrealism; theories of scientific explanation; the nature of scientific revolutions; theories of the lawfulness of nature; and feminist theories of science.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5313(3 credits)
Seminar in the Philosophy of Physics
Examination of philosophical issues associated with physical concepts of space, time, and matter. Topics may include relational versus absolute theories of space and time, and philosophical implications of quantum mechanics.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5314(3 credits)
Action Theory
Examination and analysis of the concept of “action” and related concepts such as “agent” and “intention”.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy and to others with instructor consent (RG 3641).

PHIL 5315(3 credits)
Seminar in Moral Philosophy
A discussion and analysis of significant problems in ethical theory.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5316(3 credits)
Seminar in the Philosophy of Social Science
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5317(3 credits)
Seminar in the Philosophy of Psychology
Philosophical examination of contemporary issues in the philosophy of psychology. Topics may include a philosophical analysis of the nature of behavior, consciousness, perception, cognition, and emotion; the nature of psychological explanation; comparison of the science of human psychology with ethology and other biological sciences, the physical sciences, and computer science.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).
PHIL 5318(3 credits)
Seminar on Plato
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).
PHIL 5319(3 credits)
Seminar on Aristotle
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5320(3 credits)
Seminar in the History of Philosophy
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5321(3 credits)
Seminar on the British Empiricists
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5327(3 credits)
Seminar on Kant
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5330(3 credits)
Seminar on Theory of Knowledge
Problems in the foundations and nature of knowledge. A critical study of recent treatments of the problem of mind. Issues such as the mind-body problem, our knowledge of the existence of other minds, the existence of private languages, will be dealt with in detail.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5331(3 credits)
Seminar in Philosophy of Mind
A critical study of recent treatments of the problem of mind. Issues such as the mind-body problem, our knowledge of the existence of other minds, the existence of private languages, will be dealt with in detail.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5333(3 credits)
Seminar on Nietzsche
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5340(3 credits)
Seminar on Metaphysics
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5342(3 credits)
Seminar in Philosophy of Language
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5344(3 credits)
Instructor Consent Required Seminar in Philosophical Logic
Topics in the philosophies of logic and mathematics. May include completeness results for non-classical logics, higher-order languages and logics, diagonalization, limited theorems (Tarski, Godel), paradoxes, and formal theories of truth. Open to graduate students in Philosophy, others with permission. This course may be repeated to a maximum of nine credits.
Components: Seminar

PHIL 5350(3 credits)
Seminar in Recent Social and Political Philosophy
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5352(3 credits)
Seminar in Feminist Theory
The focus of inquiry might be the history of feminist theory, a school of contemporary feminist theory, an issue or a selection of issues in feminist theory, or feminist approaches to major texts or themes in the history of philosophy.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5360(3 credits)
Seminar in Recent Continental Analytic Philosophy
Critical reading of selected texts of recent European philosophers such as Derrida, Irigaray, Kristeva, Heidegger, and Foucault; along with related work of analytic philosophers such as Davidson, Quine, Rorty, and Kripke.
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

PHIL 5397(3 credits)
Seminar
Components: Seminar
Requirement Group: Open to graduate students in Philosophy, others with permission (RG799).

†GRAD 5930. Full-Time Directed Studies (Master's Level)
(Grad 397) 3 credits.

†GRAD 5950. Master's Thesis Research
(Grad 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research
(Grad 396) 3 credits.

GRAD 5998. Special Readings (Master's)
(Grad 398) Non-credit.

GRAD 5999. Thesis Preparation
(Grad 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
The Physical Therapy Program in the Department of Kinesiology at the Neag School of Education offers a post-baccalaureate Doctor of Physical Therapy (D.P.T.) degree program. A description of all other graduate programs in the Department of Kinesiology is found in this Catalog under the heading Kinesiology. The program in Physical Therapy is accredited by the Commission on Accreditation of Physical Therapy Education (CAPTE). The three-year program integrates didactic preparation in clinical sciences and clinical practice with 32 weeks of full-time clinical practice. The Physical Therapy program is committed to the advancement of evidence-based clinical practice and developed around practice in acute care, musculoskeletal care and neurological rehabilitation. Through the development of the skills and abilities needed for excellence in clinical practice including interpersonal communication, time and resource management, and problem solving skills students are prepared to practice across the spectrum of physical therapy in an ever-changing health care environment. A commitment to professionalism and life-long learning is valued by the faculty and expected of the students and graduates.

Academic Plan.
The D.P.T. program begins in late May each year and requires nine semesters (summer, fall, spring for three years) to complete. The academic plan is found at <www.pt.uconn.edu>.

Admission.
In addition to the standard requirements of the Graduate School (found in this catalog under the heading Admission), applicants must (1) have completed the following pre-requisite courses prior to matriculation: biology, anatomy, and physiology (8 credits), general chemistry (8 credits), general physics (8 credits), psychology (2 courses), pre-calculus or calculus, and statistics; (2) meet the Technical Standards established for the program which can be found at <www.pt.uconn.edu>; and (3) complete of the supplemental admissions requirements found at <www.education.uconn.edu/howtoapply/dpt.cfm>. Applicants to the D.P.T. program are expected to demonstrate outstanding ability and to show on the record of previous scholarship and experience that they are likely to do superior work in their professional preparation. Meeting minimum requirements does not assure acceptance into the program.

Transfer Credit.
Transfer of credit for coursework completed at other institutions is approved only if (1) the course(s) were completed in a CAPTE accredited Physical Therapy Education program, (2) a grade of B (not B-) was earned in each course being considered for transfer, and (3) the coursework being considered for transfer is substantially similar to coursework offered in the D.P.T. program at the University of Connecticut.

Tuition and Fees.
In addition to the standard graduate student tuition and fees, a tuition differential of $1,750 is required for physical therapy students for the fall and spring semesters of each year of enrollment in the program.

Scholarships.
Scholarship assistance is available to students in the D.P.T. program. A listing is available at <http://www.education.uconn.edu/students/scholarships/pt%20scholarships/scholarships_pt.cfm>. The amount of scholarship awards varies and is dependent on available funds.

Clinical Education.
The role of clinical education in the preparation of Physical Therapy professionals cannot be overstated. The Physical Therapy Program is committed to excellence in this most important area. Clinical sites are selected based on a known history of superior patient care and a clear statement of dedication to the learning process. The costs of travel, housing and other expenses related to clinical education are the responsibility of the student.

Health Policies and Insurance.
Physical Therapy students must be free of communicable disease and in good health in order to be admitted to clinical experiences and complete the PT program. Health services are provided through Student Health Services. All students are required to carry personal health insurance throughout the program. All students are required to provide the University with documentation of well being and good health prior to any course work that may require direct, or indirect, patient contact. Information regarding Student Health Services is found at <http://www.shs.uconn.edu/>.

Physical Therapist Licensure.
Under the provisions of N 19a-14(a) of the Connecticut General Statutes, as amended by Public Act 86-365, <http://www.cga.ct.gov/2007/pub/Chap368a.htm#Sec19a-14.htm>, the Department of Public Health of the State of Connecticut may deny licensure to applicants who have been convicted of a felony or are addicted to drugs or alcohol. Students are responsible for being aware of what the licensure requirements are in the State in which they intend to apply for a license.

Performance Evaluation.
The members of the Physical Therapy faculty regularly monitor the performance of each student in all facets of the program (classroom, laboratory and clinic) at the close of each semester of their graduate education to determine their readiness to progress in the program. Performance evaluations are conducted by the Physical Therapy faculty in advance of each clinical practicum experience specifically to determine the adequacy of each student’s knowledge, proficiency level and their preparedness to interact safely with patients and clients during the clinical education experience. If at any time, a student’s level of performance, progress in completing the academic requirements for the degree, or professional development/suitability is considered to be unsatisfactory, the faculty and the program/student advisory committee may require remedial action on the part of the student or recommend dismissal to the Dean of the Graduate School.

COURSES OF STUDY

PT 5307 (3 credits)
Integrative Seminar I
One of a series of seminars which integrate application, assessment and intervention knowledge and experience across multiple courses. Focus is on the acute, sub-acute and long-term nursing home patient population. Students develop competency in critical thinking, problem-solving, clinical decision making and best practice recommendations for the acute, sub-acute and long-term nursing home patient population groups. Students demonstrate critical reading skills of the professional literature that reflects an understanding of the problems and functional limitations of the acute, sub-acute and long-term nursing home.

Components: Seminar

Requirement Group: Open only to students in the Program in Physical Therapy (RG 467).

PT 5308 (3 credits)
Integrative Seminar II
One of a series of seminars which integrate application, assessment and intervention knowledge and experience across multiple courses; and develops the research project—professional paper. Focus is on the acute, sub-acute and long-term nursing home and musculoskeletal patient population. Students identify and discuss professional issues generated by observations made in the acute, sub-acute and long-term nursing home practicum setting. Students develop competency in critical thinking, problem solving, clinical decision making and best practice recommendations for the musculoskeletal patient. Students demonstrate critical reading skills of the professional literature that reflects an understanding of the problems and functional limitations of the musculoskeletal patient population. Students submit a research project proposal that includes a comprehensive literature review, research hypotheses and methods.
Components: Seminar
Course Equivalents: PT 5308W

PT 5308W(3 credits)
Integrative Seminar I
One of a series of seminars which integrate application, assessment and intervention knowledge and experience across multiple courses; and develops the research project—professional paper. Focus is on the acute, sub-acute and long-term nursing home and musculoskeletal patient population. Students identify and discuss professional issues generated by observations made in the acute, sub-acute and long-term nursing home practicum setting.
Students develop competency in critical thinking, problem solving, clinical decision making and best practice recommendations for the musculoskeletal patient. Students demonstrate critical reading skills of the professional literature that reflects an understanding of the problems and functional limitations of the musculoskeletal patient population. Students submit a research project proposal that includes a comprehensive literature review, research hypotheses and methods. Includes a writing component.
Components: Seminar
Course Equivalents: PT 5308
Requirement Group: Physical Therapy majors only.

PT 5309(3 credits)
Integrative Seminar II
One of a series of seminars which integrate application, assessment and intervention knowledge and experience across multiple courses; and develops the research project—professional paper. Focus is on the musculoskeletal and neuromuscular patient population. Students identify and discuss professional issues generated by observations made in the musculoskeletal practicum setting.
Students develop competency in critical thinking, problem solving, clinical decision making and best practice recommendations for the neuromuscular patient. Students demonstrate critical reading skills of the professional literature that reflects an understanding of the problems and functional limitations of the neuromuscular patient population. Students submit a research project proposal that includes a comprehensive literature review, research hypotheses and methods. Includes a writing component.
Components: Seminar
Course Equivalents: PT 5308
Requirement Group: Prerequisite: PT 5307. Physical Therapy majors only.

PT 5311(3 credits)
Integrative Seminar V
One of a series of seminars which develop the research project—professional paper. Focus is to complete and present the research project—professional paper in this culminating course.
Components: Seminar
Requirement Group: Prerequisite: PT 5309 (RG471).

PT 5314(3 credits)
Principles of Rehabilitation
Explores the role of physical therapists in the rehabilitation of patients with complex problems and multi-system dysfunction. Students develop competency in assessment, treatment planning and implementation, and evaluation of treatment outcomes in the areas of functional mobility and accessibility, patient education and prevention of complications.
Components: Laboratory, Lecture, Practicum

PT 5316(7 credits)
Acute Care Practicum
In a supervised acute care setting, sub-acute care setting or long-term nursing home, students apply a variety of patient care procedures and techniques leading to the development of entry level competency. Clinical teaching facilities are located throughout the United States. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).
Components: Practicum

PT 5318(6 credits)
Principles of Musculoskeletal Rehabilitation
Focus is on the physical therapy patient with existing or potential musculoskeletal dysfunction. The student learns to establish physical therapy diagnoses, identify realistic goals, plan and implement programs for patients with musculoskeletal problems, giving full consideration to their physical, social and psychological well being.
Components: Laboratory, Lecture, Practicum
Requirement Group: Prerequisites: PT 5308 (RG474).

PT 5320(6 credits)
Principles of Neuromuscular Rehabilitation
Through comprehensive problem solving, students analyze patient situations where neuromotor dysfunction is a complicating factor. Students develop neuropsychological sound evaluation and treatment skills integrating physical and psychological patient considerations.
Components: Laboratory, Lecture, Practicum
Requirement Group: Prerequisites: PT 5308 (RG 475).

PT 5330(3 credits)
Lifespan Growth and Development
Provides an overview of motor development, individual development and family development from a lifespan perspective as they relate to the practice of physical therapy. The impact of disease and disability on the individual and the family is explored with a focus on recognizing dysfunction and facilitating effective coping and adaptation.
Components: Lecture
Requirement Group: Prerequisites: PT 5308 (RG478).

PT 5343(3 credits)
Physical Therapy Issues Seminar
Through discussion of current issues and problems in the professional field of physical therapy, students explore the possible solutions to those problems from their own perspective as aspiring professionals, the professional organization’s perspective and from the perspective of the consumer of their services.
Components: Lecture
Requirement Group: Prerequisites: PT 5308 (RG479).

PT 5384(3 credits)
Balance and Postural Control
This course will explore historical and contemporary perspectives on human balance and sway while standing. The interplay between Center of Mass and Center of Pressure will be examined. Conceptual models of balance strategies and the theoretical basis for different “approaches” to balance will be discussed. Different strategies for analyzing data will be discussed with regard to normal and physically challenged individuals.
Components: Lecture

PT 5410(4 credits) Program Director Consent Req'd
Human Anatomy Trunk and Upper Extremity
Discussion of the conceptual and structural basis of osteology, myology, neurology, human development, and basic kinesiology and biomechanics. Selected anatomical and physiological dysfunctions of the trunk and upper extremity will also be discussed.
Components: Laboratory, Lecture

PT 5412(4 credits) Program Director Consent Req'd
Human Anatomy Pelvis and Lower Extremity
Discussion of the conceptual and structural bases of osteology, myology, neurology, human development, and basic kinesiology and biomechanics. Selected anatomical and physiological dysfunctions of the pelvis and lower extremity will also be discussed.
Components: Laboratory, Lecture

PT 5414(3 credits) Program Director Consent Req'd
Clinical Human Physiology
Discussion of the biochemical, nutritional, cellular and physiological principles necessary for the analysis of the normal and abnormal function and for the rehabilitation of the human musculoskeletal, cardiovascular and respiratory systems using patient cases.
Components: Laboratory, Lecture

PT 5416(4 credits) Program Director Consent Req'd
Neuroanatomy and Clinical Neurology
This course is designed to provide health science professionals an up-to-date comprehensive investigation into the human nervous system. Complex interrelationships between structure and function of
the nervous system are being clarified. This course will relate these facts into information of clinical significance. Clinical examples in each area will offer opportunities for practice in neurophysiological analysis that health professionals use daily.

Components: Laboratory, Lecture

PT 5418(3 credits) Program Director Consent Req’d Clinical Pharmacology
This course is designed to integrate and summarize the essentials of medical pharmacology. The main molecular and cellular actions of drugs will be emphasized as well as the principles governing the use and actions of drugs in the treatment of disease.

Components: Lecture

PT 5420(3 credits) Foundation in Clinical Pathology
A comprehensive presentation of the general principles of disease with an emphasis on general pathophysiology. Focus is on the mechanisms underlying disease and their management as a basis for therapeutic program planning in physical therapy.

Components: Lecture

PT 5422(2 credits) Cardiopulmonary Pathology
A comprehensive presentation of cardiopulmonary diseases. Focus is on the mechanisms underlying disease and their management as a basis for therapeutic program planning in physical therapy.

Components: Lecture

PT 5424(4 credits) Musculoskeletal Pathology
Mechanical properties of musculoskeletal tissues will be described. Growth and maintenance mechanisms of the different tissues will be detailed. Diseases and disorders of the musculoskeletal system will be covered. The underlying tissue pathology and clinical symptoms will be addressed from the orthopedic and physical therapy perspective. Therapeutic interventions will be presented.

Components: Discussion, Lecture

PT 5426(3 credits) Neuromuscular Pathology
This course introduces students to basic mechanisms of neuropathology, the neurological examination and tests, and specific pathologies they are likely to encounter in physical therapist practice. The course will emphasize the medical and surgical diagnosis and management of patients with neurological pathologies.

Components: Lecture

PT 5430(3 credits) Program Director Consent Req’d Functional Neuro-Biomechanical Relationships
Students will analyze the impact of force systems on the human body, thus preparing the student to apply knowledge of normal anatomical structure and function to therapeutic intervention. Interactions between contiguous and non-contiguous bone segments will be emphasized in order to understand functional movement. Neural control and activation principles will be discussed.

Components: Lecture

PT 5432(4 credits) Program Director Consent Req’d Motor Control and Clinical Applications
Introduction to theories of motor control and motor learning, current methods in human movement science, and their implications for evidence-based practice.

Components: Lecture

PT 5433(3 credits) Program Director Consent Req’d Management for the Physical Therapist
The goal of this course is to provide comprehensive exposure to management principles and concepts with a focus on their applications and impact in physical therapy practice. Students will be provided the opportunity to gain cognition and skills in physical therapy practice management which prepares them as practitioners and future administrators.

Components: Lecture

PT 5434(2 credits) Foundations for System Review
A foundations course for Physical Therapy Majors in Differential Diagnosis. The course scope covers a broad spectrum of clinical sciences and provides training in screening (i.e. history taking) of a culturally diverse patient/client population across the lifespan for appropriate healthcare management.

Components: Lecture

PT 5435(3 credits) Program Director Consent Req’d Health Care Issues for Physical Therapists
The goal of this course is to promote awareness of health care issues as they relate to an individual, community or health care institutions.

Components: Lecture

PT 5436(3 credits) Program Director Consent Req’d Disability Studies
This course will introduce the student to the field of disability studies. Disability and chronic illness (CI) are often a major factor influencing an individual and/or family during one’s lifetime. People with a disability (PND) or CI may be considered a subculture of our society. Physical, cognitive, emotional, social, and cultural factors related to the presence of disability and CI throughout the life span will be explored. Emphasis is placed on those aspects of disability that affect the practice of physical therapy assessment and treatment.

Components: Lecture

PT 5437(2 credits) Program Director Consent Req’d Education and Communication for Physical Therapists
This course covers fundamental aspects of education and communication as they relate to physical therapy as described in the Guide to Physical Therapy Practice. Students are introduced to learning theories and theories of change. Learner assessment and strategies for communication and instruction will be covered. Students generate written and oral communications.

Components: Laboratory, Lecture

PT 5438(2 credits) Program Director Consent Req’d Professionalism for the Physical Therapist
Through readings, lecture, personal investigation, and discussion of current issues, “hot topics” and problems in the profession of physical therapy, students will demonstrate an understanding of their environment of practice. Students learn selected laws, rules, regulations, guidelines and ethical codes governing the practice of physical therapy and will explore possible solutions to common professional problems. Emphasis is placed on the importance of ethical and legal practice.

Components: Lecture

PT 5439(3 credits) Program Director Consent Req’d Operational Management for Physical Therapists
The goal of this course is to build upon concepts introduced in PT 433. An integrated approach will be utilized to focus on skills that impact the management of physical therapists. Students will be provided the opportunity to utilized skills in a simulation practice setting which will prepare them for private practice and/or as future administrators.

Components: Lecture

PT 5440(2 credits) Program Director Consent Req’d Evidence-Based Practice in Physical Therapy
A foundations course in evidence-based clinical-decision making designed to provide Physical Therapy students with content areas in forming clinical questions, literature search, and critical appraisal of selected literature. Applications will fall within the Physical Therapy Profession Patient/Client Management Model and consider culturally diverse patient/client populations across the life span.

Components: Lecture

PT 5441(2 credits) Program Director Consent Req’d Clinical Research for Physical Therapists
This course focuses on issues important to conducting and understanding clinical research. The course serves as a foundation for student involvement in research that will span the professional program.

Components: Lecture

PT 5444(2 credits) Program Director Consent Req’d Evidence-Based Practice Seminar I
A course for Physical Therapy students focusing on clinical research related to physical therapy diagnosis and outcomes with focus on both acute and musculoskeletal care. Students will participate in meetings and discussions to facilitate their research projects.

Components: Discussion, Lecture

PT 5446(2 credits) Program Director Consent Req’d Evidence-Based Practice Seminar II
A course for Physical Therapy students focusing on clinical research related to diagnosis, and prevention/treatment outcomes with emphasis on musculoskeletal and neuromuscular physical therapy. Students will participate in meetings and discussions to facilitate their research projects.

Components: Discussion, Lecture
PT 5448 (2 credits) Program Director Consent Req'd Evidence-Based Practice Seminar III
A course for Physical Therapy students focusing on the completion of a research project. Students will work with peers and faculty mentors to complete a manuscript suitable for submission to a peer-reviewed professional publication. This course serves as the culmination of Evidence-based Practice Series.
Components: Discussion

PT 5450 (5 credits)
Fundamentals of Physical Therapy Examination
This course covers the fundamentals of physical therapist examination in the context of overall practice as described in the Guide to Physical Therapist Practice. Students will be introduced to basic tests and measures as well as to information relevant to their selection and interpretation. Students will apply the tests in laboratory and clinical settings and will learn to appropriately document their findings.
Components: Laboratory, Lecture, Practicum

PT 5451 (6 credits)
Acute Care Management
An exploration of the practice of Physical Therapists in the acute care setting. Students will develop competency in clinical evaluation of impairments and functional limitations, identification of appropriate intervention options, and implementation of a plan of care to improve performance of functional activities for patients commonly encountered in acute care practice settings. In addition, this course integrates curricular content in acute care with clinical practice through critical thinking, problem solving, and clinical experiences.
Components: Laboratory, Lecture, Practicum

PT 5452 (3 credits) Program Director Consent Req'd Therapeutic Exercise and Physical Agents
An exploration of interventions commonly used by physical therapists in both inpatient and outpatient settings. Students will develop competency in selection and implementation of therapeutic exercise and physical agents as interventions to improve performance of functional activities for patients commonly encountered in a variety of settings. The assessment of therapeutic effects, and modification of the interventions is an integral component of this course.
Components: Laboratory, Lecture

PT 5453 (3 credits)
Musculoskeletal Rehabilitation - The Spine
A course for Physical Therapy students focusing on the management of musculoskeletal conditions affecting the spine. Elements of patient management consist of: examination, evaluation, diagnosis, prognosis, and intervention with attention to outcomes, differential diagnosis, and screening strategies. Evidence-based practice is reinforced. Applications will consider client populations across the life span.
Components: Laboratory, Lecture, Practicum

PT 5454 (3 credits)
Musculoskeletal Rehabilitation - The Extremities
A course for Physical Therapy students focusing on the management of musculoskeletal conditions affecting the extremities. Elements of patient management consist of: examination, evaluation, diagnosis, prognosis, and intervention with attention to outcomes, differential diagnosis, and screening strategies. Evidence-based practice is reinforced. Applications will consider client populations across the life span.
Components: Laboratory, Lecture, Practicum

PT 5455 (3 credits)
Essentials of Rehabilitation Practice
An exploration of the practice of Physical Therapists in the area of orthotics prosthetics, Diabetes and Spinal Cord Injury. Students will develop competency in clinical assessment of functional limitations, specifically in locomotion, identification of appropriate treatment options and implementation of interventions, through the use of orthotics and prosthetics, to improve performance of functional activities for patients with a variety of deficits.
Components: Laboratory, Lecture, Practicum

PT 5456 (3 credits)
Neuromuscular Examination
Through comprehensive problem solving, students analyze patient situations where neuromotor dysfunction is a complicating factor. Students develop neurophysiological sound examination and evaluation skills integrating physical and psychological patient considerations. The skill set for examination will be consistent with foundational movement science under the evidenced based practice model.
Components: Laboratory, Lecture, Practicum

PT 5457 (3 credits)
Neuromuscular Intervention
Through comprehensive problem solving, students analyze patient situations where neuromotor dysfunction is a complicating factor. Students develop neurophysiological sound treatment skills integrating physical and psychological patient considerations. The skill set for intervention will be consistent with foundational movement science under the evidenced based practice model.
Components: Laboratory, Lecture, Practicum

PT 5460 (1 credit)
Introduction to Clinical Education
This two-week course is intended to provide students with a foundation for all future full time practical experience courses. Students will learn how evaluation methods and tools will be implemented during full time practice. Roles and responsibilities of persons associated with practica courses will be explored. Through lecture, discussion and written assignments, students will develop an understanding of the importance of professional behaviors, self-evaluation and personal reflection. A written professional portfolio will be initiated.
Components: Lecture

PT 5461 (8 credits)
Acute Care Practicum
Under close supervision by an experienced, licensed Physical Therapist, students will perform all patient management functions for patients in an acute, subacute care or homecare setting. The course is held off campus at individually assigned clinical facilities. Each student is assigned one or two clinical instructors who are physically present and immediately available to direct and supervise tasks that are related to patient/client management. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).
Components: Practicum

PT 5462 (1 credit) Program Director Consent Req'd Internal Integrated Musculoskeletal Clinical Practicum I
A clinical experience that provides students the opportunity to integrate interventions learned in PT 452 in an outpatient setting. Students will develop and administer plans of care that include therapeutic exercise and physical agents for outpatients with various musculoskeletal conditions.
Components: Practicum

PT 5463 (2 credits)
Internal Integrated Musculoskeletal Clinical Practicum II
A clinical experience that provides students the opportunity to integrate interventions learned in PT 453 and PT 454 in an outpatient setting. Students will utilize examination and manual therapy skills in the development and implementation of plans of care for outpatients with various musculoskeletal conditions.
Components: Practicum

PT 5464 (8 credits)
Musculoskeletal Practicum
Under close supervision by an experienced, licensed Physical Therapist, students will perform all patient management functions for patients in an outpatient orthopedic setting. The course is held off campus at individually assigned clinical facilities throughout the country. Each student is assigned one or two clinical instructors who are physically present and available to direct and supervise all patient/client management performed by the student. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).
Components: Practicum

PT 5466 (2 credits) Program Director Consent Req'd Internal Integrated Neuromuscular Clinical Practicum
A clinical experience that provides students the opportunity to integrate interventions learned in PT456 and PT 457 in a clinical setting. Students will utilize examination and intervention skills in the development and implementation of plans of care for patients with various neuromuscular conditions.
Components: Practicum
PT 5467 (8 credits) Neuromuscular Practicum
Under close supervision by an experienced, licensed
Physical Therapist, students will perform all patient
management functions for patients in a rehabilita-
tion facility. The course is held off campus at indi-
vividually assigned clinical facilities throughout the
country. Each student is assigned one or two
clinical instructors who are physically present and
available to direct and supervise all patient/client
management performed by the student. Students
taking this course will be assigned a final grade of S
(satisfactory) or U (unsatisfactory).
Components: Practicum

PT 5468 (8 credits) Program Director Consent Req'd
Individualized Practicum
Under close supervision by an experienced, licensed
Physical Therapist, students will perform all patient
management functions for patients in a facility
providing Physical Therapy services. Student assign-
ment is based on student interest and on site avail-
ability. The course is held off campus at individually
assigned clinical facilities throughout the country.
Each student is assigned one or two clinical instruc-
tors who are physically present and available to
supervise all patient/client management performed
by the student. The learning experience is intended
to allow the student to gain clinical experience in an
area relating to their individual professional inter-
est. Students taking this course will be assigned a
final grade of S (satisfactory) or U (unsatisfactory).
Components: Practicum

†GRAD 5930. Full-Time Directed Studies (Master's Level)
(GRAD 397) 3 credits.

†GRAD 5950. Master's Thesis Research
(GRAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research
(GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master's)
(GRAD 398) Non-credit.

PHYSICS

Department Head: Professor William C. Stwalley
Professors: Best, Carmier, Côté, Dunne, Dutta, Eyster,
Gai, Gibson, Gould, Hamilton, Javanainen, Kap-
pers, Kharchenko, Kovner, Mallett, Mannheim,
O'Donnell, Papadimitrakopoulos, Pease, Peters-
son, Rawitscher, Smith, and Swanson
Research Professors: Boggs, Budnick, Islam, Kessel,
Michels, Roychoudhuri, and J. Schweitzer
Associate Professors: Blum, Campagnola, Dobrynin,
Edson, Fernando, Huber, Jones, Joo, Sinkovic,
Snyder, Wells, and Wolgemuth, and Yelin
Assistant Professors: M. Jain and P. Schweitzer

The Master of Science and Doctor of Philosophy
degrees are offered.

Admission.

For admission to either the M.S. or Ph.D. program,
completion of a bachelor's degree normally is re-
quired. It is expected that the applicant will have
majored in physics or in a related subject.

The Master of Science Degree
Each student in the Master's program follows an indi-
vidual plan of study arranged jointly by the student
and an advisory committee, based on the student's
interests, career goals as well as prior preparation. Candidates
for the Plan B Master's degree are required to complete
24 credits of courses. Under Plan A, a thesis is required,
with as well as completion of 9 credits of Thesis Research
courses as stipulated in the Standards and Degree
Requirements section of this catalog.

The Ph.D. Degree.
Each doctoral student's course of study is supervised
by an advisory committee, headed by the student's
major advisor. The committee and the student jointly
plan a curriculum that is designed to provide the
general knowledge of physics appropriate for the
Ph.D. and also the specialized expertise necessary to
conduct dissertation research. This research is con-
ducted under the supervision of the major advisor
and culminates in an original scientific contribution.

There are numerous research projects in the Depart-
ment of Physics which provide graduate students with
opportunities for conducting the scientific investiga-
tions necessary for the Ph.D. degree. These include
atomic, molecular and optical physics (experimental
and theoretical), condensed matter physics (experi-
mental and theoretical), nuclear physics (experimental
and theoretical), particle and field theory (including
relativity and cosmology) and quantum optics (experi-
mental and theoretical). Active research groups are
engaged in each of these areas. Their work is described
on-line at <www.phys.uconn.edu>. A brochure that
describes the Department's graduate program is
also available on-line.

Special Requirements for the Ph.D.
The requirements for the Ph.D. include all the gen-
eral requirements listed in the Standards and Degree
Requirements section of this catalog. In addition,
satisfactory completion of Physics 5302 (Electrody-
namics II) and Physics 5403 (Quantum Mechanics III)
is required for the Ph.D. degree.

The General Examination in physics consists of written
and oral sections. A set of written examinations must
be completed satisfactorily to qualify for admission to
the oral part of the General Examination.

COURSES OF STUDY

PHYS 50101 - 6 credits) Instructor Consent Required
Independent Study
A special reading course for graduate students.
This course may be taken, with change of topic, up
to three times for a maximum of nine total credits.
Students taking this course will be assigned a final
grade of S (satisfactory) or U (unsatisfactory).
Components: Independent Study

PHYS 50201 - 6 credits) Instructor Consent Required
Research in Physics
Experimental and theoretical research in selected
topics in physics. This course may be taken up to
three times for a maximum of nine credits.
Components: Laboratory

PHYS 50503 (credits)
Modern Physics for Teachers
New teaching materials and techniques as devel-
oped by the Physical Science Study Committee for
secondary school teachers of physics.
Components: Lecture

PHYS 50941 (credits) Instructor Consent Required
Physics Seminar
The treatment of special topics, primarily by indi-
vidual readings and reports. Students taking this
course will be assigned a final grade of S (satisfac-
tory) or U (unsatisfactory).
Components: Seminar

PHYS 51013 (credits)
Vector and tensor analysis, curvilinear coordinates,
linear algebra, functions of complex variables, dif-
ferential equations, special functions, elements of
Green's functions.
Components: Lecture

PHYS 51023 (credits)
Methods of Theoretical Physics I
Abstract vector spaces, Hilbert space, group theory.
Fourier series and integral representations, Theory
of Green's functions and integral equations. Com-
plex function theory.
Components: Lecture
Requirement Group: Prerequisite: PHYS 5311 (RG
482).

PHYS 51051 - 6 credits) Methods of Experimental Physics
Experimental methods used in modern research are
applied to experiments from various fields of phys-
ics, including: low temperature conductivity of met-
als, x-ray diffraction, acoustic attenuation, optical constants of metals, color centers in alkali halides, nuclear beta decay, Zeeman effects and others. Components: Laboratory

PHYS 5201(3 credits)
Theoretical Mechanics I
Classical mechanics: Lagrange equations, central force motion, rigid body motions, small oscillations, Hamilton equations, canonical transformation. Components: Lecture

PHYS 5202(3 credits)
Theoretical Mechanics II
Dynamics of continuous media, hydromechanics, elasticity, wave motion, wave interactions and scattering, non-linear processes. Components: Lecture

PHYS 5301(3 credits)
Electrodynamics I

PHYS 5302(3 credits)
Electrodynamics II
Maxwell's equations with time dependent sources; radiation from relativistic charged particles; dynamical laws for charged particles; diffraction of electromagnetic waves. Components: Lecture

PHYS 5350(4 credits) Instructor Consent Required
Computerized Modeling in Science
Development and computer-assisted analysis of mathematical models in chemistry, physics, and engineering. Typical topics include chemical equilibrium, reaction rates, particle scattering, vibrating systems, least square analysis and quantum chemistry. Components: Lecture

PHYS 5401(3 credits)
Quantum Mechanics I

PHYS 5402(3 credits)
Quantum Mechanics II
Symmetry and angular momentum. Approximation methods for stationary and time-dependent problems, with applications. Relativistic theory of the electron.

PHYS 5403(3 credits)
Quantum Mechanics III
Occupation number representation, electron gas, Hartree-Fock approximation, correlation energy, superconductivity, perturbation theory, Green's functions, Feynman diagrams. Components: Lecture

PHYS 5500(3 credits)
Statistical Mechanics
Ensembles, distribution function, partition function. Bose-Einstein and Fermi-Dirac distributions, fluctuations, applications to the properties of solids and liquids and to the kinetic theory of gases. Components: Lecture

PHYS 5600(3 credits)
Modern Physics
Experimental and theoretical milestones in the development of contemporary physics. Atomic, molecular, and optical physics including quantum optics; condensed matter physics; nuclear and particle physics; and cosmology and astrophysics. Components: Lecture

PHYS 5621(1-6 credits) Instructor Consent Required
Advanced Topics in Physics I
Selected topics in theoretical and experimental physics. Components: Lecture

PHYS 5622(1-3 credits) Instructor Consent Required
Advanced Topics in Physics II
Selected topics in theoretical and experimental physics. Components: Lecture

PHYS 6110(3 credits)
Atomic Physics
Coupling of angular momenta. Hartree-Fock theory of many electron atoms, fine structure and hyperfine structure. Introduction to group theory. Components: Lecture

PHYS 6120(3 credits)
Molecular Physics
Heitler-London and molecular orbital theories for diatomic molecules, semi-empirical methods of poly-atomic molecules. Components: Lecture

PHYS 6130(3 credits)
Quantum Optics

PHYS 6140(3 credits)
Principles of Lasers
The physics of lasers, including optical pumping and stimulated emission, laser rate equations, optical resonators, non-linear optics, the Kerr effect and Faraday rotation. Applications to gas, crystal, glass, liquid, dye, semiconductor, chemical and ultraviolet lasers, Q-switching, mode-locking, and parametric devices. Components: Lecture

PHYS 6150(3 credits)
Semiconductor Optical Devices
Semiconductor based optical devices such as lasers, amplifiers, modulators, and photodetectors, and their application to optical fiber transmission systems. Components: Lecture

PHYS 6201(3 credits)
Fundamentals of Solid State Physics I
Crystal structure, phonons, electronic band structure, metals, insulators and semiconductors. Components: Lecture

PHYS 6202(3 credits)
Fundamentals of Solid State Physics II
Optical, magnetic and transport properties. Lattice defects. Non-crystalling solids. Components: Lecture

PHYS 6201(3 credits)
Condensed Matter Physics I
Crystal structure; lattice vibrations; electronic band structure of solids; transport theory; basic properties of metals, semi-conductors and insulators; magnetism; super-conductivity. Components: Lecture

PHYS 6211(3 credits)
Condensed Matter Physics II
Crystal structure; lattice vibrations; electronic band structure of solids; transport theory; basic properties of metals, semi-conductors and insulators; magnetism; super-conductivity. Components: Lecture

PHYS 6220(3 credits)
Advanced Solid State Physics
The many-body problem in solid state physics.
The electron gas, normal metals, electron-phonon interactions, superconductivity, ferro- and antiferromagnetism and spin waves, polaron theory.

Components: Lecture

Requirement Group: Prerequisite: PHYS 6212 or PHYS 6342 (RG496).

PHYS 6234(3 credits)
Non-Equilibrium Properties of Solids

Components: Lecture

Requirement Group: Prerequisite: PHYS 6211 (RG501).

PHYS 6236(3 credits)
Microwave Physics I
The principles of microwave and radio frequency techniques applied to investigation of the properties of matter.

Components: Lecture

Requirement Group: Prerequisite: PHYS 5301 (RG493).

PHYS 6244(3 credits)
The Electrical Properties of Polymers
Experimental and theoretical aspects of electrical phenomena in polymers; DC and AC conductivity, dielectric constant, electrical breakdown, photosensitivity, etc. Extended and localized electron wavefunctions; band and hopping conduction.

Components: Lecture

PHYS 6246(3 credits)
Nuclear Magnetic Resonance I
Basic theory and experimental methods of NMR with emphasis on resonance and relaxation in metals. Brief discussion of interpretation of NMR in non-metallic solids, liquids, and gases.

Components: Lecture

Requirement Group: Prerequisite: PHYS 5401 (RG487).

PHYS 6247(3 credits)
Nuclear Magnetic Resonance II
Basic theory and experimental methods of NMR with emphasis on resonance and relaxation in metals. Brief discussion of interpretation of NMR in non-metallic solids, liquids, and gases.

Components: Lecture

Requirement Group: Prerequisite: PHYS 6246 (RG502).

PHYS 6254(3 credits)
Instructor Consent Required
Low Temperature Physics I
Lectures and seminars on selected topics in low temperature physics; superfluidity and superconductivity, solid state, nuclear alignment and polarization, transport properties in solids.

Components: Lecture

PHYS 6256(3 credits)
X-Ray Physics I
Symmetry of crystals. Production and properties of x-rays. Application of x-rays in the study of crystalline and amorphous solids by diffraction and spectroscopic techniques, including synchrotron radiation for studying atomic and electronic structures in materials.

Components: Lecture

PHYS 6264(3 credits)
Semiconductor Physics
Semiconductors and semiconductor devices. Band structure, phonon scattering, velocity-field relations, effects of doping and magnetic fields, optical and transport properties.

Components: Lecture

Requirement Group: Prerequisite: PHYS 6201 and PHYS 5402, which may be taken concurrently (RG1115).

PHYS 6300(3 credits)
 Instructor Consent Required
Astrophysics and Modern Cosmology
Basic principles of contemporary astrophysics; applications to stars, galaxies, and modern cosmology. Instructor consent required. Preparation equivalent to PHYS 257 and PHYS 261 is expected.

Components: Lecture

PHYS 6310(3 credits)
Relativity
Special relativity, tensor analysis, foundations of general relativity. Petrov classification of curved spacetimes, Schwarzschild and Kerr solutions, experimental tests and recent developments.

Components: Lecture

PHYS 6320(3 credits)
Nuclei and Particles
Properties of nuclei and particles, conserved quantities, isospin, quark model, Fermi gas model, electroweak interaction, high energy scattering.

Components: Lecture

PHYS 6331(3 credits)
Nuclear Physics I
A quantum mechanical treatment of nuclear forces and nuclear structure, including the shell and collective models, and of reaction and radiation phenomena. The second semester is reserved for a discussion of selected topics on an advanced level.

Components: Lecture

Requirement Group: Prerequisite: PHYS 5402 (RG490).

PHYS 6332(3 credits)
Nuclear Physics II
A quantum mechanical treatment of nuclear forces and nuclear structure, including the shell and collective models, and of reaction and radiation phenomena. The second semester is reserved for a discussion of selected topics on an advanced level.

Components: Lecture

Requirement Group: Prerequisite: PHYS 6331 (RG497).

PHYS 6341(3 credits)
Quantum Theory of Fields I
Local gauge invariance, Lagrangian formulation, Noether currents, spontaneous breakdown of symmetry, Higgs mechanism and superconductivity, canonical quantization, Feynman diagrams, Green's functions.

Components: Lecture

Requirement Group: Prerequisite: PHYS 5403 (RG498).

PHYS 6342(3 credits)
Quantum Theory of Fields II
Topics chosen from the following: Path integral formalism, generating functionals, renormalization, abelian and non-abelian gauge theories (QED and QCD), electroweak theory, solitons, instantons.

Components: Lecture

Requirement Group: Prerequisite: PHYS 6341 (RG499).

†GRAD 5930. Full-Time Directed Studies (Master’s Level) (GRAD 397) 3 credits.

†GRAD 5950. Master’s Thesis Research (GRAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master’s Research (GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master’s) (GRAD 398) Non-credit.

GRAD 5999. Thesis Preparation (GRAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level) (GRAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research (GRAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research (GRAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral) (GRAD 498) Non-credit.

GRAD 6999. Dissertation Preparation (GRAD 499) Non-credit.
PHYSIOLOGY AND NEUROBIOLOGY

Department Head: Professor J. Larry Renfro
Professors: Armstrong, Chapple, Chen, Crivello, de Blas, Gallo, Kraemer, Loturco, Maresh, Moisiff, Pescatello, and Zinn
Associate Professors: Cantino, Conover, Nishiyama, and Wallkonis
Assistant Professors: Anastasios Tzingounis, Kanadia, Schwartz, Mulkey
Physiology and Neurobiology includes the following major areas of research:

1. Neurobiology – cellular and comparative neurobiology with emphasis on neural integration of behavior patterns, synaptic transmission, developmental neurobiology, glial cell biology, regulation and biophysics of ion channels, neuronal mechanisms of calcium and pH regulation, molecular neurobiology and functional neuroanatomy.
2. Physiology – evolution of physiological adaptations in higher organisms, comparative aspects of osmotic and ionic regulation in vertebrates, transepithelial ion and water transport, renal physiology, muscle physiology, cardiovascular and respiratory physiology.

Interdisciplinary Study
Neurosciences.
This is an interdisciplinary area of concentration. Neuroscience is concerned with the structural and functional characteristics of the nervous system and its relation to the adaptive physiology and behavior of the organism. Students in this program may approach the full range of neuroscience studies through courses and research at the cellular, systemic, and organismic levels. A particular strength of the area is the analysis of behavior, its development, and its neurological bases. This area of concentration is offered in the fields of study of pharmaceutical science, physiology and neurobiology, and psychology. Application is made to the preferred field of study, but the applicant must be acceptable to the Neuroscience Committee.

Biomedical Engineering Program.
The Department of Physiology and Neurobiology participates in a joint program with the School of Engineering for graduate students interested in interdisciplinary work in which biological and engineering disciplines are interrelated. Applicants may have primary training in biology or physical sciences. For information with regard to the biological engineering program, students should write to Dr. William Chapple, Unit 3156, Storrs, Connecticut 06269-3156.

COURSES OF STUDY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Description</th>
<th>Course Type</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNB 5301</td>
<td>Fundamentals of Neurobiology</td>
<td>Major topics in neurobiology, including cellular neurophysiology, synaptic physiology, sensory and motor integration, molecular and developmental neurobiology.</td>
<td>Lecture</td>
<td>PnB 5302</td>
</tr>
<tr>
<td>PNB 5302</td>
<td>Fundamentals of Physiology</td>
<td>Introduction to integrative biology. Associations of molecules, cells and tissues and their integrated functions across all organizational levels. Application of language and basic concepts of physiology to the development of problem-solving skills.</td>
<td>Lecture</td>
<td>PnB 5314</td>
</tr>
<tr>
<td>PNB 5314</td>
<td>The Physiology of Excitable Cells</td>
<td>In depth study of the molecular structure, function and regulation of ion channels and the mechanisms that control membrane potential and cell excitability. Reading and discussion focus on primary literature.</td>
<td>Lecture</td>
<td>PNB 5325</td>
</tr>
<tr>
<td>PNB 5325</td>
<td>Biological Rhythms</td>
<td>Neuroendocrine and environmental factors in the control of biological rhythmicity, especially circadian and annual rhythms. Emphasis on animals.</td>
<td>Lecture</td>
<td>PNB 5330</td>
</tr>
<tr>
<td>PNB 5330</td>
<td>Hormones and Behavior</td>
<td>Hormones and regulation of behaviors, reproductive, parental, social and aggressive behaviors, as well as migration, hibernation, and learning and memory.</td>
<td>Lecture</td>
<td>PNB 5347</td>
</tr>
<tr>
<td>PNB 5347</td>
<td>Instructor Consent Required</td>
<td>Electron Microscopy Lectures and laboratory exercises on the principles and practice of biological electron microscopy. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).</td>
<td>Seminar</td>
<td>PNB 5351</td>
</tr>
<tr>
<td>PNB 5351</td>
<td>Instructor Consent Required Projects in Electron Microscopy</td>
<td>Electron microscopy as a research method in biological sciences.</td>
<td>Independent Study</td>
<td>PNB 5390</td>
</tr>
<tr>
<td>PNB 5390</td>
<td>Course ID:002633 05-FEB-2008</td>
<td>Membrane Transport Fundamental mechanisms by which water and small molecules are transported across biological membranes. Biophysical and biochemical analysis of transport by diffusion, osmosis, channels, carriers and pumps. Physiological integration of different transport mechanisms.</td>
<td>Lecture</td>
<td>PNB 5395</td>
</tr>
<tr>
<td>PNB 5395</td>
<td>Independent Study</td>
<td>A reading course for those wishing to pursue special work in biology. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).</td>
<td>Independent Study</td>
<td>PNB 5396</td>
</tr>
<tr>
<td>PNB 5396</td>
<td>Investigation of Special Topics</td>
<td>Advanced study in a field within Physiology and Neurobiology.</td>
<td>Independent Study</td>
<td>PNB 5397</td>
</tr>
<tr>
<td>PNB 5397</td>
<td>Research</td>
<td>Conferences and laboratory work covering selected fields of Physiology and Neurobiology.</td>
<td>Independent Study</td>
<td>PNB 6400</td>
</tr>
<tr>
<td>PNB 6400</td>
<td>Seminar in Neurobiology</td>
<td>An in-depth study of selected topics in the molecular, cellular, and central aspects of neurobiology. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).</td>
<td>Seminar</td>
<td>PNB 6401</td>
</tr>
<tr>
<td>PNB 6401</td>
<td>Seminar in Comparative Physiology</td>
<td>Components: Seminar</td>
<td>PNB 6402</td>
<td></td>
</tr>
<tr>
<td>PNB 6402</td>
<td>Seminar in Endocrinology</td>
<td>Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory).</td>
<td>Seminar</td>
<td>PNB 6403</td>
</tr>
<tr>
<td>PNB 6403</td>
<td>Seminar in Biological Rhythms</td>
<td>Components: Seminar</td>
<td>PNB 6404</td>
<td></td>
</tr>
<tr>
<td>PNB 6404</td>
<td>Seminar in Neuroendocrinology</td>
<td>Components: Seminar</td>
<td>PNB 6405</td>
<td></td>
</tr>
<tr>
<td>PNB 6405</td>
<td>Seminar in Research and Journal Presentations in Physiology and Neurobiology</td>
<td>Provides the opportunity for graduate students to present journal articles and their laboratory research in physiology and neurobiology to the department. Students enrolled in this course receive a grade of S (satisfactory) or U (unsatisfactory).</td>
<td>Seminar</td>
<td>PNB 6417</td>
</tr>
<tr>
<td>PNB 6417</td>
<td>Developmental Neurobiology</td>
<td>Molecular mechanisms of neurodevelopment. Neural induction, cell fate determination, neurogenesis, axon targeting, neuronal migration, synapse formation and activity-dependent synaptic remodeling.</td>
<td>Lecture</td>
<td>PNB 6418</td>
</tr>
<tr>
<td>PNB 6418</td>
<td>Integrative Neurobiology</td>
<td>Physiology of the central nervous system: information processing and central mechanisms in vertebrates and invertebrates; physiological aspects of behavior.</td>
<td>Lecture</td>
<td>PNB 5301</td>
</tr>
</tbody>
</table>
PLANT SCIENCE

Department Head: Professor Mary Musgrave
Professors: Adams, Berkowicz, Brand, Guillard, Li, McAvoy, Singha, Bodman
Associate Professors: Alesopoulos, Auer, Elliott, Miniutti, Morris, Schulthess, Schwab, Westa
Assistant Professors: Henderson, Kuzkovkina-Eichen, and Legrand

The Department of Plant Science offers M.S. and Ph.D. degree programs. Research is conducted in the following major areas: Agronomy (including turf management); Horticulture (including plant biotechnology); Soil Science, and Landscape Architecture (M.S. only). Research areas are highly diverse and continuously developing. Prospective applicants should check the department website (www.can.uconn.edu/plsci/) for current information on faculty research.

All applicants must provide results of the Graduate Record Examination general tests and three letters of recommendation with their application.

The M.S. program is available with either a thesis (Plan A) or non-thesis (Plan B) option, although most students are admitted under Plan A. Students with deficiencies in their undergraduate preparation may be expected to include preparatory coursework in their plan of study. All M.S. students must enroll in at least one semester of PLSC 5897, Graduate Seminar.

Applicants for the Ph.D. program should have adequate training and experience to enable them to perform independent research. Required coursework will depend on the nature of the research project and the student's background. A minimum of two years of full-time study beyond the master's degree (or equivalent) is expected. All Ph.D. students must enroll in at least two semesters of PLSC 5897, Graduate Seminar.

Special Facilities. The Department of Plant Science has research facilities in several buildings and field locations. Most laboratories are new or recently renovated and are well equipped. Several faculty laboratories are located in the college's Agricultural Biotechnology Laboratory. The Department also operates the University Plant Biotechnology Facility and the Soil Nutrient Analysis Laboratory that can be utilized for research purposes. The Plant Science Research Farm and Nursery is located within one mile of the main campus and contains 160 acres (65 hectares) and a small greenhouse range that are available for field research projects. The Floriculture greenhouse on the main campus provides about 15,000 square feet (1400 square meters) of growing area, and additional greenhouse space is associated with both the Agricultural Biotechnology Laboratory and the Plant Biotechnology Facility.

COURSES OF STUDY

PLSC 5150(4 credits) Instructor Consent Required
Design and Analysis of Agricultural Experiments
The design and analysis of experiments commonly conducted in agricultural field, greenhouse, and laboratory research. Presentation of summarized data using computer generated graphics from printers, plotters, and film recorders will be covered.

Emphasis is placed on use of computers (mainframe and personal) and appropriate computer programs (e.g., SAS, Sigma Plot).
Components: Laboratory, Lecture

PLSC 5240(3 credits)
Plant Biotechnology
Principles of recombinant DNA and plant gene transfer technologies. Applications of plant biotechnology in agriculture, horticulture, forestry, human/animal health care, and the pharmaceutical industry. Social and environmental impacts of plant biotechnology.
Components: Lecture

PLSC 5250(3 credits)
Plant Gene Transfer Techniques
Techniques of plant gene delivery and transgenic plant production. Verification and analysis of transgenic plants.
Components: Laboratory

PLSC 5252(3 credits) Instructor Consent Required
Physiology and Ecology of Trees
Also offered as NRE 5252.
An examination of the interactions between trees and their environment at the molecular, individual and forest stand scales. Lectures and reviews of current research span at least two spatial scales of organization for each course topic. Course topics include tree carbon balance, water relations, mineral nutrition, morphology, genomics, phenology, climate change and modeling.
Components: Lecture
Course Equivalents: NRE 5252

PLSC 5298(1 credits)
Current Topics in Plant Biology
Informal discussions of current concepts, research and techniques in the areas of plant biotechnology, plant physiology and molecular biology.
Components: Lecture

PLSC 5410(4 credits)
Soil Chemistry Components
Basic concepts of the physical chemistry of soil constituents. Topics include soil atmosphere, soil solutions, soil organic matter, soil mineralogy, and surface characteristics and analysis. Term paper required. Not open to students that have passed PLSC 259C.
Components: Laboratory, Lecture

PLSC 5420(3 credits)
Soil Chemistry Reactions and Equilibrium
Physical chemical characteristics of soil minerals and soil organic matter, and their reactivity with compounds present in the aqueous and vapor phase. Topics include: modern spectroscopic surface analyses, soil organic matter and its interactions with metals, redox reactions, solubility, derivation of ion-exchange equations, and kinetics of soil reactions. Term paper required. Also offered as ENVE 303.
Components: Lecture
Course Equivalents: ENVE 5230

PLSC 5460(3 credits) Instructor Consent Required
Political Science

Department Head: Professor Mark A. Boyer

Professors: Clifford, Farnen, Hanson, Hiskes, Lewis, Reiter, and Zirakzadeh

Associate Professors: Best, Dudas, Hertel, Hettiger, Kelly, Ladewig, Kingston, Lefebvre, Morell, Presman, Scruggs, Simien, Sterling-Folker, Waddell, and Yaoof

Assistant Professors: Balyuleen, Cole, Dyson, Morrell, Moscardelli, Nunnally, Richards, Singer, Turcotte, Venator Santiago, and Zheng

The Department of Political Science offers study leading to the degrees of Master of Arts and Doctor of Philosophy. Master’s degree students usually take a less specialized program, including work in several areas of political science.

Admission to the Master of Arts Degree Program.

All applicants are required to take the Graduate Record Examinations. Only those applicants showing high scholastic promise are admitted. Usually, an undergraduate major in political science (or an equivalent body of course work) is required for admission. However, exceptions are made for promising candidates who have majored in related subjects. Some undergraduate work in history, economics, and sociology also is desirable. Except where the M.A. degree clearly is intended to be a terminal degree, the admissions committee is reluctant to act favorably in the case of an applicant whose record shows no successful academic exposure to one or more foreign languages.

Requirements for the Master’s Degree.

After fulfilling the requirements for the master’s degree, a final examination is administered. The final examination for the M.A. degree is both written and oral.

Admission to the Ph.D. Degree Program.

Students pursuing the M.A. in Political Science who wish to continue for the Ph.D. degree are admitted to the doctoral program only upon recommendation of the committee administering the M.A. final examination. Those who have earned the M.A. degree elsewhere are admitted to pursue doctoral work here only with very convincing professional recommendations and demonstrated evidence of scholarly ability. Such applicants also must submit the results of the Graduate Record Examinations.

Departmental Requirements for the Ph.D. Degree.

The Ph.D. program involves two distinct stages. Doctoral students first prepare for a comprehensive written and oral general examination. After passing this examination, they devote themselves to research and the writing of a dissertation. All doctoral students must prepare in two of the following areas: international relations, comparative politics, American politics, and political theory. As part of the Ph.D. general examination process, the student is expected to present a dissertation proposal that is considered by the advisory committee to be ready to defend.

All doctoral students are required to take, as early in their program as possible, Political Science 5600, Political Science 5605, and Political Science 5610.

Ph.D. students are required to have a competent reading knowledge of at least one foreign language appropriate to the general area of study or, upon recommendation of the advisory committee, at least six credits of advanced work in a related area or a supporting area such as statistics. However, an advisory committee may require additional advanced work in a related or supporting area, alone or in conjunction with a foreign language.

Special Facilities.

Students interested in comparative politics will find the Center for Latin American Studies and the Center for Slavic and East European Studies valuable resources. A vast archive of survey data from polls taken both in the United States and abroad is housed at the Roper Center, which is part of the Institute for Social Inquiry. Excellent computer facilities together with expert technical help from the Institute’s staff provide ready access to these survey materials.

Courses of Study

POLS 5000 (1-6 credits) Instructor Consent Required

Components: Independent Study

POLS 5010 (1-3 credits) Investigation of Special Topics in Political Science

Components: Seminar

POLS 5100 (3 credits) Proseminar in Political Theory

Historical survey and analysis of fundamental concepts in political theory.

Components: Seminar

POLS 5105 (3 credits) Political Theory

Historical and conceptual analysis of selected political ideas such as justice, liberty, rights, political obligation, or the state; including an examination of one or more major schools or bodies of political thought from ancient to contemporary times.

Components: Seminar

POLS 5110 (3 credits) Seminar in American Thought and Ideology

Components: Seminar

POLS 5200 (3 credits) Proseminar in Comparative Government

Political institutions and processes compared. Derivation of generalizations.

Components: Seminar

POLS 5205 (3 credits) West European Politics

Contending approaches to the political systems of West European nations. Comparative analysis of industrialization, institutional structure, and political economy.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Components</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 5210</td>
<td>(3 credits) Seminar in Latin American Politics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5215</td>
<td>(3 credits) Comparative Political Development</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5220</td>
<td>(3 credits) Seminar in African Politics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5225</td>
<td>(3 credits) East European Politics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5230</td>
<td>(3 credits) Development Administration</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5235</td>
<td>(3 credits) Comparative Democratization</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5240</td>
<td>(3 credits) Research Seminars in Comparative Politics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5300</td>
<td>(3 credits) Proseminar in International Relations</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5305</td>
<td>(3 credits) Foreign Policy Analysis</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5315</td>
<td>(3 credits) International Security</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5320</td>
<td>(3 credits) International Conflict and Cooperation</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5325</td>
<td>(3 credits) International Political Economy</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5330</td>
<td>(3 credits) International Organization and Law</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5335</td>
<td>(3 credits) U.S. Foreign Policy in the Middle East</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5340</td>
<td>(3 credits) Politics and Security in the Middle East</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5345</td>
<td>(3 credits) Foreign Policies of the Russian Federation and the Former USSR</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5390</td>
<td>(3 credits) Instructor Consent Required Economic Rights</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5400</td>
<td>(3 credits) Proseminar in American Politics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5405</td>
<td>(3 credits) National Decision-Making Process: Presidency and Congress</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5406</td>
<td>(3 credits) Seminar in the American Political System</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5407</td>
<td>(3 credits) Special Topics in American Political Institutions and Policy</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5408</td>
<td>(3 credits) Special Topics in American Political Behavior</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5409</td>
<td>(3 credits) Special Topics in American Race, Gender and Ethnic Politics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5410</td>
<td>(3 credits) Black Feminist Theory and Politics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5415</td>
<td>(3 credits) Administrative Ethics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5420</td>
<td>(3 credits) Public Opinion and American Democracy</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Components: Seminar</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>POLS 5425</td>
<td>American Political Parties</td>
<td>Seminar</td>
<td>The development, organization, and role of political parties in the United States, with implications for public policy.</td>
</tr>
<tr>
<td>POLS 5430</td>
<td>Politics, Society, and Educational Policy</td>
<td>Seminar</td>
<td>The analysis of the interactions among educational policy, politics and other social forces. In-sights and concerns from politics and other social sciences disciplines will be applied to different levels and types of schooling.</td>
</tr>
<tr>
<td>POLS 5435</td>
<td>Proseminar in Public Policy</td>
<td>Seminar</td>
<td>Major works in U.S. public policy, with comparative illustrations of general principles.</td>
</tr>
<tr>
<td>POLS 5440</td>
<td>Proseminar in Public Administration</td>
<td>Seminar</td>
<td>Theory and structure of administration and the public service.</td>
</tr>
<tr>
<td>POLS 5445</td>
<td>Public Budgeting</td>
<td>Seminar</td>
<td>An examination of the development and structure of the public financial sectors; the principles and roles of operating and capital budgets in public organizations; and introduction to the relationships between funding mechanisms and public policy.</td>
</tr>
<tr>
<td>POLS 5450</td>
<td>Politics of Organization and Bureaucracy</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5455</td>
<td>Public Opinion and Public Policy</td>
<td>Seminar</td>
<td>Theoretical and empirical study of public opinion and its role in policy formation.</td>
</tr>
<tr>
<td>POLS 5460</td>
<td>Social Policy</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5505</td>
<td>Seminar in Public Law</td>
<td>Seminar</td>
<td>Selected topics in public law, the administration of justice, and jurisprudence.</td>
</tr>
<tr>
<td>POLS 5510</td>
<td>Judicial Decision-Making</td>
<td>Seminar</td>
<td>The judicial decision-making process in terms of methods and models developed in the framework of the behavioral sciences.</td>
</tr>
<tr>
<td>POLS 5515</td>
<td>Constitutional Interpretation</td>
<td>Seminar</td>
<td>An exploration of the theories and process of constitutional interpretation in the United States, with an emphasis on the role the Supreme Court plays in defending and enforcing civil liberties.</td>
</tr>
<tr>
<td>POLS 5600</td>
<td>Nature of Political Inquiry</td>
<td>Seminar</td>
<td>The scope of political science, modes of inquiry, the role of concepts and theory. Graduate students are urged to take the course in their first semester.</td>
</tr>
<tr>
<td>POLS 5605</td>
<td>Seminar in Quantitative Methods of Political Science</td>
<td>Seminar</td>
<td>Seminar in Quantitative Methods of Political Science. Introduction to the data analysis techniques most often used by political scientists. Requires no previous background in statistics.</td>
</tr>
<tr>
<td>POLS 5610</td>
<td>Research Design in Political Science</td>
<td>Seminar</td>
<td>Introduction to quantitative and non-quantitative empirical research design in political science.</td>
</tr>
<tr>
<td>POLS 5610</td>
<td>Research Seminar in Political Theory</td>
<td>Seminar</td>
<td>Investigation of special topics in political theory, with emphasis on the preparation and completion of original research projects.</td>
</tr>
<tr>
<td>POLS 5640</td>
<td>Research Seminars in American Politics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5660</td>
<td>Research Seminar in Quantitative Methods</td>
<td>Seminar</td>
<td>Research in quantitative applications to political data.</td>
</tr>
<tr>
<td>POLS 5930</td>
<td>Full-Time Directed Studies (Master's Level)</td>
<td>Seminar</td>
<td>Requirement Group: Prerequisite: POLS 5395 (RGS09).</td>
</tr>
<tr>
<td>POLS 5950</td>
<td>Master's Thesis Research</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5960</td>
<td>Full-Time Master's Research</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 5998</td>
<td>Special Readings (Master's)</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 6100</td>
<td>Research in Public Law</td>
<td>Seminar</td>
<td>Investigation of special topics in political theory, with emphasis on the preparation and completion of original research projects.</td>
</tr>
<tr>
<td>POLS 6400</td>
<td>Research Seminars in American Politics</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 6610</td>
<td>Research Seminar in Quantitative Methods</td>
<td>Seminar</td>
<td>Research in quantitative applications to political data.</td>
</tr>
<tr>
<td>POLS 6930</td>
<td>Full-Time Directed Studies (Doctoral Level)</td>
<td>Seminar</td>
<td>Requirement Group: Prerequisite: POLS 5395 (RGS09).</td>
</tr>
<tr>
<td>POLS 6950</td>
<td>Doctoral Dissertation Research</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 6960</td>
<td>Full-Time Doctoral Research</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 698</td>
<td>Special Readings (Doctoral)</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>POLS 699</td>
<td>Dissertation Preparation</td>
<td>Seminar</td>
<td></td>
</tr>
</tbody>
</table>
polymer science

Program Director: Associate Professor Gregory A. Sotzing
Professors: Papadimitrakopoulos, Shaw, Sung, and Weiss
Research Professor: Scola
Associate Professors: Adamson, Asandei, Burkhard, Dobrynin, Parnas, Seery, and Sotzing
Assistant Professors: Kasi and Lin

Work leading to the degree of Master of Science

The Institute also operates a state-of-the-art materials simulation laboratory with a parallel cluster based on more than 24 PCs of the latest architecture. Students also have access to the main University computer system, as well as dozens of PCs, Macs, and Unix work stations.

COURSES OF STUDY

Course offerings are shown below. These are co-sponsored by departments in the sciences and engineering. Special Topics (Chemistry 5394) is offered each semester. The subject of these courses varies widely and depends on student and faculty interest and availability. In addition, the program sponsors weekly seminars of outstanding speakers representing various study areas in polymer science and engineering. Topics offered have included Liquid Crystals, Inorganic Polymers, Nanomaterials, Biopolymers, Polymers for Energy Storage and Generation, and Lifetime Prediction of Materials.

Chemical Engineering

5351. Polymer Physics
5352. Polymer Properties
5355. Polymer Structure and Morphology
5356. Adhesion
5358. Composite Materials
5367. Polymer Rheology
5368. Polymer Rheology and Processing Laboratory

Chemistry

5380. Polymer Synthesis
5381. Polymer Physical Chemistry
5382. Polymer Characterization I
5384. Polymer Characterization II
5385. Reactions of Polymers
5394. Investigation of Special Topics

- Inorganic Polymers
- Polymer Biomaterials
- Polymer Photonics
- Polymer Spectroscopy
- Conducting Polymers

Molecular and Cell Biology

5013. Structure and Function of Biological Macromolecules
5015. X-ray Structure Analysis

Physics

6244. The Electrical Properties of Polymers

professional studies

Director: Dr. Susan W. Nesbitt
Program Head: Associate Professor Peter Diplock
Associate Professor: Sullivan
Assistant Professor: Allen

The Master of Professional Studies (M.P.S.) is a flexible, convenient online degree program. This unique graduate study opportunity is available to students from anywhere in the world and at a time that fits into each student’s schedule. Working adults can complete all degree requirements within two years although the typical time to complete the program is three years.

The M.P.S. degree program is specifically designed for individuals and practitioners with established career paths who are interested in developing marketable skills to meet evolving workforce demands, in seeking professional development, and in expanded promotional opportunities.

The degree program provides skills and knowledge for immediate application in the following fields of study:

Homeland Security Leadership (HSL).

The Homeland Security Leadership field of study prepares graduates to provide strategic leadership in the field of homeland security. Emphasis is on understanding the complexities of homeland security in terms of policy, strategy, resources capabilities, and leadership. This degree prepares graduates to work in field operative and administrative homeland security positions in law enforcement, fire service, emergency management, corporate security, transportation security, and public health preparedness.

The Master of Professional Studies with a field of study in Homeland Security Leadership is a cohort-based program and is open only to U.S. citizens. At the present time, the courses are only open to students who are matriculated in the Homeland Security field of study. This program has a residency requirement.

Human Resource Management (HRM).

The Human Resource Management field of study is designed for beginning and mid-career HR professionals or those interested in making a transition to the field. Graduates will be qualified to assume professional labor or management related HRM positions in both the private and public sector. This program has a residency requirement.

Human Services Administration (HSA).

The Humanitarian Services Administration field of study prepares graduates to work in organizations involved in humanitarian response and development initiatives. Graduates will be qualified to work in disaster relief and sustainability areas. This program has a residency requirement.
Occupational Safety and Health Management (OSH M).

The Occupational Safety and Health Management field of study prepares graduates to work in and manage safety and health departments within a variety of industries. Graduates will be qualified to direct the day-to-day operations of the safety and health initiatives of their employers. This program has a residency requirement. New students are not being admitted at this time.

COURSES OF STUDY

GRADUATE PROGRAM IN PROFESSIONAL STUDIES COURSES

GPPS 5300. Independent Study (GPPS 300) 1 - 3 credits. Independent Study.
 Independent study in a topic related to the graduate program in Professional Studies as designed and approved by the instructor assigned to oversee and grade the project.

GPPS 5301. Special Topics in Professional Studies (GPPS 301) 1 - 3 credits. Lecture. With a change of content, this course may be taken for credit twice. The instructor assigned will designate the special topic(s) related to the graduate program in Professional Studies and oversee and grade students' work in the course.

GPPS 5325. Issues in Economic Development (GPPS 325) 3 credits. Lecture.
 This course concerns economic, social, and demographic change in those countries comprising the less wealthy regions of the South. It examines development from linear (neoclassical), structuralist (political economy), and other perspectives, and emphasizes relationships between "advanced" and "developing" countries within the context of the global economy. In addition to theoretical grounding, the course provides practice in preparing development profiles of individual countries.

GPPS 5347. Program Evaluation (GPPS 347) 3 credits. Lecture.
 This course is intended to provide students with skills required to apply the methods of science to the assessment of social programs. Here a social program refers to organized, goal-directed activities designed to address a social problem. The goal of this course is to provide you, the student, with enough skill that you are able to design and implement evaluations of programs. The extent to which you are able to do this without assistance reflects largely your familiarity with scientific methods. Some of the more technical forms of impact studies may require additional study, or assistance from consultants.

GPPS 5352. Systemic Analysis (GPPS 352) 3 credits. Lecture.
 Provides students with a foundational understanding of the complex and dynamic relations between issues and the systems that cause them. Systemic analysis trains students to understand in the operational dynamics of the social and structural dimensions of a society or group.

GPPS 5357. Quantitative Analysis (GPPS 357) 3 credits. Lecture.
 This course is designed to help students develop skills necessary to understand and utilize research based on quantitative methods while building fundamental skills in quantitative analysis. The course will include basic univariate statistics, bivariate statistics and basic multivariate statistics including basic analysis of variance and basic multiple regression analysis. This course stresses the use of Microsoft Excel for performing statistical analysis.

GPPS 5361. Strategic Staffing and Talent Management (GPPS 361) 3 credits. Lecture.
 This course presents the theoretical frameworks and practical tactics for the acquisition, deployment, and retention of the talent necessary to achieve the strategic and tactical objectives of the business. Topics will include strategic staffing, human resource planning, recruitment, assessment, selection decision-making strategies, succession planning and retention strategies. The importance of linking staffing and talent management to business strategies, objectives, and competitive challenges will be emphasized.

GPPS 5389. M.P.S. Internship (GPPS 389) 3 credits. Field Studies. Prerequisite: Open only to students enrolled in the Master of Professional Studies degree program.
 The internship will provide professional experience in the student's field of study in a private or public organization. Students will select the organization and specific internship position with the approval of the major advisor. Students will be expected to perform professional duties for a minimum of 160 hours during the semester. Prior to the beginning of the internship, student will develop a set of professional objectives for the internship experience. Students will maintain a log of experiences and activities during the internship. At the conclusion of the internship, students will write a paper evaluating the experience gained in light of the stated objectives.

 The Master of Professional Studies (M.P.S.) program requires students to complete a professional residency. The residency is a milestone towards the completion of the M.P.S. degree. Consistent with the criteria for the MPS Capstone Project, each residency will be subject to the approval of the student's advisory committee. Appropriate residencies are those designed to: (a) provide students with an opportunity to develop a sense of affiliation and identification with the program and the university; (b) provide students with an opportunity for scholarly dialogue related to their capstone project; or (c) provide students with an opportunity for professional socialization by developing relationships with peers, faculty, and practitioners in the field. Examples of appropriate residencies include but are not limited to sessions at the Storrs campus, attendance and participation in approved regional, national, and international professional conferences.

GPPS 5397. M.P.S. Capstone Project (GPPS 397) 3-6 credits. Independent Study.
 Towards the end of the M.P.S. program, students will select, with faculty approval, a topic for a major project that demonstrates the student's ability to define, analyze, synthesize, evaluate, and recommend actions or solutions to deal with a major issue, problem, or opportunity within the field of study. Capstone Projects may include job-related field projects, integrative analyses of professional literature, and comprehensive project proposals for adoption by third parties. In all cases, the Capstone Project is intended to demonstrate an extensive understanding of the topic area selected, the ability to develop and integrate and systemic analysis of a problem, and the ability to identify appropriate solutions and recommendations. A written report documenting all aspects of the project will be presented for faculty approval.

HOMELAND SECURITY LEADERSHIP COURSES

HSL 5310 (3 credits) Instructor Consent Required Introduction to Homeland Security
 Provides an understanding of the operational and organizational dynamics of terrorism. By the end of the course, students should be able to design effective measures for countering and responding to terrorism.
 Components: Lecture

HSL 5311 (3 credits) Instructor Consent Required Terrorism, Asymmetrical Conflict and Homeland Security
 This course will provide learners with an intellectual framework for engaging in ongoing self-directed learning within the Homeland Security domain. By the end of the course, students should be able to design effective measures for countering and responding to terrorism based on an understanding of the organizational dynamics of terrorism.
 Components: Lecture

HSL 5312 (3 credits) Intelligence for Homeland Security: Organizational and Policy Challenges
 This course will examine contemporaneous issues facing the intelligence community and its role in homeland security. The emphasis will be on critical thinking of issues related to policy development, implementation, and intelligence support to senior decision makers in the homeland security community. By the end of this course, students will have had the opportunity to address policy, organizational, and substantive issues pertaining to homeland security and intelligence; interact with each other, and author well researched papers.
 Components: Lecture

HSL 5313 (3 credits)
Critical Infrastructure Protection in Homeland Security
This course develops a network theory of vulnerability analysis and risk assessment called “model-based vulnerability analysis” that is used to extract the critical nodes from each sector, model the nodes’ vulnerabilities by representing them in the form of a fault-tree, and then applying fault and financial risk reduction techniques to derive the optimal strategy for protection of each sector. At the completion of this course, students will be able to apply the model-based vulnerability technique to any critical infrastructure within their multi-jurisdictional region.
Components: Lecture

HSL 5315 (3 credits)
Contemporary Issues in Homeland Security Leadership
This course is designed to support the overarching goals of the Homeland Security Leadership program by providing an intellectual framework for engaging in ongoing self-directed learning within the Homeland Security domain; developing a cadre of leaders across the Homeland Security continuum who share substantive skills in analysis, interpretation, policy development, and administration of approved policy; and to complement other more operationally oriented training programs.
Components: Lecture

HUMAN RESOURCE MANAGEMENT COURSES

HSMG 5240 (3 credit)
Health Care Organization and Management
This course examines the nation’s healthcare delivery system with overviews provided for each major sector of the health economy. The basic tools of economics and finance are employed to gain critical insights into the structure, conduct, and performance of each of these sectors. This course is designed to accommodate both health care professionals and individuals from other business areas interested in learning more about the health care industry.
Components: Lecture
Requirement Group: Open to MBA students, others with permission (RG2090).

HSMG 5243 (3 credit)
Health Care Economics
This course demonstrates how various economic theories can be used to think about health care issues and takes a macro or industry perspective of various health care problems and policy questions. Students are provided with a set of economic tools to evaluate a theoretical or empirical argument relating to health or medical care. The course culminates with an in-depth analysis of the structure, conduct, and performance of the markets for medical insurance, physician services, hospital services, pharmaceutical products, and long-term care. Health care reform is also discussed.
Components: Lecture
Requirement Group: Prerequisites: FNCE 5101 and HSMG 5240 (RG201).

HSMG 5544 (3 credit)
Competitive Strategies for Health Care Organizations
This course focuses on the microeconomic organization of healthcare business units and analyzes various issues central to the individual firm’s short-term and long-term competitive success. Competitive strategies pertaining to various types of healthcare organizations such as physician practices, hospitals, health maintenance organizations, and pharmaceutical companies are explored using a wide variety of business tools and methods. Efficient market theory, industry analysis, the boundaries of the firm, principal and agent problems, incentive mechanisms, mergers and acquisitions, the development and sustainability of competitive advantage, and competitive pricing are some of the general topics discussed in the context of the health care sector.
Components: Lecture
Requirement Group: Prerequisite: HSMG 5243 or consent of the instructor (RG3373).

HSMG 5545 (3 credit)
Management of Long-Term Health Care Organizations
This course examines administrative processes within the long-term health care facility including issues related to organizational effectiveness, financial management, the regulatory structure, operational procedures, policies and practices.
Components: Lecture
Requirement Group: Prerequisite: HSMG 5240 (RG801).

HSMG 5548 (3 credit)
Health Care Law and Policy
This course examines legal, regulatory and ethical considerations in health care management, and the formation of public policy in the health care setting. Emphasis is on understanding legal principles and issues including administrative and regulatory law, institutional and individual liability in the health care sector; employment law; and torts. Special attention is paid to ethics in health care management and its interrelation to law and public policy. May be substituted for BLAW 375.
Components: Lecture
Requirement Group: Open to MBA students, others with permission (RG2090).

HSMG 5549 (3 Credit)
Instructor Consent Required Management of Long-Term Health Care Organizations
This course examines administrative processes within the long-term health care facility including issues related to organizational effectiveness, financial management, the regulatory structure, operational procedures, policies and practices.
Components: Lecture
Requirement Group: Not open to M.B.A. degree students (RG30).

HSMG 5632 (1-9 credit)
Instructor Consent Required Internship in Health Care Management
Under the guidance of a qualified preceptor, the student participates in the administrative process in the long-term health care organizational structure. A project is required.
Components: Practicum

HSMG 5546 (3 credit)
Decision Analysis in Health Care
This course covers methods used by health care managers in making strategic and operating decisions, including but are not limited to: sales forecasting, product valuation, and cost-effectiveness and cost/benefit analyses. Example of potential applications include estimating the value of new drugs under development, the payoff profile from strategic alliances and limited partnerships in different health care industries, the valuation of healthcare mergers and acquisitions, the profitability of different HMO benefit plans, and other ventures pertaining to healthcare organizations.
Components: Lecture
Requirement Group: Prerequisite: FNCE 301 and HSMG 383 or consent of the instructor (RG3372).

HSMG 5696 (3 credit)
Health Insurance and Risk Management
This course examines health insurance choices from the perspective of individuals, employers, and insurers. A portfolio perspective for individuals’ choices is taken. Other topics include: health insurance loss and contingency distributions; health insurance loss reserving; pricing (rate-setting) for health insurance products; LTC insurance; health insurer risk management; health reinsurance structures; health insurance derivatives.
Components: Lecture
Requirement Group: Prerequisites: FNCE 5101 and FNCE 5151 (RG802).

Human Resource Management Courses

HSMG 5491 (1-3 credit) Instructor Consent Required Health Care Internship
Under the guidance of a qualified preceptor, students are provided opportunities to study and analyze an organization’s characteristics, functions, goals, strategies, and decision-making processes. Managerial skill is developed through the performance of administrative tasks and through participation in problem-solving processes. A research paper is required.
Components: Practicum

HSMG 5894 (1-3 credit) Seminar
Investigation and discussion of special topics in health care management.
Components: Seminar
Requirement Group: Open to MBA students, others with permission (RG2090).

HSMG 5895 (1-6 credit) Instructor Consent Required Special Topics in Health Care Management
Faculty-student interaction on a one-to-one basis involving independent study of specific areas of health care management. Emphasis, selected by the student, may be on theoretical or applied aspects. A written report is required.
Components: Independent Study
HSA 5303(3 credits) Principles of Sustainability
This course will provide students with an understanding of the basic principles of environmental, social, and economic sustainability and will assist students to develop the ability to apply these principles to current issues of sustainability.
Components: Lecture

HSA 5312(3 credits) Instructor Consent Required
Issues in Humanitarian Studies
This seminar offers an opportunity for students to examine current issues of Global Human Development from the perspective of non-governmental organizations (NGOs), private voluntary organizations, international organizations (IOs), multi-governmental aid and humanitarian assistance agencies, the U.S. military and government sponsored aid organizations. Students will gain a comprehensive, multidisciplinary understanding of issues facing these organizations and stresses that are currently forcing many to reevaluate their current policies and procedures.
Components: Seminar

HSA 5322(3 credits) Instructor Consent Required
Applied Organizational Management
This course will help students to develop management and leadership skills for working within an organization by understanding and analyzing some rational management techniques, concepts of organization and supervisory skills that are useful for effective organizations.
Components: Lecture
Requirement Group: BGS students only.

HSA 5323(3 credits) Community Development for Local Capacity Building
This course provides the student with the essentials of community development and the skills of local capacity building. Local capacity building skills are needed by Humanitarian workers in order to foster sustainable community development.
Components: Lecture

HSA 5324(3 credits) Gender and International Development
This course provides the student with essential understanding of the factors that shape the social, political and economic roles of women in developing countries. The course will include considerations of specific projects aimed at integrating women into community development and the costs and benefits of various development alternatives as perceived by outside agencies and by the women themselves.
Components: Lecture

HSA 5325(3 credits) Advocacy and Grassroots Development
This course addresses the importance of advocacy in the sustainable development process. Students will be introduced to the concept of advocacy, its role and functions in a sustainable development and empowerment. Students will be given the opportunity to explore ways and means to develop effective advocacy programs.
Components: Lecture

HSA 5332(3 credits) Program Director Consent Req'd
International Human Rights
The course will address the evolution of international human rights and of the legal instruments designed for their promotion and protection. It will study the theoretical foundations of the idea of human rights in various civilizations and cultures, evaluate its legacy within the western and non-western traditions, and examine its meaning and relevance in the contemporary world.
Components: Lecture

HSA 5377(3 credits) Environmental Compliance & Regulations
Compliance and knowledge of a whole new generation of environmental regulations is required of all managers. This course begins with general compliance obligations, common law, trespass, nuisance and negligence. The major Federal environmental laws affecting companies and agencies are reviewed along with even more stringent State and local regulations. Also presented is a view of the severe civil and criminal penalties liabilities attached to environmental regulations, and a discussion of the sharply increasing punishments for non-compliance. The final section of the course will outline strategies for compliance with specific comments on proactive environmental management as a method for reducing legal exposure from environmental issues. It is required of managers. It empowers private citizens.
FM-8/13/02
Components: Lecture

ISKM 5300. Independent Study
(ISKM 300) 1 - 3 credits. Independent Study.
Independent study in a topic related to the Information Science and Knowledge Management certificate program as designated and approved by the instructor assigned to oversee and grade the project.

ISKM 5301. Special Topics
(ISKM 301) 1 - 3 credits. Lecture.
The instructor assigned will designate the special topic(s) related to the Information Science and Knowledge Management certificate and oversee and grade the students’ work in the course.

OSH 5300(1 - 3 credits) Instructor Consent Required
Independent Study
Independent study in a topic related to the Occupational Safety and Health Certificate program as designated and approved by the instructor assigned to oversee and grade the project.
Components: Independent Study
OSH 5301 (1-3 credits) Instructor Consent Required
Special Topics in Occupational Safety and Health
The instructor assigned will designate the special topics related to the Occupational Safety and Health Certificate program and oversee and grade students' work in the course.
Components: Lecture

OSH 5321 (3 credits)
Seminar in Occupational Safety and Health Management
This course is an in-depth study of the impact of issues such as the changing demographics, and globalization of regulations, on promoting prevention of injuries and illness to workers, and protection of property and the environment in the workplace. This course is taught as a series of active seminars requiring students to research, write, and discuss papers.
Components: Seminar

OSH 5322 (3 credits)
Industrial Pollution Management
This course provides students with management and applied techniques to prevent and control pollution from industrial activities. It includes legal aspects of pollution prevention and control, setting up pollution prevention programs, performing pollution prevention assessments, performing economic evaluations and management principles in controlling industrial pollution.
Components: Lecture

OSH 5325 (3 credits)
Systems Safety Analysis
This course will acquaint students with empirical methods and techniques for proactively identifying, assessing, and eliminating or controlling safety-related hazards to acceptable levels.
Components: Lecture

OSH 5326 (3 credits)
Managing Environmental Systems
This course will provide guidance and detailed information on developing environmental management systems with special reference to ISO 14001; measuring corporate needs, advantages and disadvantages; liability issues; and internal and external auditing.
Components: Lecture

OSH 5376 (3 credits)
Occupational Safety and Health
This is a graduate course that provides the student with the rationale for providing an occupationally safe and healthy work environment for employees. These skills are needed to be able to work effectively in the area of human resources and employee development as well as industrial relations since workers have been provided by law with specific safety and health rights.
Components: Lecture

OSH 5378 (3 credits)
Advanced Industrial Hygiene
This is a graduate-level course in the field of industrial hygiene. It is directed at protecting workers' health through the recognition, evaluation and control of hazards in the work environment.
Components: Lecture

OSH 5380 (3 credits)
Loss Control Methods
This course offers a detailed study of loss control research methods and application techniques with emphasis on the control of hazards using safety engineering methods in a variety of industrial settings.
Components: Lecture

OSH 5381 (3 credits)
Advanced Loss Control and Management Theory
This course provides students with opportunities to apply management and loss control techniques to analyze and address occupational safety and health issues. Topics in this course include: epidemiology concepts in analyzing occupational safety and health injuries and illnesses; hazard analysis; prevention and control of hazards; tools of accident prevention; safety and health training; motivating safety and health; and communicating safety.
Components: Lecture
Requirement Group: Prerequisite: OSH 5380 (RG3875)

OSH 5382 (3 credits)
Analysis of Occupational Safety and Health Law and Regulations
This course provides the substance for understanding the Occupational Safety and Health laws and regulations, the regulatory process; and the research data and analyses required to promulgate or revise a law or regulations.
Components: Lecture

All Sections

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(439) 3 credits.

†GRAD 5950. Master’s Thesis Research
(439) 1-9 credits.

†GRAD 5960. Full-Time Master’s Research
(439) 3 credits.

GRAD 5971. Special Readings (Master’s)
(439) 3 credits.

GRAD 5999. Thesis Preparation
(439) Non-credit.

Behavioral Neuroscience.

This area of concentration offers study that focuses on the biological basis of behavior, through research participation, seminars, and formal course work. Research programs make use of a variety of approaches—of neurophysiology, neurochemistry, neuroanatomy, neuroenocrinology, genetics, ethology, and behavioral analysis—to study problems in sensation, perception, emotion, motivation, learning, motor activity, aggression, sex differences, reproductive behavior, communication, brain lateralization, and the organization of sensory cortex.

Clinical Psychology.

The clinical program is designed to produce psychologists able to work on a scientific and professional level, with special competence in research, diagnosis, and therapy. At least one year of internship at an approved facility is required. The program has APA accreditation. The program emphasizes both child/family and adult interventions and also provides a neuropsychology area of emphasis.

Developmental Psychology.

Training in the conduct of research and the in theoretical treatments of processes of change over time.
Emphasis is on breadth of training in developmental content areas, including developmental cognitive neurosciences, early social development, language acquisition and quantitative methods for developmental psychology.

Perception/Action/Cognition.

Two areas of specialized study are offered: (1) the ecological approach to perception and action, and (2) language and cognition. Facilities exist for research and training on many topics, including: the perceptual control of action, coordinated movement, psycholinguistics, speech perception and production, neurobiological and psychophysical studies, and the philosophical and theoretical foundations of perception, action, and cognition. Emphasis in psycholinguistics is provided in cooperation with the Department of Linguistics.

Industrial/Organizational Psychology.

This area of concentration is concerned with the application of psychological methods and principles to understanding human behavior in work settings. Students can choose to emphasize personnel psychology, organizational psychology, occupational health psychology, or human factors/ergonomics in their research and course work. All students take the same core courses in the first year of study, and all students are required to be actively engaged in research during their entire course of study. An approved one-year field research experience is required.

Neurosciences.

This is an interdisciplinary area of concentration. Neuroscience is concerned with the structural and functional characteristics of the nervous system and its relation to the adaptive physiology and behavior of the organism. Students in this program may approach the full range of neuroscience studies through courses and research at the cellular, systemic, and organismic levels. A particular strength of the area is the analysis of behavior, its development, and its neurological bases. This area of concentration is offered in the fields of study of biobehavioral science, pharmaceutical science, physiology, and psychology. Application is made to the preferred field of study, but the applicant must be acceptable to the Neurosciences Committee.

Social Psychology.

This division provides excellent training in both laboratory and field research methods and statistics and broad coverage of the major theoretical paradigms of social psychology. Curriculum requires exposure to three levels of analysis: the social person (including identity, social cognition, attitudes, emotions), the person and others (including groups, close relationships, and organizations), and the social context (including intergroup relations, gender, and health). Research areas include dyadic relations (e.g., close relationships, person perception, gender), social inequality (including stigma, stereotyping and discrimination, prejudice), and health psychology (including risk assessment, information, motivation skills, intervention research).

Admission Requirements.

Well qualified candidates are encouraged to apply for the Ph.D. degree. Requirements for admission include basic courses in statistics, general psychology, and any of several sub-areas within psychology. Applicants must present scores on the three parts of the general Graduate Record Examination.

The application for admission and financial support may be obtained on the Graduate School Web site at: <http://www.grad.uconn.edu/apply.html>. There is only one application form for both admission and financial aid consideration. There is not a separate application form for Psychology, however the Psychology Department requires application materials in addition to the materials required by the Graduate School. The Psychology Department admissions requirements and procedures may be found on the Web at: http://web.uconn.edu/psychology/academics/graduate/graduate_program.html.

The application deadline for Clinical Psychology is December 1. The application deadline for Social Psychology and Industrial/Organizational Psychology is December 15. The deadline for all other Psychology graduate programs is January 1. For questions regarding graduate programs, please send an email to psychgrad@uconn.edu or call 860-486-2057.

Facilities.

Research facilities including multiple research laboratories for conducting research in the various sub-areas of psychology, five computer-based laboratories for data collection, and programming and on-line research capabilities, and several experimental rooms dedicated to empirical research data collection. In addition, research capabilities exist in multiple laboratories at affiliated research institutions such as Haskins Laboratories (New Haven), the Institute of Living (Hartford), and the University of Connecticut Health Center (Farmington).

Also a wide variety of approved locations are available for clerkship, practicum and intern training in clinical and industrial psychology, and for work experience for advanced students in other sub-disciplines. These resources include several national corporations, VA hospitals, community clinics, and trauma centers. Opportunities for work with developmentally disabled individuals living in the community also exist.

COURSES OF STUDY

PSYC 5100(3 credits)
History of Psychology
Intellectual antecedents to contemporary clinical, developmental, experimental, and social psychology.

Components: Lecture
Requirement Group: Open to Psychology graduate students, others with permission (RG786).

PSYC 5101(3 credits) Instructor Consent Required
Motivation
Theories of motivation considered in relation to their supporting data. Also offered as COMM 340.

Components: Lecture
Course Equivalents: COMM 5101

PSYC 5102(3 credits)
Psychology of Women and Gender
A survey of research and theory on the interpretation of sex differences, gender, status, and power, and women's life span development.

Components: Lecture
Course Equivalents: WS 5344

PSYC 5120(3 credits) Instructor Consent Required
Health Psychology
Interaction of biological, psychological, and social factors in health. Topics include disease prevention and health promotion, psychosocial factors in treatment of illness, and stress and coping processes.

Components: Lecture

PSYC 5121(3 credits) Instructor Consent Required
Research Methods in Health Psychology
Research designs, methods, and data analysis strategies used in health promotion and disease prevention research (e.g., case control studies, randomized clinical trials).

Components: Lecture
Requirement Group: Prerequisites: STAT 3115Q (242) and STAT 5105 (379) or equivalent statistics course (RG 3725)

PSYC 5122(3 credits) Instructor Consent Required
Clinical Health Psychology
Examines the interaction of biological, psychological, and social factors in health and the application of psychological interventions for physical illness, psychological problems secondary to physical illness, and health promotion.

Components: Seminar

PSYC 5123(3 credits) Instructor Consent Required
Occupational Health Psychology
Introduction to research in occupational health and the field of occupational health psychology in a seminar format. Topics include work stress, worker participation in hazard management, epidemiology of occupational exposures, workplace incivility, and design of safe work environments.

Components: Seminar
Requirement Group: Prerequisite: STAT 5105 or NURS 5020 or PUBH 5434 (RG3496).

PSYC 5130(3 credits)
Causal Modeling in Psychology
The analysis of data to test causal theories, the use of factor analysis to test models of measurement, and the comparison of alternative models is discussed.

Components: Lecture
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Components</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 5131</td>
<td>Instructor Consent Required Meta Analysis: Theory and Practice</td>
<td>Lecture</td>
<td>STAT 5105 (RG518)</td>
</tr>
<tr>
<td>PSYC 5140</td>
<td>Foundations in Neuropsychology</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>PSYC 5370</td>
<td>Instructor Consent Required
Current Topics in Clinical Psychology
Components: Seminar
Requirement Group: Open to students in Clinical Psychology (RG2160).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5399</td>
<td>Instructor Consent Required
Clinical Psychology Research Group.
Discussion of ongoing research of faculty and graduate students
Components: Seminar
Requirement Group: Open only to graduate students in Clinical Psychology (RG 4358).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PSYC 5400</td>
<td>Instructor Consent Required
Research Seminar in Developmental Psychology
Current research in developmental psychology, with intra- and extramural speakers and directed readings.
Components: Seminar
Requirement Group: Open only to graduate students in Psychology (RG 4359).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PSYC 5410</td>
<td>Instructor Consent Required
Advanced Developmental Psychology
This course undertakes, at an advanced level, a developmental treatment of child behavior on the basis of experimental findings and psychological theory.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5420</td>
<td>Instructor Consent Required
Cognitive Development
Current theory and research on children's conceptual development.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5430</td>
<td>Instructor Consent Required
Developmental Ethology
Introduction to conceptual, theoretical, and empirical issues based upon an ethological and biopsychological approach to development across species. Topics include nature-nurture, behavioral embryology, early experience, continuity-discontinuity, and performanceism versus epigenesis.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5440</td>
<td>Development of Language and Related Processes
Experimental and descriptive study of the child's language processes, with emphasis on acquisition, structure, meaning, thought, and the influence of verbal processes on nonverbal behavior.
Components: Lecture
Requirement Group: Open to Psychology graduate students, others with permission (RG786).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5450</td>
<td>Instructor Consent Required
Infancy and the Effects of Early Experience
Data and theory concerning the effects of early experience in infancy on behavioral and physiological development. Cross-species comparisons are emphasized.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5460</td>
<td>Instructor Consent Required
Social and Personality Development
Fundamental research and theory on social behavior, social cognition, and interpersonal relations in the preschool period (2-6 years) and in middle childhood (6-12 years). Early childhood precursors and consequences in adolescence. Both normative and atypical development.
Components: Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5470</td>
<td>Instructor Consent Required
Current Topics in Developmental Psychology
Selected topics in developmental psychology are studied with particular attention to current research and theoretical trends.
Components: Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5499</td>
<td>Instructor Consent Required
Research Team in Developmental Psychology
Planning and execution of both individual and collaborative research projects in developmental psychology.
Components: Seminar
Requirement Group: Only students admitted to a Psychology Graduate Program. (RG4760)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PSYC 5500</td>
<td>Research Seminar in Language and Cognition
Also offered as LING 305.
Components: Seminar
Course Equivalents: LING 5010</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PSYC 5512</td>
<td>Instructor Consent Required
Ecology of Language and Cognition
The scope and content of an ecological theory of language are outlined. Conventional theories of language, ecological theories of perceiving and acting and relevant portions of social psychological, anthropological, and linguistic theory are explored.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5513</td>
<td>Instructor Consent Required
Memory
Contrasts associationist, cognitive, connectionist, and cognitive neuroscience approaches to issues involving short-term memory, long-term memory, and the representation of knowledge.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5514</td>
<td>Instructor Consent Required
The Mental Lexicon
The role of the mental lexicon in the perception and production of words, including the representation and use of knowledge about phonology, morphology, orthography, and semantics.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5515</td>
<td>Instructor Consent Required
Connectionist Models
Connectionist models in psychology and computational neuroscience. Topics include learning, memory, and language processes in both intact and damaged networks.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5540</td>
<td>Instructor Consent Required
Reading Acquisition and Reading Disorders
Examination of theories and research: Aspects of literacy and stages of acquisition; cognitive prerequisites for reading and writing; individual differences in learning and the problem of dyslexia.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5553</td>
<td>Instructor Consent Required
Introduction to Nonlinear Dynamics
Basic concepts and methods of nonlinear dynamics systems theory applied to behavioral time-series data.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5554</td>
<td>Instructor Consent Required
Advanced Nonlinear Dynamics for the Behavioral Sciences
Advanced concepts and methods of nonlinear dynamics systems theory applied to behavioral time-series data.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5564</td>
<td>Dynamics of Language and Cognition
Application of dynamical systems theory to language modeling.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5567</td>
<td>Cognition
An introduction to theories of human cognition.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5568</td>
<td>Instructor Consent Required
Psychology of Language
Psychological aspects of linguistic structure, with particular attention to phonology.
Components: Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5569</td>
<td>Instructor Consent Required
The Neuropsychology of Language
An examination of language and speech in relation to the biological systems that serve communicative processes in man.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5570</td>
<td>Instructor Consent Required
Current Topics in Cognitive Science
Special topics in cognitive systems theory are reviewed with particular emphasis on techniques for the intrinsic measurement of systems behavior including information processing capacities and goal achievements. Students are required to apply the techniques discussed to an ongoing research topic of their own choosing.
Components: Lecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 5571</td>
<td>Instructor Consent Required
Sensation and Perception I
Relations among physical, physiological, and psychological variables in selected sensory and perceptual processes. Attention is given to problems of</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
measurement, empirical findings, and theoretical interpretations.
Components: Lecture
PSYC 5572 (3 credits) Sensation and Perception II
A continuation of Psychology 369.
Components: Lecture
Requirement Group: Prerequisite: PSYC 5571 (RG18).

PSYC 5574 (3 credits) Instructor Consent Required
Control and Coordination of Action
Covers the ecological approach; movement as the product of a representational/computational
system; intentionality; physical principles of self-organization and cooperativity; task dynamics.
Problems in the physiology of activity, prosthetics and robotics are addressed.
Components: Lecture

PSYC 5575 (3 credits) Instructor Consent Required
Introduction to Cognitive Systems
Survey of the fundamental concepts of machine
theory, cybernetics, structural stability theory, and
natural systems theory with respect to their role in
modeling cognitive systems.
Components: Lecture

PSYC 5583 (3 credits) Sentence and Discourse Processing
How psychological theories of perception and
learning provide insight into language processing
at the level of sentence structure and discourse
structure.
Components: Lecture

PSYC 5600 (1 credits) Instructor Consent Required
Research and Practice of Industrial/Organizational
Psychology
Current research and practice in industrial/organiza-
tional psychology, with intra- and extramural spea-
kers. This course may be repeated to a maximum of
12 credits.
Components: Seminar

PSYC 5601 (3 credits) Instructor Consent Required
Proseminar in Industrial/Organizational Psychology I
Introduction to research and practice in the field of
I/O psychology; personnel psychology, organiza-
tional psychology, human factors/ergonomics, and
judgment and decision making.
Components: Seminar
Requirement Group: Open to doctoral students in
Industrial/Organizational Psychology, others with
permission (RG19).

PSYC 5602 (3 credits) Instructor Consent Required
Proseminar in Industrial/Organizational Psychology II
Introduction to research and practice in the field of
I/O psychology; personnel psychology, organiza-
tional psychology, human factors/ergonomics, and
judgment and decision making.
Components: Seminar
Requirement Group: Open to doctoral students in
Industrial/Organizational Psychology, others with
permission (RG19).
ogy are studied with particular attention to current research and theoretical trends. Topics vary by semester.
Components: Seminar

PSYC 5699(1 - 3 credits) Instructor Consent Required
Research Team in Industrial/Organizational Psychology
Planning and execution of both individual and collaborative research projects in industrial/organizational psychology. This course may be repeated to a maximum of 12 credits.
Components: Seminar
Requirement Group: Prerequisite: Admission to a graduate degree program in Psychology (RG425).

PSYC 5700(1 credits) Instructor Consent Required
Proseminar in social psychology
Presentations on current research in all areas of social psychology.
Components: Seminar
Requirement Group: Open to Social Psychology graduate students, others with permission (RG787).

PSYC 5701(3 credits) Instructor Consent Required
Experimental Social Psychology
A critical overview of the various laboratory methods and techniques in social psychology.
Components: Seminar

PSYC 5702(3 credits)
Field Research Methods
An examination of various methods of field research, focusing on design, analysis, theory, and practical issues.
Components: Seminar
Requirement Group: Prerequisite: PSYC 5701 (RG515).

PSYC 5703(3 credits)
Advanced Social Psychology
An overview of the field of social psychology organized around the major underlying theoretical orientations. Several positions are critically examined along with representative empirical work.
Components: Lecture
Requirement Group: Open to Social Psychology graduate students, others with permission (RG787).

PSYC 5770(3 credits) Instructor Consent Required
Current Topics in Social Psychology
Topics vary by semester. Recent topics have included Social Cognition, Small Groups, Health Psychology, Emotion, Problems in Personality, and Ecological Social Psychology.
Components: Seminar

PSYC 5799(1 - 3 credits) Instructor Consent Required
Research Team in Social Psychology
Planning and execution of both individual and collaborative research projects in social psychology.
Components: Seminar
PSYC 5800(1 - 6 credits) Instructor Consent Required
Research in Psychology
Components: Independent Study

PSYC 5801(1 - 6 credits) Instructor Consent Required
Independent Study in Psychology
Components: Independent Study

PSYC 6130(3 credits) Instructor Consent Required
Measurement and Scaling
History and theories of psychological measurement and scaling. Application of unidimensional scaling models (e.g., Thurstone, Guttman, and Likert scaling, hierarchical cluster analysis, multidimensional scaling, and factor analysis) to psychological research problems.
Components: Lecture
Requirement Group: Prerequisite: STAT 5105 (RG516).

PSYC 6136(3 credits) Instructor Consent Required
Seminar in Quantitative Research Methods
Quantitative research culminating in a research methods paper. Intended as the capstone course for the Quantitative Research Methods graduate certificate following completion of other courses in the certificate program.
Components: Seminar

PSYC 6141(3 credits) Instructor Consent Required
Practicum in Neuropsychological Assessment
Field placements in clinical neuropsychology. Students will be placed in area hospitals, rehabilitation centers, or on campus, where they will perform neuropsychological evaluations under supervision and attend clinical rounds and team meetings.
Components: Practicum
Requirement Group: Prerequisites: PSYC 5301, PSYC 5140, and PSYC 5141 (RG514).

PSYC 6300(1 - 6 credits)
Clerkship in Clinical Methodology
Supervised clinical training in a community facility. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Practicum

PSYC 6301(1 - 3 credits)
Practicum in Adult Psychotherapy
Supervised psychotherapy training with adults including diagnostic procedures. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Practicum
Requirement Group: Open to students in Clinical Psychology (RG2160).

PSYC 6302(1 - 3 credits)
Practicum in Child Psychotherapy
Supervised psychotherapy training with children and parents including diagnostic procedures. Students taking this course will be assigned a final grade of S (satisfactory) or U (unsatisfactory.)
Components: Practicum
Requirement Group: Open to students in Clinical Psychology (RG2160).

PSYC 6303(3 credits)
Didactics of Supervision and Consultation
Exposure to theories, models, and empirical data pertinent to providing quality supervision of the psychodiagnostic and psychotherapeutic activities of mental health professionals.
Components: Lecture
Requirement Group: Open to students in Clinical Psychology. Prerequisites: PSYC 5301, PSYC 5304, PSYC 6301, and PSYC 6302 (RG2159)

PSYC 6304(3 credits)
Practicum in Clinical Supervision
Supervised training in supervising psychodiagnostic and psychotherapeutic activities of less advanced clinical psychology students.
Components: Practicum
Requirement Group: Open to students in Clinical Psychology. Prerequisites: PSYC 5301, PSYC 5304, PSYC 6301, and PSYC 6302 (RG2159)

PSYC 6310(0 credits) Instructor Consent Required
Internship in Clinical Psychology
Students assume professional psychological assessment, psychotherapeutic, and consultation responsibilities under the direct supervision of licensed clinical psychologists.
Components: Practicum

PSYC 6505(3 credits)
Teaching Experimental Psychology
The lecture method applied to teaching undergraduate courses in experimental psychology (introduction, cognition, learning and memory, sensation and perception) and giving conference presentations. Attention is given to presentation style and content.
Components: Practicum

PSYC 6730(3 credits) Instructor Consent Required
The Self in Social Psychology
Social psychological perspectives on the self. Early psychological/sociological views on the structure of the self, symbolic interactionism, self-concept and self-esteem, social comparisons, self-discrepancies, self-regulation and automaticity, and the self within the culture are some of the topics discussed.
Components: Seminar

PSYC 6731(3 credits) Instructor Consent Required
Person Perception
An examination of the social psychological literature dealing with person perception and cognition, organized around the historical development and current status of attribution theory and research.
Components: Seminar

PSYC 6732(3 credits)
Attitude Organization and Change
An overview of the field of attitude theory and research focusing on problems of attitude formation, attitude organization, and attitude change.
Components: Lecture
Requirement Group: Open to Psychology graduate students, others with permission (RG786).
The degrees of Master of Public Health and Doctor of Philosophy are offered.

M.P.H. Program Director: Associate Professor David Gregorio

The Master of Public Health (M.P.H.) Degree

Associate Professor: Asencio, Aseltine, Beazoglou, Cherniak, Covault, Dicks, Erickson, Ford, Gregorio, Kramer, Kurz, Lazzarini, Morse, Pendrys, Petry, Pfeiffer, Salazar, Stevens, Trapè-Cardoso, Van Hoof, Walsh, Weber, and Wetstone

Assistant Professors: Burleson, Dangman, Eberle, Guha, Huntington, Leger, Meyer, Pfeiffer, Segal, Swede, Thibodeau, Ungemack, Vernon, and Warren

The Master of Public Health is a professional degree program, accredited by the national Council on Education for Public Health, for individuals seeking training and experience in applied public health practice. The program faculty represents the population-based health sciences. Students must earn a total of 48 credits distributed among core, elective, and capstone activities. The core curriculum (24 credits) consists of the basic public health disciplines: social and behavioral sciences, epidemiology, biostatistics, health administration and environmental health, along with courses on public health law, research methods and the Practice, curricular learning activity. Elective course offerings (15-21 credits) emphasizing applied public health practice provide students with the understanding, knowledge, experience, skills and values necessary to function successfully as a public health practitioner. Within this overall framework, students are able to select from course content reflecting faculty interest in health systems administration, law and policy, epidemiology, occupational/environmental health, and applied practice methods. The capstone requirement may be met through a research thesis (9 credits) or an applied practice project or essay (3 credits).

The program is tailored to the needs of working professionals who wish to pursue part-time evening study. It also offers the opportunity to complete degree requirements simultaneously within the Schools of Medicine, Dental Medicine, Law, Social Work and Nursing.

For admission, applicants must demonstrate a strong academic record, background and/or experience relevant to public health, well-articulated career goals relevant to public health, and a commitment to the health of the community. A complete application includes official transcripts, a personal letter of application, and three letters of recommendation (preferably at least one academic letter). Submission of GRE (or MCAT, LSAT, DMAT, or GMAT) scores is highly encouraged. Information is available from: MPH Program Director, University of Connecticut Health Center, Farmington, CT 06030-6325, email: mphp@sso.uchc.edu, Web address: <http://publichealth.uconn.edu/acpgms_mph_overview.php>.

The Doctor of Philosophy degree program in Public Health is a full-time, interdisciplinary degree program. This cross-campus doctoral program prepares future public health leaders with the skills needed to enhance health in human populations. The Social and Behavioral Health Sciences concentration offers students specialized instruction in the theory and methods that emphasize the social, psychological and behavioral influences on health, illness, and injury. The concentration in Occupational and Environmental Health Sciences focuses on exposures to physical and chemical agents, biological exposures, ergonomic impacts, accident/safety risks and psychosocial factors.

For admission to the doctoral program in public health, students must demonstrate a commitment to public health, and have successfully completed courses in at least three of the five core competencies in public health (Biostatistics, Epidemiology, Occupational/Environmental Health, Behavioral Sciences, and Health Services Administration) before matriculating in the program. Students are required to complete a minimum of 45 credits, including a required seminar series (4 credits). There is a core program in discipline-specific theory, advanced research methods, and additional elective courses to complete the plan of study. After completion of coursework, students take a general examination, prepare and defend a dissertation proposal, then write and defend a doctoral dissertation, which fulfills 15 credits. For more information please visit http://www.publichealth.uconn.edu.

COURSES OF STUDY
M.P.H. Courses

PPUBH 5400(3 credits)
Introduction to Public Health
Provides an introduction to the discipline, its scientific foundations, and its relationship to other fields including clinical medicine. The basic concepts and skills necessary for a practitioner of public health are explained. Students gain a better appreciation of epidemiology to guide public health interventions and the development of public health policy.

Components: Lecture

PPUBH 5401(3 credits)
Principles of Epidemiology
Introduction to epidemiological concepts and methods as applied to public health research, community diagnosis, prevention, health planning and evaluation studies. Intensive use of exercises in descriptive and analytic epidemiology based on current investigations.

Components: Lecture
PUBH 5402 (3 credits)
Introduction to Biostatistics
An introductory presentation of the fundamentals of biostatistical theory and application, aimed at developing competence in the use of statistics, probability distributions, hypothesis testing, inference and estimation as applied to the most commonly used techniques in parametric and nonparametric statistical methods. Critical appraisal of research reported in journal articles serves as an application of learned techniques.
Components: Lecture

PUBH 5403 (3 credits)
Health Administration
Examination of past, present, and proposed approaches to the organization and management of health care services. Emphasis is on the role and functioning of the manager and the evolution of health care policy and trends as they affect managerial roles.
Components: Lecture

PUBH 5404 (3 credits)
Environmental Health
Exploring the policy, political and public health implications of such issues as air pollution, drinking water, exposure to hazardous chemicals, indoor air pollution, food protection, lead poisoning, housing, international issues, etc. Provides the student with some basic technical information and familiarity with terms for a better understanding of policy and political decisions and health effects of environmental exposures.
Components: Lecture

PUBH 5405 (3 credits)
Social and Behavioral Foundations of Public Health
An introductory survey emphasizing basic social science concepts in the analysis of public health including orientations toward health, disease and health care, the origins and distribution of health care resources, and the role of social movements and research in improving public health.
Components: Lecture

PUBH 5406 (3 credits)
Law and Public Health
An introduction to the American legal system as it relates to health care and public health. Sessions present important applications of law to health including the powers of state governments, public health at the federal level, hospital, physician and HMO liability, emergency care and medical research, mental health law, reproductive health and the right to privacy, the right to refuse treatment and end of life issues, privacy and confidentiality in health care, infectious disease law and disability discrimination, and public health policy and advocacy.
Components: Lecture

PUBH 5407 (1-3 credits)
Practicum in Public Health
Under faculty guidance, students undertake an organized set of activities that responds to an identified need of a public health agency or health-related organization. The activities may involve the policy development, planning, implementation, administration or evaluation of public health services, or a combination of such activities. Students should be appropriately advanced before initiating the practicum.
Components: Practicum

PUBH 5408 (3 credits)
Introduction to Epidemiology & Biostatistics I
This is the first of a two-course sequence introducing students to concepts and methods of epidemiology, biostatistics and public health research. Topics include nature of variability, common probability distributions, causal reasoning, control of bias and confounding, descriptive and analytic design of observational and experimental studies, principles of disease screening and clinical efficacy.
Components: Lecture
Requirement Group: Open to students admitted to MPH program, others with consent of instructor (RG 3213).

PUBH 5409 (3 credits)
Introduction to Epidemiology & Biostatistics II
This continuation of a two-course sequence on basic epidemiology, biostatistics and public health research addresses hypothesis generation, data collection methods, point and confidence interval estimation, inference testing, correlation/regression analysis, multivariable interaction, effect modification, power and meta-analysis. Evaluation of study designs, research methods and statistical procedures in clinical and public health literature will be stressed.
Components: Lecture
Requirement Group: Open to students admitted to MPH program, others with consent of instructor.
Completion of PUBH 408 required (RG 3214).

PUBH 5410 (3 credits)
Fundamentals of Strategic Planning
Fundamentals of strategic planning for public and non-profit organizations emphasizing the development of mission and vision statements, stakeholder analysis, scanning of internal and external environments; formulation and implementation of goals and objectives, definition of strategic issues, program planning, and evaluation. Introduction to related concepts in long range planning and group decision making. A group strategic planning project caps the course.
Components: Lecture

PUBH 5412 (3 credits)
Health Regulation
Focus is on the relationship between law and health care. Regulation of practice, practitioners and facilities. Legal aspects of alternative delivery systems including managed care. Legal and ethical dimensions of the health care provider-client relationship also are addressed.
Components: Lecture
PUBH 5414 (3 credits)
Health Economics
An introduction to economic theory and various applications of economics in the analysis of the U.S. health care system.
Components: Lecture

PUBH 5416 (3 credits)
Principles of Quality Improvement
Quality improvement (QI) is the art and science of improving quality of care by continuously making small improvements in key steps or processes. Because systems of care are inherently complex, people need tools and methods to recognize and prioritize what changes are necessary and to know how to implement and evaluate such changes. Several basic principles or concepts underlie QI efforts, such as variation, leadership, systems thinking, and the psychology of motivation. This course will describe critical principles and concepts important to QI and will illustrate their practical application to health care settings.
Components: Lecture

PUBH 5419 (3 credits)
Public Health Agencies
Takes organization and management theory into practice. The focus is on governmental and non-profit agency management and administration. Emphasis is on developing and defending budgets, personnel management, working within the political context, with the community and with multiple agencies.
Components: Lecture

PUBH 5430 (3 credits)
Public Health Informatics
An overview of the basic information skills required to clarify a health-related information need and identify and use appropriate information resources to select materials that answer that need. The course will include discussions of health-related networks and information resources, demonstrations of their appropriate use, class exercises and a semester project. Enrollment limited to 12.
Components: Lecture

PUBH 5431 (3 credits)
Public Health Research Methods
Introduction to conceptualization, methods, and analysis in public health research including: formulation of research questions and hypotheses, development of research and analytic models, use of qualitative (interviewing and observation) and quantitative (secondary and survey data) data collection methods, and qualitative and quantitative data analysis leading to the formulation of research projects.
Components: Lecture

PUBH 5433 (3 credits)
Health Program Evaluation
Methods of evaluating the implementation and impact of health programs. Topics include: specification of program objectives and components, experimental and quasi-experimental evaluation designs, collection and analysis of program data, and the dissemination and application of evaluation results.
Components: Lecture
PUBH 5434 (3 credits)
Topics in Intermediate Biostatistics
An introduction to the interplay of experimental design and data analysis. Begins with a review of statistical estimation and testing. Topics include analysis of variance, linear regression, and power analysis. Applications are emphasized through the demonstration and use of statistical software.
Components: Lecture

PUBH 5435 (3 credits)
Statistical Methods in Epidemiology
An introduction to the statistical methods most commonly used in analyzing data from epidemiological studies. The course begins with a review of basic epidemiology and statistics. Subsequently, the focus is on contingency table methods and logistic regression with emphasis on dose-response relationships, interaction and confounding. Computer software for data analysis is demonstrated.
Components: Lecture

PUBH 5437 (3 credits)
Epidemiological Research Appraisal
A research seminar on uses, strengths and limitations of epidemiological methodology. Major studies in infectious disease, chronic disease and health care epidemiology are critically analyzed. The goal is to promote sound judgment of the scientific validity of epidemiological evidence.
Components: Lecture

PUBH 5438 (3 credits)
Investigation of Disease Outbreaks
Provides students with the basic skills and perspectives necessary to investigate acute disease outbreaks. The emphasis is on the use of epidemiology to investigate outbreaks of infectious diseases, guide public health interventions, and develop public health policy. Students will participate in an outbreak investigation conducted by the state health department.
Components: Lecture

PUBH 5440 (3 credits)
Public Health Issues in Genetics
The Human Genome Project and other research initiatives are providing us with new opportunities to screen, diagnose and provide novel interventions for a range of genetically determined diseases. The goal of this course is to provide sufficient understanding of inheritance patterns and genetics technology to appreciate the associated public health issues.
Components: Seminar

PUBH 5450 (3 credits)
Public Health Practice
Discussion of initiatives to define the practice of public health, including the Institute of Medicine (IOM) Report on the Future of Public Health and the Public Health Service's "essential functions" of public health. Includes review of expenditures studies and estimates of actual public health infrastructure resource needs, as well as discussion of appropriate future roles for public health.
Components: Lecture

PUBH 5451 (3 credits)
Maternal and Child Health Services
Maternal and child health services are examined, highlighting the past successes and future challenges to the health care delivery system. Current topics which include nutritional influences, reproductive technology, injury control, domestic violence, child abuse/neglect, emerging infections, perinatal risk behaviors and mental health provide case studies for evaluation of maternal and child health policy development.
Components: Lecture

PUBH 5452 (3 credits)
Injury and Violence Prevention
Injury and violence are major preventable public health problems with predictable patterns. The purpose of this course is to familiarize the student with the epidemiological literature of intentional and unintentional injuries. The course is designed to focus on the knowledge and skills required to design, implement, and evaluate scientifically sound community injury prevention and control programs.
Components: Lecture

PUBH 5453 (3 credits)
Chronic Disease Control
Chronic diseases are examined from clinical, epidemiological and program planning perspectives. Diseases examined include: selected neoplastic diseases, cardiovascular diseases, chronic obstructive pulmonary diseases, cerebrovascular disease and diabetes. The role of public health agencies, for profit and non-profit entities in research, education, and risk reduction activities also are covered.
Components: Lecture

PUBH 5454 (3 credits)
Infectious Disease Control
Overview of microbiology. Agent-host environment relationship in causation and control of infectious diseases. Epidemiological patterns of major infectious diseases, with emphasis on sexually transmitted diseases, respiratory conditions and nonsocomial infections.
Components: Lecture

PUBH 5455 (3 credits)
Health Education
Methods for planning, presenting, and evaluating health education programs in communities, schools and worksites. Includes use of the Precede Model, setting of goals and objectives, behavior modification theory, group processes, teaching techniques and activities for developing and presenting workshops or courses.
Components: Lecture

PUBH 5461 (3 credits)
Healthcare Law and Ethics
An analysis and evaluation of the legal rights of patients and providers in the health care process. Specific topics may include: nature of rights, consent to treatment, contraception, abortion, sterilization, involuntary commitment, and allocation of limited medical resources.
Components: Lecture

PUBH 5462 (3 credits)
International Health
Examines primary health care as a model suited to the health needs of developing nations. Provides a broader understanding of the genesis of illness in developing countries and analyzes the kind of care required to have an impact on these illnesses.
Components: Lecture

PUBH 5463 (3 credits)
Comparative Health Systems
An analysis of national health systems in relation to their socio-economic, political, cultural, and epidemiologic contexts. The examination of alternative approaches to organizing scarce health care resources serves as an integrating theme.
Components: Lecture

PUBH 5465 (3 credits)
Occupational Health
Recognition and prevention of occupational disease and injuries, including social and political aspects and policy issues such as OSHA and Workers’ Compensation laws. Overview of some of the major occupational disease issues. Approaches of industrial hygiene, ergonomics, and occupational epidemiology to understanding and preventing occupational health hazards.
Components: Lecture

PUBH 5466 (3 credits)
Industrial Hygiene
The skills required to recognize, evaluate and control occupational hazards. Review of hazards associated with a variety of work processes and jobs. Students learn how to take an occupational history, to research the hazards associated with an industry, and to conduct a plant walk-through. Control methods, such as ventilation and personal protective equipment, are evaluated.
Components: Lecture

PUBH 5467 (3 credits)
Occupational and Environmental Disease
Clinical introduction to occupational disease, including diagnostic strategies and patient management techniques. Review of the diseases of primary target organs, including the range of syndromes from that organ, appropriate diagnostic techniques, and treatment options.
Components: Lecture

PUBH 5468 (3 credits)
Occupational and Environmental Epidemiology
Topics include the history of occupational epidemiology, causal models, occupational exposure classification systems, environmental epidemiology, cohort mortality studies, cross-sectional surveys, case-control studies, ecologic studies, and statistical and methodological issues in research design and their solutions.
Components: Lecture
the development of public and private food assistance. Students will explore the political, social, economic and environmental factors that impact food availability and consumption, and discuss the implications of these factors on health outcomes, such as obesity, hunger, chronic diseases, and health disparities.

Components: Seminar

PUBH 5495(1 - 9 credits) Independent Study in Public Health

An individual course for those wishing to pursue special topics in the public health sciences under faculty supervision.

Components: Independent Study

PUBH 5497(1 - 6 credits) Graduate Seminar in Public Health

Components: Seminar

PUBH 5499(3 - 6 credits) Program Director Consent Req'd

Capstone Project in Public Health

Components: Independent Study

PUBH 6490(1 credits) Public Health Seminar

This student-centered seminar series will meet weekly in both the Fall and Spring semesters of the student's first 2 years and will introduce the students to a broad range of faculty and outside speakers in public health. The seminar will follow a cycle where students read and discuss papers for an upcoming presenter, the next week the speaker will present and participate in discussion and questions and answers, and the following week there will be a student presentation. During their fourth semester, students will present an overview of the literature supporting their proposed research project. This seminar is common to all students in the doctoral program in public health.

Components: Seminar

PUBH 6491(1 credits) Instructor Consent Required Advanced Topics in Social and Behavioral Foundations of Public Health

This seminar course will be given in parallel with the MPH survey course, Social and Behavioral Foundations of Public Health (PUBH 405) with the goal of more in-depth exploration of the topics presented in the survey course. The objective is to gain a more advanced understanding of the concepts and theories in the social and behavioral sciences and their ability to explain patterns of health, illness and health care utilization, practices and policies. In conjunction with the survey course, the biopsychosocial paradigm of health and illness will provide the conceptual framework for integrating the societal, interpersonal, and intrapersonal factors that influence the public's health. To be taken concurrently with PUBH 405.

Components: Discussion

PUBH 6492(1 credits) Instructor Consent Required Advanced Topics in Health Promotion, Disease and Disability Prevention

An in-depth examination of health promotion and disease and disability prevention policies, programs and strategies. This course will involve continued examination of important national and international issues in health promotion and disease and disability prevention that complement those raised in GPAH 324. Students will critically analyze the health promotion and disease and disability prevention scientific literature relating to a critical issue of their choice. The format for this critique will be a seminar presentation and a written scientific synthesis. To be taken concurrently with GPAH 324.

Components: Discussion

PUBH 6493(3 credits) Occupational and Environmental Health: Exposures, Risk and Prevention

Exposure pathways, risk analysis techniques and prevention strategies relevant to both occupational and environmental settings. Lectures reinforced by discussion of case studies presented by students.

Components: Lecture

PUBH 6495(1 - 9 credits) Instructor Consent Required

Independent Study of Special Topics in Advanced Public Health Sciences A doctoral-level independent study course for Ph.D. students who wish to pursue special topics in advanced public health sciences under faculty supervision.

Components: Independent Study

†GRAD 5930. Full-Time Directed Studies (Master's Level)

(GrAD 397) 3 credits.

†GRAD 5950. Master's Thesis Research

(GrAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master's Research

(GrAD 396) 3 credits.

GRAD 5998. Special Readings (Master's)

(GrAD 398) Non-credit.

GRAD 5999. Thesis Preparation

(GrAD 399) Non-credit.

PUBH 6497. Graduate Seminar in Public Health

(PUBH 497) 1 - 6 credits. Seminar.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)

(GrAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research

(GrAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research

(GrAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)

(GrAD 498) Non-credit.

GRAD 6999. Dissertation Preparation

(GrAD 499) Non-credit.
Public Policy

Department Head: Associate Professor Amy K. Donahue

The Department of Public Policy offers two master's degree programs: Master of Public Administration and Master of Arts in the field of Survey Research.

Program Director: Professor Jennifer Dineen

Associate Professors: Bifulco, Brunner, Dautrich, Donahue and Robbins

Assistant Professor: Craemer, Haltmaker

TTThe Department of Public Policy offers two master's degree programs: Master of Public Administration and Master of Arts in the field of Survey Research. Also offered are the following Graduate Certificates in: Public Financial management; Public and Nonprofit Management; and Survey Research

Master of Public Administration

The Master of Public Administration (M.P.A.) program provides students with a dynamic and integrated approach to the study of public policy and management. The M.P.A. Program is committed to preparing students with a dynamic and integrated approach to the field of survey methodology. The quality of our academic program is the product of an outstanding faculty and the resources of a research university. The use of practical experiences as a learning tool, combined with theory, analysis, and case studies in the classroom, make our program job-relevant and intellectually challenging. The program is designed to serve students with a diverse range of backgrounds that places them in a wide variety of occupations. Our program views survey research as a tool that can be utilized in multiple fields.

Admission.

Admission to the M.A. program in Survey Research is selective. Considerations for admission include a bachelor's degree from an accredited college or university; a strong academic record; and verbal, quantitative, and analytical scores from the Graduate Record Examinations (GRE). Acceptable TOEFL exam scores for international students are required. A personal letter, current resume and three letters of recommendation are also required. Interested applicants should contact the director at 860-570-9223 or jennifer.dineen@uconn.edu Admissions materials can be found at this website: http://www.dpp.uconn.edu.

COURSES OF STUDY

Public Policy (PP)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP 5300(1-6 credits)</td>
<td>Independent Study</td>
</tr>
<tr>
<td>Components: Independent Study</td>
<td></td>
</tr>
<tr>
<td>PP 5301(1-6 credits)</td>
<td>Special Readings in Public Policy</td>
</tr>
<tr>
<td>Components: Special Readings</td>
<td></td>
</tr>
<tr>
<td>PP 5315(3 credits)</td>
<td>Capstone in Public Administration I</td>
</tr>
<tr>
<td>Development of project management skills and the research question, bibliography, and methodology for the capstone project.</td>
<td></td>
</tr>
<tr>
<td>Components: Seminar</td>
<td></td>
</tr>
<tr>
<td>Requirement Group: PP 5370 and PP 5340 open to MPA students only. (RG4751)</td>
<td></td>
</tr>
<tr>
<td>PP 5316(3 credits)</td>
<td>Capstone in Public Administration II</td>
</tr>
<tr>
<td>Research and writing of the capstone project.</td>
<td></td>
</tr>
<tr>
<td>Components: Seminar</td>
<td></td>
</tr>
<tr>
<td>Requirement Group: Prerequisite: PP 5315 (RG4700).</td>
<td></td>
</tr>
<tr>
<td>PP 5317(3 credits)</td>
<td>Capital Financing and Budgeting</td>
</tr>
<tr>
<td>Examination of the municipal bond market, capital budgeting techniques, and related public policy issues.</td>
<td></td>
</tr>
<tr>
<td>Components: Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Master of Arts in Survey Research

The Master of Survey Research (MSR) Program at the University of Connecticut offers the Master of Arts degree in the field of study of Survey Research. The program provides students with a dynamic and integrated approach to the field of survey methodology. The quality of our academic program is the product of an outstanding faculty and the resources of a research university. The use of practical experiences as a learning tool, combined with theory, analysis, and case studies in the classroom, make our program job-relevant and intellectually challenging. The program is designed to serve students with a diverse range of backgrounds that places them in a wide variety of occupations. Our program views survey research as a tool that can be utilized in multiple fields.

Admission.

Admission to the M.A. program in Survey Research is selective. Considerations for admission include a bachelor's degree from an accredited college or university; a strong academic record; and verbal, quantitative, and analytical scores from the Graduate Record Examinations (GRE). Acceptable TOEFL exam scores for international students are required. A personal letter, current resume and three letters of recommendation are also required. Interested applicants should contact the director at 860-570-9223 or jennifer.dineen@uconn.edu Admissions materials can be found at this website: http://www.dpp.uconn.edu.

COURSES OF STUDY

Public Policy (PP)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP 5300(1-6 credits)</td>
<td>Independent Study</td>
</tr>
<tr>
<td>Components: Independent Study</td>
<td></td>
</tr>
<tr>
<td>PP 5301(1-6 credits)</td>
<td>Special Readings in Public Policy</td>
</tr>
<tr>
<td>Components: Special Readings</td>
<td></td>
</tr>
<tr>
<td>PP 5315(3 credits)</td>
<td>Capstone in Public Administration I</td>
</tr>
<tr>
<td>Development of project management skills and the research question, bibliography, and methodology for the capstone project.</td>
<td></td>
</tr>
<tr>
<td>Components: Seminar</td>
<td></td>
</tr>
<tr>
<td>Requirement Group: PP 5370 and PP 5340 open to MPA students only. (RG4751)</td>
<td></td>
</tr>
<tr>
<td>PP 5316(3 credits)</td>
<td>Capstone in Public Administration II</td>
</tr>
<tr>
<td>Research and writing of the capstone project.</td>
<td></td>
</tr>
<tr>
<td>Components: Seminar</td>
<td></td>
</tr>
<tr>
<td>Requirement Group: Prerequisite: PP 5315 (RG4700).</td>
<td></td>
</tr>
<tr>
<td>PP 5317(3 credits)</td>
<td>Capital Financing and Budgeting</td>
</tr>
<tr>
<td>Examination of the municipal bond market, capital budgeting techniques, and related public policy issues.</td>
<td></td>
</tr>
<tr>
<td>Components: Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Master of Arts in Survey Research

The Master of Survey Research (MSR) Program at the University of Connecticut offers the Master of Arts degree in the field of study of Survey Research. The program provides students with a dynamic and integrated approach to the field of survey methodology. The quality of our academic program is the product of an outstanding faculty and the resources of a research university. The use of practical experiences as a learning tool, combined with theory, analysis, and case studies in the classroom, make our program job-relevant and intellectually challenging. The program is designed to serve students with a diverse range of backgrounds that places them in a wide variety of occupations. Our program views survey research as a tool that can be utilized in multiple fields.

Admission.

Admission to the M.A. program in Survey Research is selective. Considerations for admission include a bachelor's degree from an accredited college or university; a strong academic record; and verbal, quantitative, and analytical scores from the Graduate Record Examinations (GRE). Acceptable TOEFL exam scores for international students are required. A personal letter, current resume and three letters of recommendation are also required. Interested applicants should contact the director at 860-570-9223 or jennifer.dineen@uconn.edu Admissions materials can be found at this website: http://www.dpp.uconn.edu.
216 University of connecticut
PP 5327(3 credits)
Analysis for Management Decision Making
Analytic approaches to decision making in a public
management environment.
Components: Lecture
PP 5330(6 credits)
The Practice of Survey Research
The practice and use of survey research in the
United States and throughout the world. The structure, culture and professional norms of the survey
community. The role of public opinion polling in
government and public
policy-making.
Components: Seminar
PP 5332(3 credits)
Advanced Quantitative Methods
Advanced statistics for survey research analysis.
Components: Seminar
PP 5333(3 credits)
Principles and Methods of Survey Research II
Advanced theory and statistics for survey research.
Components: Seminar
PP 5334(3 credits)
Focus Groups
Introduction to focus group research.
Components: Seminar
PP 5340(3 credits) Program Director Consent Reqd
Introduction to Public Policy
Introduction to the fundamentals of public policy
making in the United States with a focus on developing the communication skills required in a
professional workplace.
Components: Seminar
Requirement Group: Prerequisite: Open only to
M.P.A. students (RG 4699).
PP 5341(3 credits)
Public Opinion and Democratic Processes
American public opinion in the context of democratic theory.
Components: Seminar
PP 5342(3 credits)
Policy Analysis
Approaches and techniques used to evaluate public
programs and public policy.
Components: Seminar
PP 5344(3 credits)
Social Policy
Examination of the concepts and principles of public policy analysis, with applications to important
social issues.
Components: Seminar
PP 5358(3 credits)
Administrative Law
The basis legal framework of administrative organization and the rules governing administrative
powers and their exercise; also the legal procedures
for the enforcement of bureaucratic responsibility in
the democratic state.

Components: Seminar
PP 5360(1 credits)
Information Technology Management for Public
Policy
Overview of practices and issues in managing the
use of information technology in public service
organizations.
Components: Lecture
PP 5361(3 credits)
Theory of Public Organization
An examination of organization theory and research
findings; their relation to public organizations.
Components: Seminar
PP 5362(3 credits)
Organizations & Management
The application of organization theory and research
findings; their relation to public organizations.
Components: Seminar
PP 5363(3 credits)
Administrative Functions of Local Government
An examination of the characteristic managerial
problems of the several functions of local government such as police, fire, traffic, public works,
parks, health, recreation. The course is designed for
individuals planning to work with citizen agencies,
in agencies for governmental management, or in
journalism.
Components: Seminar
PP 5364(3 credits)
Public Finance and Budgeting
Techniques, practice, and organization of financial
functions in governmental organizations, including
revenue analysis, budgeting skills, and financial
statement analysis.
Components: Seminar
PP 5365(3 credits)
Human Resource Management
The structures, processes, and principles of human
resource management and labor-management
relations in the public service, and examination of
contemporary human resource policies and challenges.
Components: Seminar
PP 5367(3 credits)
Problems in Intergovernmental Administration
Examination of intergovernmental relations as an
administrative system, with emphasis on current
problems.
Components: Seminar
PP 5370(3 credits)
Applied Research Design
Research design for organizational management
and policy analysis and evaluation. How to communicate, execute and evaluate research. Skills
in selecting appropriate analytic procedures and
properly interpreting and
reporting results.
Components: Seminar

PP 5372(1 credits)
Introduction to Public Administration Skills
Provides basic skills and competencies important to
completing the MPA program and for future professionals in the public service.
Components: Seminar
PP 5373(3 credits)
Budgeting in Public Service Organizations
Processes and techniques of public budgeting; the
principles and roles of budgets in public service organizations; analytic tools, concepts, and principles
of budget analysis and decision making.
Components: Seminar
PP 5375(3 credits)
Analytic Tools for Public Problems
The analytic tools necessary to evaluate the activities of government.
Components: Seminar
PP 5376(3 credits)
Applied Quantitative Methods
Statistical reasoning, tools, and techniques for effective public management.
Components: Seminar
Requirement Group: Open only to students in
the Master of Public Administration or the M.A. in
Survey Research programs
(RG508).
PP 5377(3 credits)
Qualitative Methods in Public Policy
Development and design of qualitative research.
Components: Lecture
PP 5379(3 credits)
Principles and Methods of Survey Research
Exploration of the theory and practice of survey
research, including sampling, questionnaire design,
analysis and reporting results.
Components: Seminar
PP 5385(3 credits)
Attitude Formation
Theories of attitude formation and attitude change
Components: Lecture
PP 5390(3 - 9 credits)
Supervised Internship
Experience in a public organization under competent supervision.
Components: Practicum
Requirement Group: Open only to students in
the Master of Public Administration or the M.A. in
Survey Research programs
(RG508).
PP 5397(1 - 6 credits)Special Topics in Public Policy
Components: Lecture
PP 5397. Special Topics in Public Policy
(PP 397) 1-6 credits. Lecture.
†GRAD 5930. Full-Time Directed Studies (Master’s
Level)
(GRAD 397) 3 credits.


The University of Connecticut School of Social Work promotes social and economic justice by providing high quality graduate education in social work. The School shares with other units of the University the pursuit of excellence in teaching, research and scholarship, the vision of an expanded international role, and a commitment to public service that bring the knowledge of the University to the people of the State. The School of Social Work offers courses of study leading to the degrees of Master of Social Work and Doctor of Philosophy.

The Ph.D. Program.

The goal of the doctoral program in Social Work is to equip future social work leaders with the expert scholarly and research skills needed to provide intellectual leadership and direction to the profession. The program provides a rigorous curriculum designed to prepare social workers for careers as faculty in colleges and universities and as researchers. The curriculum reflects the particular attention given to the unique role of theory and research in the traditions of professional social work in relation to applied practice and to knowledge building.

The course of study consists of 54 graduate credits. Ten core courses (30 credits) provide the students with competency in advanced research methods and statistics, social science theories and practice theories, while the balance consists of two elective courses (6 credits) in related disciplines, dissertation preparation seminar (3 credits) and dissertation research (15 credits). It is expected that program completion will require three to five years for full-time students.

The Ph.D. Admission Procedure.

Applicants to the Ph.D. program in Social Work must have an M.S.W. degree and a minimum of two years post-M.S.W. experience in social work.

In addition to the admission standards of the Graduate School, all applicants are required to submit scores from the General Test of the Graduate Record Examinations, three letters of professional reference, a personal statement, curriculum vitae, and a writing sample. All items should be sent in one packet directly to the Graduate Admissions Office, University of Connecticut, 438 Whitney Road Extension, Unit 1006, Storrs, CT 06269-1006. All applicants are advised to visit the UConn School of Social Work website (http://www.ssw.uconn.edu) for more detailed information about the Ph.D. Program and application materials.

The M.S.W. Program.

The primary goal of the M.S.W. program is to prepare competent professional practitioners to help people to enrich their lives, improve their communities, and contribute to social justice. To prepare MSW graduates for advanced practice in a variety of settings, the curriculum emphasizes knowledge and method skills for social work in micro-level practice (i.e. helping individuals, families, and groups to mobilize their personal and environmental resources to reach their goals) and macro-level practice (i.e. administration, policy formulation, organizational and environmental changes through group and community advocacy and social actions).

The course of study requires that each student earn 18 of the program’s 60 credits in field education through supervised placements in agencies where they learn to integrate theory and practice. All students are required to complete courses in Human Oppression (BASC 5300), Research I (BASC 5330), Research Methods in Social Work Practice (RSCH 5332), Analysis of Social Welfare Policy (BASC 5350), Human Behavior in the Social Environment: Macro Theories (BASC 5360), Human Behavior in the Social Environment: Micro Theories (BASC 5361), Micro Foundation Practice (BASC 5390) and Macro Foundation Practice (BASC 5391). In addition to the required foundation courses and advanced research course, students specialize in one of the following advanced major concentrations: casework, group work community organization, administration or policy practice. Electives and independent study enable students to meet their interests in focused areas of the profession. B.S.W.s from a social work program accredited by the Council on Social Work Education may be eligible for course exemptions or for the Advanced Standing Option. The School does not grant social work course credit for life experience or previous work experience. The M.S.W. Program at the School of Social Work is accredited by the Council on Social Work Education.

The M.S.W. Admission Procedure.

Applications for admission to the M.S.W. program should be sent directly to the School of Social Work. A more detailed description of the M.S.W. program, admission procedures, and financial aid information are available at the School of Social Work website (http://www.ssw.uconn.edu) and in the current view book of the School of Social Work which can be obtained from the Admissions Office, University of Connecticut School of Social Work, 1798 Asylum Avenue, West Hartford, Connecticut 06117. Phone: (860) 570-9118.

Dual Degree Programs.

Reflecting the School’s commitment to interdisciplinary teaching and practice, dual degree programs are offered with the University of Connecticut Schools of Law (J.D.), Business (M.B.A.) and Medicine (M.P.H.). A joint degree program is also offered with the Yale Divinity School. There are separate admission applications for these programs.

The STEP Program.

The School of Social Work also has a non-degree...
program, STEP (Staff Training and Education for the Profession), that is available to students who hold a bachelor's degree. Students are encouraged to test their interest in the social work degree by taking courses in STEP. Students who then matriculate may be able to apply up to 14 credits earned through STEP toward the M.S.W. degree. Non-credit courses also are held on a variety of specialized social work topics.

COURSES OF STUDY

Master of Social Work Courses

Social Work Foundation Courses

BBASC 5301 (3 credits)
Human Oppression: The African-American and Puerto Rican Perspective
Examines economic, political, social and cultural forces operating at national, regional and local levels, which generate and maintain oppression based on the unique language and perspective of macro practice as a capacity building and strength-based methodology. The course will focus on the oppression of the Black and Latino populations in the United States, comparing the African-American and Puerto Rican experiences and perspectives. It will provide a framework for analyzing and understanding oppression. A historical perspective will be utilized to explore past and current oppression related to race and color, culture and ethnicity, social class, gender, sexual/emotional orientation and religion. Intercultural, intracultural, psychosocial, racial and political responses to oppression will be addressed throughout the course.

Required course for students in the M.S.W. program. Must be taken prior to or concurrent with first year of field education.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program (RG844)

BBASC 5301(1 credit)
Special Populations
The goal of the course is to provide an opportunity for students to understand and to critically analyze human oppression and issues that are relevant to social work practice methods. The course will examine demographic, economic, political, social and cultural forces operating at national and local levels addressing the African-American and Puerto Rican experiences and perspectives. The focus of the class is the application of the knowledge of special populations to the social work practice methods. The course will combine lectures by the instructor and invited speakers, and class discussions. At times, small groups will be used to encourage students to examine their personal and professional interactions with oppression, and to discuss their implications for social work practice.
Required course for students in the Advanced Standing Option and must be taken in the summer prior to the beginning of full-time study for the M.S.W. degree.
Components: Lecture
Requirement Group: Open to students in the MSW Advanced Standing Option. Corequisite: CSWK 5340 or GRWK 5340 or POPR 5340 and CSWK 5301 or GRWK 5301 or POPR 5310 (RG3467)

BBASC 5330 (2 credits)
Research I: Principles and Methods of Social Work Research
Prepares M.S.W. students to understand research methodology including basic statistics and computer application; critically review research studies; learn how to utilize research to solve social problems and enhance social work practice, and to understand the role of the practitioner/researcher in social work. Must be taken prior to or concurrent with first year of field education. Meets one of the prerequisites for RSCH 332.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program (RG843).

BBASC 5333 (3 credits)
Research Methods for Social Work Practice
Provides an understanding of the basic foundation of social work research. Students will learn to: 1) develop critical thinking and knowledge of the principles and methods of research as tools for evaluating their practice; 2) become acquainted with the process and function of research in the advancement of social work theory, knowledge, and practice; 3) value ethical practices in conducting research with diverse individuals and vulnerable populations; 4) judge the adequacy and value of research findings in social work by the use of generally accepted criteria; 5) incorporate computer-based technology in accessing information; and 6) understand the researcher/evaluator role in social work practice.
Components: Lecture

BBASC 5340 (3 credits)
Analysis of Social Welfare Policy and Social Service Delivery Systems
This course will provide a critical analysis of the historical roots of American social welfare policy, the formulation of policy, and the economic and political determinants of contemporary policy development. Examination and analysis of the inter-relationship between social welfare policy, the service delivery systems, and practice implications for private and public agencies and programs. The course also includes the examination of international issues in social welfare policy and social service delivery. Students will analyze and apply the results of policy research relevant to social service delivery; understand and demonstrate policy practice skills in regard to economic, political and organizational systems; use them to influence, formulate, and advocate for policy consistent with social work values, and identify financial, organizational, administrative, and planning processes required to deliver social services.

Required course for students in the M.S.W. program. Must be taken prior to or concurrent with first year of field education.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program (RG846).

BBASC 5360 (2 credits)
Human Behavior in the Social Environment: Macro Theories
The required courses in human behavior in the social environment emphasize social work’s “person-and-environment” frame of reference. Although the focus of analysis differs, this course emphasizes the social and physical environment. Major themes stressed throughout the course include theories and research about the interdependence of persons and their environments (physical and social), political, economic, and cultural contexts, including values and ethical issues, in which our social welfare institutions function. Cultural and ethnic diversity, institutional prejudice, especially racism and sexism, issues of social, economic, and political justice and the process of social change will be stressed. Values and ethical issues relevant to macro social work will also be considered.

This course is one of two required courses for students in the M.S.W. program on human behavior in the social environment. Both courses must be taken prior to or concurrent with the first semester of the first year of field placement.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program (RG848).

BBASC 5361 (2 credits)
Human Behavior in the Social Environment: Micro Theories
Focuses on the individual and the family in transaction with social, economic, political, and cultural contexts and forces. Content areas emphasize current theories, empirical evidence to support these theories, ethical implications, and critical analysis. The course is organized around a systems perspective through a biopsychosocial lens. Variations arising from culture, ethnicity, social class, gender, sexual orientation are considered in this course. This course is one of two required courses for students in the M.S.W. program on human behavior in the social environment. Both courses must be taken prior to or concurrent with the first semester of the first year of field placement.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program (RG848).

BBASC 5390 (3 credits)
Macro Foundation Practice
The focus of this course is on macro practice foundation knowledge and skills associated with generalist practice in administration, community organizing and policy practice. It explores the history and place of macro methods in the evolution of the social work profession. Students are introduced to the unique language and perspective of macro practice as a capacity building and strength-based
intervention. The course includes definitions of and ways to analyze communities, organizations and policies. Emphasis is given to strategies and tactics for achieving change in communities, organizations and policies, to improving services for populations at risk, and promoting diversity and distributive justice, including an international context. Particular ethical and value mandates and dilemmas associated with macro practice are identified throughout the course.

Required course for students in the M.S.W. program. This course is one of the two foundation practice courses taken with the first semester of the first year of field placement.

Components: Lecture

Requirement Group: Open to students in the M.S.W. program. Prerequisites: BASC 5360 and BASC 5361 or must be taken concurrently with this course. Corequisites: BASC 5391, FED 5351 and FED 5301 (RG3164).

BASC 5391(3 credits)

Foundation Practice

This course is designed to provide a history of and a foundation for micro social work theory and practice emphasizing ecological strengths and capacity building perspectives. It provides knowledge, values and skills associated with generalist practice with individuals, families and groups within the context of organizations and communities. The course examines the mission of the social work profession and its value and ethical base, including its commitment to diversity, populations-at-risk and social and economic justice. Strategies for helping client-systems will include: preparing for practice; developing mutual working agreements; engaging, assessing and formulating goals; implementing interventions; monitoring and evaluating progress; and terminating services. The course emphasizes integration of course content with field experience. This course is one of the two foundation practice courses taken with the first semester of the first year of field placement.

Required course for students in the M.S.W. program. This course is one of Components: Lecture

Requirement Group: Open to students in the M.S.W. program. Prerequisites: BASC 5360 and BASC 5361 or must be taken concurrently with this course. Corequisites: BASC 5390, FED 5351 and FED 5301 (RG3165).

BASC 5390(3 credits)

Field Education Seminar I

This seminar helps students prepare for and make optimum use of their field education experience. Topic include the roles and responsibilities of the student within the agency setting, exploration and development of learning contracts, and the educational assessment of self as a learner in the profession. The seminar is used to identify issues that arise in the field and ways to deal with them.

Required course for students in the M.S.W. program. Components: Seminar Requirement Group: Open to students in the M.S.W. program. Corequisite: FED 5351 (RG3170).

FED 5302(1 credits)

Field Seminar II

This seminar helps students prepare for and make optimum use of their field education experience. Areas of seminar content include such topics as the roles and responsibilities of the student within the agency setting, exploration and development of learning contracts, and the educational assessment of self as a learner in the profession. The seminar identifies issues that arise in the field and ways to deal with them.

Required course for students in the M.S.W. program. Components: Seminar Requirement Group: Open to students in the M.S.W. program. Prerequisite: FED 5351 and FED 5301. Corequisites: FED 5302 and ADMN 5301 or CSWK 5301 or GRWK 5301 or CORG 5301 or POPR 5301 (RG3227).

FED 5310(0 credits)

Field Education Seminar III

This seminar helps students prepare for and make optimum use of their field education experience. Topics include the roles and responsibilities of the student within the agency setting, exploration and development of learning contracts, and the educational assessment of self as a learner in the profession. The seminar is used to identify issues that arise in the field and ways to deal with them.

Required course for students in the M.S.W. Program. Components: Seminar Requirement Group: Open to students in the M.S.W. program. Prerequisite: FED 5302 and FED 5301. Corequisites: CSWK 5353 or GRWK 5353 or ADMN 5353 or CORG 5353 or POPR 5353 (RG3426).

FED 5311(1 credits)

Field Education Seminar IV

This seminar helps students prepare for and make optimum use of their field education experience. Areas of seminar content include such topics as the roles and responsibilities of the student, field instructor and faculty advisor, exploration and development of the learning contract, and the educational assessment of self as a learner in the profession.

Required course for students in the M.S.W. program. Components: Seminar Requirement Group: Open to students in the M.S.W. program. Prerequisites: CSWK 5353 or GRWK 5353 or ADMN 5353 or CORG 5353 or POPR 5353 or FED 5310. Corequisites: CSWK 5354 or GRWK 5354 or CORG 5354 or ADMN 5354 or POPR 5354 (RG3427).

FED 5350(1 credits) Program Director Consent Req'd

This seminar helps students prepare for and make optimum use of their field education experience.

Topics include the roles and responsibilities of the student within the agency setting, exploration and development of learning contracts, and the educational assessment of self as a learner in the profession. The seminar is used to identify issues that arise in the field and ways to deal with them. Required course for students in the M.S.W. program completing a Block Field Placement.

Components: Seminar Requirement Group: Open only to students in the M.S.W. Program. Corequisites: CSWK 5355 or GRWK 5355 or ADMN 5355 or CORG 5355 or POPR 5355. Prerequisites: FED 5352 and FED 5302 (RG3705)

FED 5351(4 credits)

Field Education Foundation I

Teaches students basic skills in social work practice with systems of all sizes including individuals, groups, organizations, and communities. This field experience course provides the foundation for the development of advanced skills in specific social work methods in advanced field experiences.

Required course for students in the M.S.W. program. Components: Practicum Requirement Group: Open to students in the M.S.W. program. Co-requisites: BASC 5390, BASC 5391 and FED 5301 (RG52).

FED 5354(4 credits)

Field Education Foundation II

Continues to develop basic skills in social work practice with systems of all sizes, while adding increased emphasis on the students’ development of skills in the students’ major method. Required course for students in the M.S.W. program. Components: Practicum Requirement Group: Open to students in the M.S.W. program. Prerequisites: FED 5351 and FED 5301. Corequisites: ADMN 5301 or CSWK 5301 or GRWK 5301 or CORG 5301 or POPR 5301 and FED 5302 (RG35).

Social Work Advanced Concentration Courses

Advanced Research Course

RSCH 5326(3 credits)

Special Topics in Research
Introduces new and innovative material on a variety of special topics in research. These topics will rotate content to include survey methods, ethnography, single system design or focus on a specific problem or population. Components: Lecture Requirement Group: Open to students in the M.S.W. Program. Prerequisite: BASC 5332 (RG3710).

RSCH 5332(3 credits)

Research Methods in Social Work Practice
This course builds on students’ prior research knowledge acquired through undergraduate training, previous elective graduate coursework or self study.
This course will provide students with: 1) an understanding of various “families” of research methods to equip them to evaluate social work practice with systems of all sizes and to be able to understand and interpret basic published social work research; 2) the knowledge to identify data collection methods that are appropriate to the research design being employed; and 3) an understanding of true experimental designs as a means for addressing strong causal inference with oppressed groups.

Required course for students in the M.S.W. program. Policy Practice students must take this course prior to or concurrent with POPR 301: Policy Practice: Process, Use of Data and Information Technology.

The prerequisites for this course may be met in one of the following ways: 1) successful completion of (minimum grade of B) a basic undergraduate or graduate research course during the previous six semesters. Components: Lecture Requirement Group: Open to students in both the MSW program and STEP program. Prerequisite: BASC 5330 / RSCS 5330 (RG 3163).

RSC 5334 (2 credits)
Social Work Practice Evaluation with Macro Systems
This course focuses on the development of knowledge, attitudes and skills appropriate to the ongoing critical evaluation of social work practice with large systems from diverse populations. This course will prepare students to integrate research methods into assessment, planning, intervention and evaluation of their social work practice. Students will learn to analyze data drawn in order to inform practice decision making by selecting appropriate designs, determining client goals, empirically evaluating programs and services, objectively describing phenomena, and dissemination research findings. Students will be exposed to a range of ethical issues. Components: Lecture Requirement Group: Open to students in both the MSW program and STEP program. Prerequisite: BASC 5330 / RSCS 5330 (RG 3163).

RSC 5335 (2 credits)
Social Work Practice Evaluation with Micro Systems
This course focuses on the development of knowledge, attitudes and skills appropriate to the ongoing critical evaluation of social work practice with small systems from diverse populations. This course will prepare students to integrate research methods into assessment, planning, intervention and evaluation of their social work practice. Students will learn to employ single systems designs to analyze data in order to inform practice decision-making. Content areas in the course include selecting appropriate designs, determining client goals, measurement issues around goal selection, graphing client data, appropriate analyses, and reporting. Students will be exposed to a range of ethical issues. Components: Lecture Requirement Group: Open to students in both the MSW program and STEP program. Prerequisite: BASC 5330 / RSCS 5330 (RG 3163).

Advanced Field Seminars
FED 5310. Field Education Seminar III (FED 310) 0 credits. Seminar. Open to students in the M.S.W. program. Prerequisites: FED 3532 and FED 3502. Co-requisite: CSWK 5353 or GRWK 5353 or ADMN 5353 or CORG 5353 or POPR 5353. Required course for students in the M.S.W. program. This seminar helps students prepare for and make optimum use of their field education experience. Topics include the roles and responsibilities of the student within the agency setting, exploration and development of learning contracts, and the educational assessment of self as a learner in the profession. Seminar is used to identify issues that arise in the field and ways to deal with them.

FED 5311. Field Education Seminar IV (FED 311) 1 credit. Seminar. Open to students in the M.S.W. program. Prerequisite: CSWK 5353 or GRWK 5353 or ADMN 5353 or CORG 5353 or POPR 5353 and FED 3310. Co-requisite: CSWK 5354 or GRWK 5354 or CORG 5354 or ADMN 5354 or POPR 5354. Required course for students in the M.S.W. program. Seminar helps students prepare for and make optimum use of their field education experience. Areas of seminar content include such topics as the roles and responsibilities of the student, field instructor and faculty advisor, exploration and development of the learning contract, and the educational assessment of self as a learner in the profession.

FED 5350. Field Education Seminar V (FED 350) 1 credit. Seminar. Open to students in the M.S.W. program. Prerequisites: FED 3532 and FED 3502. Co-requisite: CSWK 5355 or GRWK 5355 or ADMN 5355 or CORG 5355 or POPR 5355. This seminar helps students prepare for and make optimum use of their field education experience. Topics include the roles and responsibilities of the student within the agency setting, exploration and development of learning contracts, and the educational assessment of self as a learner in the profession. Seminar is used to identify issues that arise in the field and ways to deal with them. Required course for students in the M.S.W. program completing a Block Field Placement.

Advanced Concentration Courses

Administration
ADMN 5301 (3 credits)
Managing People: Communication Skills in Supervision, Personnel Management and Leadership
This course covers leadership theory and analysis, supervision, personnel/human resource management, with emphasis on relational skills. The course prepares students to function effectively in supervisory and administrative roles and to use themselves in creative professional ways in exercising leadership in human service settings.

Required course for students in the Administration concentration. Components: Lecture Requirement Group: Open to MSW students in the Administration concentration. Prerequisites: BASC 5390, BASC 5391, FED 5351 and FED 5301. Corequisites: FED 5352 and FED 5302 (RG3228).

ADMN 5303 (3 credits)
This course introduces students to the fundamental principles and processes in financial management processes, budgeting systems, preparation and execution of budgets, basic of accounting, use of computer spreadsheets, managerial accounting, financial statements, cost analysis, inventory and fixed asset accounting, funding sources, financial performance measures, internal control and external audits, fiduciary relationships and responsibilities, liabilities in 501(c) 3, ethics in finance, collaborating and leveraging of resources.

Required course for students in the Administration concentration. Components: Lecture Requirement Group: Open to MSW students in the Administration concentration. Prerequisites: ADMN 5301, FED 5352 and FED 5302. Corequisites: ADMN 5353 and FED 5310 (RG3425).

ADMN 5303 (3 credits)
This course introduces students to the fundamental principles and processes in financial management processes, budgeting systems, preparation and execution of budgets, basic of accounting, use of computer spreadsheets, managerial accounting, financial statements, cost analysis, inventory and fixed asset accounting, funding sources, financial performance measures, internal control and external audits, fiduciary relationships and responsibilities, liabilities in 501(c) 3, ethics in finance, collaborating and leveraging of resources.

Required course for students in the Administration concentration. Components: Lecture Requirement Group: Open to MSW students in the Administration concentration. Prerequisites: ADMN 5301, FED 5352 and FED 5302. Corequisites: ADMN 5353 and FED 5310 (RG3425).
advancement opportunities for women; research findings on gender and management; career planning; and development of practice strategies for solving administrative dilemmas. Addresses concerns of special groups of women, including issues of race, age, and sexual orientation.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

ADMN 5319 (3 credits)

Computer Applications in Human Service Agencies. Emphasizes concepts and techniques of computer use, application areas of the electronic technologies for the full range of social work agency needs, principles of computer system design and development, and in particular, methods of managing the computer process. All students enrolling in this course are expected to have basic computing skills such as operating a computer and word processing. For those who do not have these requisite skills, help is available at the UConn Hartford Campus Computer Center.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

ADMN 5327 (1-3 credits)

Current Topics in Administrative Skills. Intensive skill-oriented workshop on various topics in administration. Varied topics each semester include budgeting, marketing, staff development, conflict management, working with boards, and grant writing.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

ADMN 5333 (3 credits)

Staff Development and Training. Offered in a workshop format, focuses on skill building in planning, developing, and implementing training in human service organizations. In addition, examines selected organizational and management issues related to staff development. Facilitates learning through discussion, small group exercise, and a training project to be carried out in the student’s agency (either field placement or place of employment).

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

ADMN 5354 (4 credits)

Field Education in Administration IV. Focuses primarily on the student’s major method, emphasizing preparation for competent, advanced specialized practice. Required course for students in the Administration concentration.

Components: Practicum

Requirement Group: Open to MSW students in the Administration concentration. Prerequisites: ADMN 5333 and FED 5310.

Corequisites: ADMN 5303 and FED 5311 (RG569)

ADMN 5355 (8 credits)

Instructor Consent Required Block Placement in Administration. Field Education in Administration for well-prepared students who have completed all course requirements except the second year of field education and the appropriate method course. Required course for students in the MSW program completing a Block Field Placement.

Components: Practicum

Requirement Group: Open to MSW students in the Administration concentration. Prerequisites: FED 5352 and FED 5302.

Co-requisites: POPR 5310 and FED 5350 (RG804)

Casework

CSWK 5301 (3 credits)

Casework Helping Process: The Work and Ending Phases Builds upon foundation theory of ecological strengths and capacity building perspectives and the method base of social work practice. Course content focuses on the interactive facet and transactional nature of the casework process in helping people with a wide range of life transition stressors and environmental obstacles. Substantial attention is paid to working with people of special populations. Students focus upon the development of critical thinking and decision-making skills and the ability to be self-observer.

Required course for students in the Casework concentration.

Components: Lecture

Requirement Group: Open to MSW students in the Casework concentration. Prerequisites: CSWK 5302, CSWK 5353 and FED 5310. Corequisites: CSWK 5354 and FED 5311 (RG3434)

CSWK 5340 (1 credits)

Skills Laboratory in Casework Practice This course builds upon casework interviewing, assessment, and intervention skills developed in the student’s BSW coursework and fieldwork. Students will have the opportunity to identify, practice, and critique a range of assessment, intervention skills. Students will use materials and cases from the concurrent CSWK 301 course to further develop their casework skills.

Required course for students in the Advanced Standing Option in the Casework Concentration and must be taken in the summer prior to the beginning of full-time study for the M.S.W. degree.

Components: Lecture

Requirement Group: Open to students in the MSW Advanced Standing option in the Casework concentration. Co-requisites: CSWK 5301 and BASC 5301 (RG3470)

CSWK 5345 (3 credits)

Clinical Conditions with Children and Adolescents Addresses values, knowledge, and skills required for social work practice with children and adolescents who experience varied biopsychosocial problems related to mental disorders, as well as practice with their families. It helps students to think about practice situations in a spirit of inquiry, maintaining awareness of the complexity of psychiatric conditions and the limitations of our knowledge about them. Students become familiar with current psychiatric classification systems and learn a range of assessment and intervention skills. Students demonstrate the ability to access the most recent empirical and practice knowledge, and to develop skills related to work in a variety of social work practice settings where mental challenges are encoun-
tered. Mental disorders are addressed in the context of larger biopsychosocial systems. Attention is paid to differences arising from such variables as age, gender, ethnicity, race, religion, sexual orientation, and physical ability.

Students in the Casework concentration are required to take this course or CSWK 345. Casework majors may take both courses using one of them toward elective credit. Students from other concentrations who meet the prerequisites may take this course as an elective. Elective course for Components: Lecture Requirement Group: Open to students in the MSW program. Prerequisites: BASC 5390, BASC 5391, FED 5301 and FED 5310.

CSWK 3535(4 credits) Field Education in Social Casework III Focuses primarily on the student’s major method, emphasizing preparation for competent, advanced specialized practice. Required course for students in the Casework concentration. Components: Practicum Requirement Group: Open to MSW students in the Casework concentration. Prerequisites: FED 5352 and FED 5302. Co-requisites: CSWK 3502, CSWK 5303 and FED 5350 (RG806).

CSWK 3565(3 credits) Family Therapy: Theory and Practice Provides a knowledge of significant theories, theorists, practice skills and techniques for family therapy, as well as the growing professional self-awareness of the therapist. Provides: a) opportunities for study of the use of family therapy with particular problem situations; b) critical study of changes in current theories, emerging theories and integration of theories; c) analysis of research in family therapy; and, d) an ongoing seminar for discussion of cases. Components: Lecture Requirement Group: Open to students in the MSW program and the STEP program

Community Organization

CORG 5301(3 credits) Essential Theory & Intervention Practice in Community Organization This course builds on content covered in micro and macro foundations of social work practice and reviews in greater depth community organization history, values and assumptions, Rothman models of organizing, roles of the community social worker, and strategies used by community organizers to bring about change. The course promotes in-depth understanding of the various types of communities and enhances skills for community analysis. Essential information for grassroots organizing and community and coalition building is covered. It incorporates content on providing community based services to oppressed population groups, including leadership development and advocacy. Furthermore, it highlights the importance of power theory and dynamics in selecting models and strategies for intervention. The importance of relationship building and attention to process tasks and goal achievement are covered.

Required course for students in the Community Organization concentration. Components: Lecture Requirement Group: Open to MSW students in the Community Organization concentration. Prerequisites: BASC 5390, BASC 5391, FED 5351, and FED 5301. Co-requisites: FED 5352. (RG2331).

CORG 5302(3 credits) Theory and Practice of Social Movements For Community Organizers This course will integrate Community Organization foundation and advanced method practice knowledge, values and skills. Students will be asked to select an agency-based Community Organization assignment that they have been working on during the academic year as the basis for a capstone assignment. An outline for this assignment will be distributed and discussed in class. Appropriate literature that will help students in conceptualizing and writing their capstone assignments will also be distributed and discussed. The course will concentrate on addressing social movement theory and implications for social change and community social work. A minimum of two social movements will be analyzed and one or more social movement related projects will be selected as an in-class project(s).

Required course for students in the Community Organization concentration. Components: Lecture Requirement Group: Open to MSW students in the Community Organization concentration. Prerequisites: CORG 5301 and CORG 5354. (RG3428)

CORG 5312(3 credits) Political Advocacy This course builds on the concepts and interventions introduced in the Macro Foundation Practice course. The content covers political decision-making groups, including executive, legislative, judicial and private agency decision-making. The ways macro practitioners use power and political analysis is discussed. Emphasis is on the design, implementation and evaluation of a public advocacy strategy to improve the life situations of populations at risk, such as lobbying, preparing and delivering testimony to a public policy making group and forming and maintaining coalitions. Ethical requirements and dilemmas in doing political advocacy are integrated throughout the course. Required course for students in both the Community Organization and the Policy Practice concentrations. The co-requisites for this course differ for each of these concentrations. Components: Lecture Requirement Group: Open to MSW students in Community Organization and Policy Practice concentrations. Pre or Corequisites: FED 5352 and FED 5302 (RG3344).

CORG 5353(4 credits) Field Education in Community Organization III Focuses primarily on the student’s major method, emphasizing preparation for competent, advanced specialized practice. Required course for students in the Casework concentration. Components: Practicum Requirement Group: Open to MSW students in the Casework concentration. Prerequisites: FED 5352 and FED 5302. Co-requisites: CSWK 5302 and FED 5310 (RG542)

CSWK 5355(8 credits) Instructor Consent Required Block Placement in Casework. Field Education in Casework for well-prepared students who have completed all course requirements except the second year of field education and the appropriate method/s course. Required course for students in the MSW program completing a Block Field Placement. Components: Practicum Requirement Group: Open to MSW students in the Casework concentration. Prerequisites: FED 5352 and FED 5302. Co-requisites: CSWK 5302, CSWK 5303 and FED 5350 (RG806).

CSWK 5365(3 credits) Family Therapy: Theory and Practice Provides a knowledge of significant theories, theorists, practice skills and techniques for family therapy, as well as the growing professional self-awareness of the therapist. Provides: a) opportunities for study of the use of family therapy with particular problem situations; b) critical study of changes in current theories, emerging theories and integration of theories; c) analysis of research in family therapy; and, d) an ongoing seminar for discussion of cases. Components: Lecture Requirement Group: Open to students in both the MSW program and the STEP program

Community Organization

CORG 5301(3 credits) Essential Theory & Intervention Practice in Community Organization This course builds on content covered in micro and macro foundations of social work practice and reviews in greater depth community organization history, values and assumptions, Rothman models of organizing, roles of the community social worker, and strategies used by community organizers to bring about change. The course promotes in-depth understanding of the various types of communities and enhances skills for community analysis. Essential information for grassroots organizing and community and coalition building is covered. It incorporates content on providing community based services to oppressed population groups, including leadership development and advocacy. Furthermore, it highlights the importance of power theory and dynamics in selecting models and strategies for intervention. The importance of relationship building and attention to process tasks and goal achievement are covered.

Required course for students in the Community Organization concentration. Components: Lecture Requirement Group: Open to MSW students in the Community Organization concentration. Prerequisites: BASC 5390, BASC 5391, FED 5351, and FED 5301. Co-requisites: FED 5352. (RG2331).
CORG 5354(4 credits)
Field Education in Community Organization IV.
Focuses primarily on the student’s major method, emphasizing preparation for competent, advanced specialized practice.

Required course for students in the Community Organization concentration.
Components: Practicum
Requirement Group: Open to MSW students in the Community Organization concentration. Prerequisites: CORG 5353 and FED 5310 . Corequisites: CORG 5302 and FED 5311 (RG562).

CORG 5355(8 credits) Instructor Consent Required
Block Placement in Community Organization.
Field Education in Community Organization for well-prepared students who have completed all course requirements except the second year of field education and the appropriate method course. Required course for students in the M.S.W. program completing a Block Field Placement.
Components: Practicum
Requirement Group: Open to MSW students in the Community Organization concentration. Prerequisites: FED 5352 and FED 5302. Co-requisites: POPR 5310 and FED 5350 (RG805).

CORG 5370(3 credits)
Grassroots Neighborhood Organizing.
Provides intensive instruction for students who wish to become practitioners or trainers in grassroots neighborhood model of organizing. Examines Alinsky’s model of organizing and the refinement of that model. Elective course for Substantive Area: Focused Area of Study on Urban Issues in Social Work . Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

Group Work

GRWK 5301(3 credits)
Essentials of Social Group Work Practice
Provides knowledge, theories, and practice principles common to social group work. Focuses on knowledge and practice methods that are used to identify and understand procedures and processes essential to planning, developing and working with small groups in various agency-based settings, dealing with a range of issues and diverse peoples. Social and behavioral sciences and group work literature, empirical data and practice wisdom serve as the foundation for organizing course content and activities.
Required course for students in the Group Work concentration.
Components: Lecture
Requirement Group: Open to MSW students in the Group Work concentration. Prerequisites: BASC 5390, BASC 5391, FED 5351 and FED 5301 . Corequisites: FED 5352 and FED 5302 (RG230).

GRWK 5302(3 credits)
Differential Group Work: Populations and Settings
Designed to increase the depth of understanding of the content of GRWK 301: Essentials of Social Group Work Practice. This course focuses on the application of group work processes, properties and group work skills to group work practice with groups that are established for different purposes and with populations that differ according to age, culture and need for group work services. This course will also examine the impact of different settings as the context for group work practice.

Required course for students in the Group Work concentration.
Components: Lecture
Requirement Group: Open to MSW students in the Group Work concentration. Prerequisites: GRWK 5301, FED 5352 and FED 5302. Corequisites: GRWK 5353 and FED 5310 (RG3430).

GRWK 5303(3 credits)
Advanced Group Work Practice Methods and Techniques
The overall emphasis of this course will be on a critical analysis and sound examination of the social group work method B - its underlying theories, knowledge, research supported practices, ideological commitments, and basic tenets and principles. The primary focus is on the development of advanced practice methods and techniques. Required course for students in the Group Work concentration.
Components: Lecture
Requirement Group: Open to MSW students in the Group Work concentration. Prerequisites: GRWK 5301, GRWK 5353 and FED 5310. Corequisites: GRWK 5354 and FED 5311 (RG3432).

GRWK 5311(3 credits)
Group Processes
The purpose of this course is to help students develop a conceptual frame of reference for understanding small group processes. The focus of study is mainly on establishing a theoretical and conceptual appreciation of how small groups function. Students will develop an increasingly wide range of conceptual tools to identify and assess group processes. Students will gain a better understanding of small group interaction as it impacts individuals, interpersonal relationships and interactions with others beyond the group. Experiential as well as didactic study methods will be used.

Required course for students in the Group Work concentration.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

GRWK 5340(1 credits)
Skills Laboratory in Social Group Work Practice
Primary focus is to offer students an opportunity to demonstrate how to apply (i.e., simulate practice experiences) some of the knowledge and theory presented in GRWK 301 - Essentials of Social Group Work Practice in practice situations. Students will participate in exercises and use procedures to enhance and assess current practice skill levels. Exercises and other instructional aids will center on particular elements pertinent to basic competencies in social group work practice including group formation, entering an established group, work within the group's process and achieving group goals. As well, attention is focused on group work within the context of the agency setting and its philosophical stance toward this method of practice. Required course for students in the Advanced Standing Option in the Group Work Concentration and must be taken in the summer prior to the beginning of full time study for the M.S.W. degree.
Components: Lecture
Requirement Group: Open to students in the MSW Advanced Standing Option in the Group Work concentration. Co-requisites: GRWK 5301 and BASC 5301 (RG3469).

GRWK 5342(3 credits)
Group Work Practice in Therapeutic Settings.
Seminar on use of groups for therapeutic purposes in settings such as mental health clinics, residential treatment centers, counseling services, etc. Students share responsibility for the examination of material from their own clinical practice with groups.
Components: Lecture
Requirement Group: Open to students in the MSW program. Prerequisite: CSWK 5301 or GRWK 5301 (RG550).

GRWK 5353(4 credits)
Field Education in Group Work III
Focuses primarily on the student’s major method, emphasizing preparation for competent, advanced specialized practice.
Required course for students in the Group Work concentration.
Components: Practicum
Requirement Group: Open to MSW students in the Group Work concentration. Prerequisites: FED 5352 and FED 5302. Corequisites: GRWK 5302 and FED 5310 (RG554).

GRWK 5354(4 credits)
Field Education in Group Work IV
Focuses primarily on the student’s major method, emphasizing preparation for competent, advanced specialized practice.
Required course for students in the Group Work concentration.
Components: Practicum
Requirement Group: Open to MSW students in the Group Work concentration. Prerequisites: GRWK 5353 and FED 5310. Corequisites: GRWK 5303 and FED 5311 (RG555). GRWK 5355(8 credits) Instructor Consent Required
Block Placement in Group Work.
Field Education in Group Work for well-prepared students who have completed all course require-
Current Trends in Family Intervention: Evid-Based and Promising Practice Models of In-Home Treatment
This course exposes students to several nationally acclaimed Evidence-Based Practice (EBP) treatment programs for families that are widely practiced. Students are introduced to competencies associated with EBP and an overview of several empirically supported therapy programs that are designed to address psychiatric, behavioral and/or substance abuse concerns in children and adolescents including Multisystem Therapy (MST), Multidimensional Family Therapy (MDFT), Intensive Home Child and Adolescent Psychiatric Services (IICAPS), Functional Family Therapy (FFT) and Brief Strategic Family Therapy (BSFT). Case presentations from local providers...
of these models and testimonials from families. Components: Lecture
Requirement Group: Open to M.S.W. and STEP students.

DSEL 5320 (3 credits)
Direct Practice in School for Children with Educational Disabilities and Their Families.
Meets state requirements for school work certification, approved by the Bureau of Certification and Professional Development. The practice of social work in schools requires that the social worker possess knowledge and skills to provide social work services for students with educational impairments and their families. To provide such service, the social worker must be able to engage in effective partnerships with parents and other multi-disciplinary team members and possess a repertoire of interventions appropriate for this population. Presents and discusses controversies and issues relative to labeling and testing procedures, such as the impact of racial and ethnic differences. Covers six areas of impairment as designated by law (Emotionally Impaired, Mentally Impaired, Learning Disabled, Autistic Impaired, Physically and Otherwise Health Impaired, and Speech and Language Impaired). Stimulates further study in impairment areas and lays a basic knowledge and skill foundation of social work services appropriate for these populations. HBEL 348, Components: Lecture
Requirement Group: Open to students in the MSW program and MSW graduates (RG999).

DSEL 5325 (3 credits)
Direct Practice in Health
Examines practice concepts and principles in working with patients, families, and patient and caretaker’s groups, in a variety of health care settings: acute care, chronic care, inpatient and ambulatory care, nursing homes, hospice, and community-based services. Studies issues and trends in practice including prevention (AIDS as a prime example); team work and other forms of interdisciplinary collaboration; organizational innovation; new practice roles; new ethical and moral dilemmas in health care practice. Views content from an ecological perspective on practice.
Components: Lecture
Requirement Group: Open to students in the MSW Program. Co- or Prerequisite: CSWK 5301 (RG3706)

DSEL 5328 (3 credits)
Social Work Practice with Children
This course is designed to help students develop knowledge and skills in preventive work as well as clinical work with children. It briefly examines major theoretical orientations and research findings in working with children. Aspects of ecological theory, psychosocial theory, cognitive-behavioral theory as well as theories of group development are presented. Key issues of child development are summarized. Major social work settings that provide services to school age children are described and their impact on services addressed. The major emphasis of this course is on: 1) students’ understanding of the importance of program media either as
tools or as an end in themselves (program media include, but are not limited to drawing, simple arts and crafts, cooking, drama, games, music, nature walks, puppet-shows, role plays, sand trays, doll houses, story-telling and writing, sports etc.); 2) students’ development of skills in selecting these program media to achieve certain practice goals, and 3) students’ development of ease and leadership skills in utilizing a Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

Human Behavior
HHEL 5300 (3 credits)
Substance Abuse I: Intro to Alcohol and Other Drugs
Examines the special issues and problems in dealing with alcohol and drug abuse. Focuses on: developing a conceptual framework of drug abuse and addiction; major classifications of drugs; examining high risk populations with an emphasis on their unique problems and needs; integrating knowledge with practice by giving careful consideration to treatment issues such as identification, assessment, referral, therapeutic strategies, treatment modalities and settings; providing information on the role of federal, state, and voluntary organizations which impact on prevention, education and treatment programs.
Elective course for Substantive Area: Focused Area of Study on Mental Health and Substance Abuse in Social Work Practice.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HHEL 5301 (3 credits)
Substance Abuse II: Prevention and Treatment of Alcohol and Other Drug Abuse.
Builds upon HBEL 372, an overview of the various classes of drugs and the acute and chronic effects of drugs on human behavior and the body. Focuses on traditional and new intervention techniques that could be applied to social work practice. Provides knowledge of clinical applications and the empirical validation of effectiveness of major intervention strategies used in treatment of addictions.
Elective course for Substantive Area: Focused Area of Study on Mental Health and Substance Abuse in Social Work Practice.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HHEL 5444 (3 credits)
Aging and Mental Health.
Uses ecological theory as a framework for understanding the psychological processes of adaptation and the mental health needs of the elderly. Analyzes various service arrangements in terms of their usefulness in rehabilitation and prevention.
Elective course for Substantive Area: Focused Area of Study on Mental Health and Substance Abuse in Social Work Practice with Older Adults.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HHEL 5347 (3 credits)
Black Family Life.
Examines the Black family from an historical and current perspective, focusing on the individual and collective social, cultural, and psychological contents within which behavior is expressed and by which it is significantly influenced; the adaptive,
resilient behavior utilized by Black family units for survival and success; the Black family as a varied and complex system interacting with other systems within the wider society; myths related to the behavior and functioning of Black families.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5352(3 credits)
Death and Dying.
Focuses on dying as experienced by persons of all ages (not only the elderly) and on its psychological concomitants, such as rage and grief, bereavement and mourning; suicide and suicide prevention; dying as a career with identifiable states, as well as the concept of death as a social phenomenon.

Elective course for Substantive Area: Focused Area of Study on Mental Health and Substance Abuse in Social Work Practice.

Elective course for Substantive Area: Focused Area of Study on Social Work Practice with Older Adults.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5357(3 credits)
Social Gerontology.
Considers the societal aspects of aging, including the social psychological concomitants of adjustments, changing roles, and systems of social relationships. Includes an overview of the economic aspects of aging and the service delivery system.

Required course for Substantive Area: Focused Area of Study on Social Work Practice with Older Adults.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5362(3 credits)
Culture and Health/Mental Health Disparities: Micro and Macro Perspectives
This course will examine health/mental health disparities as it relates to contemporary micro and macro practice with diverse populations. The objective of the course is the examination and analysis of the inter-relations among differential diagnosis, culture, and varying treatment strategies. The content will cover important aspects of health such as factors influencing wellness and disease, contemporary socio-political factors, and agendas that shape how health care services are delivered and accessed. We will explore current domestic and international health epidemics, discuss their implications for populations that are at risk, and the professional communities' responses to them.

Components: Lecture
Requirement Group: FED 5301

HBeL 5370(3 credits)
New Perspectives on Lesbians and Gay Men.
Examines the problems of America's homosexual minority. Presents homophobia (fear of homosexuals or homosexuality) as a prejudice held by all people, gay and straight, in a society which holds that heterosexuality is the "normal" and "acceptable" behavior and attitude. Intended to expand the students' awareness of how homophobic attitudes affect them and their relationships with others in both professional and non-professional settings.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5373(3 credits)
Violence Against Women: A Cultural Heritage.
Examines the connections between violence against women and the power distributions within society. Special focus on sexual assault, battering, sexual harassment, prostitution and pornography. Analysis considers social, political, and economic dynamics that affect the individual. Discusses the connection between violence and other social problems: sexism, racism, and classism.

Elective course for Substantive Area: Focused Area of Study on Social Work with Women and Children in Families.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5376(3 credits)
Puerto Rican and Latina Women and Their Reality.
Emphasizes the double oppression that the Puerto Rican woman faces. Analyzes the double burden that she confronts when seeking to maintain her identity as a Puerto Rican and as a woman in a society which discriminates against both groups. Equal emphasis is placed on issues of racism, classism, and heterosexism since these issues create an even stronger burden on Puerto Rican women. Special consideration is given to Puerto Rican cultural aspects of the socialization process of males and females with a focus on rigid adherence to sex roles (e.g., machismo - marianismo).

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5381(3 credits)
Primarily for students with some practice experience in family and children's services, examines the phenomena of child abuse and neglect and societal and professional responses aimed at their prevention and treatment. As with other courses in the Substantive Area in Family and Children's Services, it is presented in the context of ecologically-oriented, family-centered child welfare policy and practice.

Elective course for Substantive Area: Focused Area of Study on Social Work with Women and Children in Families.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5386(3 credits)
Focuses on the Holocaust and its many implications for social work students. The course traces the rise of the Nazi totalitarian state resulting from defeat after World War I, the world wide depression of the 1930's and Hitler's targeting of Jews in Germany and eventually Europe-wide. The lessons for social workers will be drawn from these experiences. The integration of this material by students into other courses is encouraged.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5391(3 credits)
Parenting and Parent Education.
Explores the methods that parents use to impart cultural values, control behavior, and assure healthy development of children. Students review findings of basic research about parenting and participate in a parent education workshop.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5393(3 credits)
Emerging Issues in Mental Health and Substance Abuse.
This course is designed to introduce students to current issues confronting providers of mental health and addiction services and consumers of these services as we enter the 21st Century. Philosophies about people with mental health, addiction and co-occurring disorders are changing in response to the developing knowledge base and the rise of consumer movements. Specific emphasis on the growing need for broad based multi cultural service systems for consumers will be fostered. Issues of poverty and the "severely and predominantly mentally ill" will be discussed.

Required course for Substantive Area: Focused Area of Study on Mental Health and Substance Abuse in Social Work Practice.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

HBeL 5395(3 credits)
Scientific Foundations of Child/Adolescent Development, Mental Disorders, and Substance Abuse.
This Web-based Human Behavior elective is an
advanced 3-credit course on knowledge for practice in children's services, mental health (all ages), and addictions. It can be used to meet an elective requirement in some substantive areas, by permission of the area chair. No class attendance required, one optional session. Students become familiar with current and emerging knowledge in these areas. They become proficient at accessing cutting-edge practice-relevant information to address issues and challenges that arise day-to-day. Class members discuss issues and questions with each other and the instructor via the World Wide Web. Class members can collaborate with each other on assignments if they wish. An optional class session at the beginning of the semester is offered to help students become comfortable with Web technology, and to get to know each other and the instructor in person. Components: Lecture Requirement Group: Open to students in both the MSW program and the STEP program. Prerequisite: Co-requisite: BASC 5361 (RG 3162).

Independent Study

IS 5394 (1 - 9 credits) Instructor Consent Required Independent Study Special social work topics not included in the curriculum may be the subject of an Independent Study. A proposal to do an independent study must be presented no later than the second session of the semester in which the course is to be completed and be approved by the Director of Student Services. A maximum of three independent study courses or nine credits may be applied toward degree requirements.

Components: Independent Study Requirement Group: Open only to students enrolled in the MSW program (RG98).

Research

Rsch 5326 (3 credits) Special Topics in Research Introduces new and innovative material on a variety of special topics in research. These topics will rotate content to include survey methods, ethnography, single system design or focus on a specific problem or population.

Components: Lecture Requirement Group: Open to students in the M.S.W. Program. Prerequisite: BASC 5332 (RG3710)

Rsch 5332 (3 credits) Research Methods in Social Work Practice This course builds on students' prior research knowledge acquired through undergraduate training, previous elective graduate coursework or self study. This course will provide students with: 1) an understanding of various "families" of research methods to equip them to evaluate social work practice with systems of all sizes and to be able to understand and interpret basic published social work research; 2) the knowledge to identify data collection methods that are appropriate to the research design being employed; and 3) an understanding of true experimental designs as a means for addressing strong causal inference with oppressed groups.

Required course for students in the M.S.W. program. Policy Practice students must take this course prior to or concurrent with POPR 301: Policy Practice: Process, Use of Data and Information Technology. The prerequisites for this course may be met in one of the following ways: 1) successful completion of (minimum grade of B) a basic undergraduate or graduate research course during the previous six Components: Lecture Requirement Group: Open to students in both the MSW program and STEP program. Prerequisite: BASC 5330 / RSCH 5330 (RG 3163).

RSch 5334 (2 credits) Social Work Practice Evaluation with Macro Systems

This course focuses on the development of knowledge, attitudes and skills appropriate to the ongoing critical evaluation of social work practice with large systems from diverse populations. This course will prepare students to integrate research methods into assessment, planning, intervention and evaluation of their professional social work practice. Students will learn to analyze data drawn in order to inform practice decision making by selecting appropriate designs, determining client goals, empirically evaluating programs and services, objectively describing phenomena, and dissemination research findings. Students will be exposed to a range of ethical issues.

Components: Lecture Requirement Group: Open to students in both the MSW program and STEP program. Prerequisite: BASC 5330 / RSCH 5330 (RG 3163).

RSch 5335 (2 credits) Social Work Practice Evaluation with Micro Systems

Focuses on the development of knowledge, attitudes and skills appropriate to the ongoing critical evaluation of social work practice with small systems from diverse populations. This course will prepare students to integrate research methods into assessment, planning, intervention and evaluation of their social work practice. Students will learn to employ single systems designs to analyze data in order to inform practice decision-making. Content areas in the course include selecting appropriate designs, determining client goals, measurement issues around goal selection, graphing client data, appropriate analyses, and reporting. Students will be exposed to a range of ethical issues.

Components: Lecture Requirement Group: Open to students in both the MSW program and STEP program. Prerequisite: BASC 5330 / RSCH 5330 (RG 3163).

RSch 5345 (2 credits) Social Work Practice Evaluation with Women and Children

Focuses on the development of knowledge, attitudes and skills appropriate to the ongoing critical evaluation of social work practice with women and children, in particular income supports, maternal and child health, housing, domestic violence, foster care and adoption, and parenting and child maltreatment. Special attention will be paid to the legal rights of women and children, especially those who are immigrants, have disabilities, or are members of minority groups.

Required course for Substantive Area: Focused Area of Study on Social Work with Women and Children in Families. Components: Lecture Requirement Group: Open to students in both the MSW program and the STEP program SWEL 5317 (3 credits) Women, Children, and Families: Social Policies and Programs Focuses on the policies and programs that affect women and children, in particular income supports, maternal and child health, housing, domestic violence, foster care and adoption, and parenting and child maltreatment. Special attention will be paid to the legal rights of women and children, especially those who are immigrants, have disabilities, or are members of minority groups.

Elective course for Substantive Area: Focused Area of Study on Social Work with Women and Children in Families. Components: Lecture Requirement Group: Open to students in both the MSW program and the STEP program SWEL 5321 (3 credits) Social Work Perspectives on Adoption Focuses on new developments in adoption and the knowledge, values and skills needed by social workers to effectively plan and deliver adoption services to a diverse group of children and families.

SWEL 5325 (3 credits) Service Mapping: Geographic Information Systems for Social Workers Geographic Information Systems (GIS) are a system of computer hardware and software as well as data and personnel used for the purposes of analyzing, displaying and presenting information that is tied to a spatial location. These systems provide a new tool social workers can use for the purposes of service planning, development, implementation and analy-
sis. For example, information about current and potential client populations can be tied to specific locations to display service needs or outcomes. This course is designed to introduce social work students to the basics of using a desktop GIS and map analysis concepts for social work researchers, educators and policy planners. Students will become familiar with the sources, contents and uses of some of the freely available data sources available in Connecticut and on the Internet.

Components: Lecture

Requirement Group: Open to students in the MSW program and the STEP program (RG 4044)

SWEL 5333(1 - 3 credits) Instructor Consent Required

Travel Study for Social Work.
Combines academic study with travel to examine social work and social welfare in other systems. Addresses the impact of social, economic and political systems on social welfare and social work; a cross-national examination of the profession; and cross-cultural understanding.

Elective course for Substantive Area:

Components: Field Studies, Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5345(3 credits)
International Development: Theory and Practice
This course addresses international relief, reconstruction and development -- theories and practice strategies to attack poverty and improve human well-being. Among the topics covered will be: building local capacity, developing local partnerships, use of appropriate technology to create sustainability, multi-sectoral work, cultural relevance, ensuring gender sensitive programming, understanding and working with local and national structures, funding streams, and international partnerships. Elective course for Substantive Area: Focused Area of Study on International Social Work.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5348(3 credits)
International Social Work Global Issues
Cross-national, comparative approach to selected topics in international social problems and social welfare. Consideration of the problem of developing nations and modernization and urbanization as worldwide processes; the role of international organizations; the role of social work in international issues; and the implications of cross-national study for practice.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5350(3 credits)
Comparative Social Welfare Policy between the U.S. and the 2nd World
This course will explore the evolution and current state of development of social welfare in the "Second World", a designation that applies to those countries that were part of the Soviet Union or Warsaw Pact. Course content will include a discussion of a framework for policy analysis and comparative international social welfare policy analysis using selected health, welfare and employment policies as illustrations of current social welfare policy in Armenia and other "Second World" countries. Course will be jointly taught by Dr. Nancy A. Humphreys and Dr. Ludmilla Haroutunian involving a group of UConn MSW students and Armenian graduate students using WebCT technology.

Elective course for Substantive Area: Focused Area of Study in International Social Work.

Components: Discussion

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5351(3 credits)
Policy Issues in Aging.
History, development, and ramifications of social, economic and political policy issues relevant to the elderly; the elderly as voters and political actors. Major attention to framework for policy analysis.

Elective course for Substantive Area: Focused Area of Study on Social Work Practice with Older Adults.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5359(3 credits)
Seminar on Long-Term Care for the Elderly.
Examines nursing homes and other long-term care facilities. Explores services offered by these institutions and the role of social work. Special attention given to the politics and government regulations of long-term care.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5360(3 credits)
Economic Justice: Labor and Social Work
This course examines the relationship of social work and the labor movement with particular attention to the labor movement under new leadership and with new direction. The class is organized around four themes: 1) Common roots of labor and social work, 2) Social workers as union members, 3) Social workers as union organizers and 4) The labor movement as a social movement.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5370(3 credits)
Social Work in Health Care: Introduction to Knowledge, Policy and Practice.
Bio-psycho-social-cultural aspects of health, illness, and disability in the context of individual, family, and community life. Attention is given to health care systems, social work roles and tasks in health care, the impact of health policy, and the concerns of planning, administration, supervision, and consultation in health care and in social work services in health care.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5371(3 credits)
Permanent Families for Children.
Focuses on permanency planning as a framework for social work practice in child welfare. Examines the philosophy, theory, and methodology of permanency planning for children and youth placed, or at risk of placement, out of their homes. Emphasizes programs, skills, and strategies for preventing placement, reuniting placed children with their biological families, or developing other permanent families, particularly through adoption.

Elective course for Substantive Area: Focused Area of Study on Social Work with Women and Children in Families.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5374(3 credits)
Social Work and Children's Rights.
Reviews the historical development of the children's rights movement and its relationship to current services. Examines and evaluates legal decisions affecting due process, equal protection, right to permanency, etc. Also examines legal problems as they affect foster care, adoption, child custody, and child support.

Elective course for Substantive Area: Focused Area of Study on Social Work with Women and Children and Families.

Components: Lecture

Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5375(3 credits)
War, Militarism and Social Work
This course provides theoretical and empirical content on several linked global phenomenon -- imperialisim, militarism, and war -- to understand their impact on U.S. and global society. The course will also analyze "globalization," its relationship to war and militarism, and why this process is relevant to social work practice. The course examines political forces in the United States that support and benefit from militarism to illustrate their effects on social policy and the social work profession. Arguments for and against a dominant and aggressive U.S. role in global affairs will be examined. The course will also illustrate the adverse impact upon the welfare
state and oppressed populations.
Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

SWEL 5377(3 credits)
Urban Policy Issues.
Focuses on urban problems and policy issues as well as social work practice issues in urban settings. Connecticut cities are used to explore the effectiveness of current policies and consider the need for policy change. Current social and economic needs of urban populations and the political environment are also considered.

SWEL 5380(3 credits)
Political Social Work
This course will offer students an opportunity to explore the world of elected politics as a legitimate field of social work practice. Social workers are currently playing many roles in this area including, serving as volunteer and paid staff in political campaigns at the local, state and federal level; as paid staff of elected politicians; in politically appointed positions; and as elected politicians. Course content will focus attention on practical realities of each of these positions. As part of this course, students will be required to attend the annual Campaign School sponsored by the Institute for the Advancement of Political Social Work Practice.

Components: Lecture
Requirement Group: Open to students in both the MSW program and the STEP program

Special Topics

SPTP 5318. Special Topics
(SPTP 318) 1–3 credits. Lecture. Open to students in both the M.S.W. program and the STEP program.
Introduces new and innovative material into the curriculum on an experimental basis. Any special topics course may be offered only twice and may not duplicate content already available in the regular curriculum. Any instructor offering a special topics course must submit the title and a brief statement of focus of the course to the Registrar for inclusion in the course registration schedule. A student may apply up to 8 credits of Independent Study and Special Topics in Social Work (combined) toward the M.S.W. degree. This course is open to all matriculated students.
historical understanding of social work knowledge, values and interventions. It reviews the social, economic, political and intellectual forces that influence the development of social welfare and professional social work. It examines the role that conflicting ideologies and commitments play in alleviating stress and suffering. The course focuses on knowledge of the development and history of social work in the context of changing social, economic, political and intellectual environments.

Components: Lecture
Requirement Group: Open to doctoral students in Social Work, others with permission (RG2696).

SSW 6435(3 credits)
Social and Behavioral Science: Smaller Target Systems
This course helps students to understand the theoretical and empirical frameworks on which contemporary best practices are built. The theories and frameworks examined include cognitive, behavioral/social learning, psychodynamic, family systems, and other related concepts. Other theories may be added that have been demonstrated to be valid underpinnings of effective or promising social work practice.
Components: Lecture
Requirement Group: Open to doctoral students in Social Work, others with permission (RG2696).

SSW 6436(3 credits)
Comparative Social Work Practice Models (Micro Practice)
This course explores the major social casework and group practice models from historical, theoretical, and empirical perspectives. Current practice approaches and models from related fields empirically shown to be most effective or promising are examined. Selected social work models are examined within the social, political, and ideological contexts of their times, as well as with respect to their contributions to the profession's knowledge base. Each model's contribution to the knowledge base and to direct practice models are investigated and related to the student's conceptual and practice experiences.
Components: Lecture
Requirement Group: Open to doctoral students in Social Work, others with permission (RG2696).

SSW 6445(3 credits)
Social and Behavioral Science: Knowledge Base for Practice with Large Target Systems
This course conveys substantive knowledge from social science disciplines that inform macro practice with large systems (community organization, administration, and policy practice). Relevant disciplines include economics, political science, sociology (including organizational theory), anthropology, and epidemiology. Students use fundamental knowledge in each of these social sciences to demonstrate competence in the application of major social science theoretical models relevant to macro practice and the empirical evidence that supports these theories. Connections between macro and micro practice (social work with small systems) is covered. Ethical implications of knowledge developed by disciplines with different value bases when applied to social work is also covered.
Components: Lecture
Requirement Group: Open to doctoral students in Social Work, others with permission (RG2696).

SSW 6446(3 credits)
Comparative Social Work Practice Models (Macro Practice)
This course explores the evolution and current development of macro practice methods, including community organization, administration, and policy practice in social work. After a brief review of the conceptual history of macro practice social work, the course examines the unique roles of macro practice methods in carrying out the mission of the profession. Value issues and ethical dilemmas associated with social advocacy and policy change are examined throughout.
Components: Lecture
Requirement Group: Open to doctoral students in Social Work, others with permission (RG2696).

SSW 6451(3 credits)
Dissertation Preparation Seminar
This course is designed to assist students in identifying suitable dissertation topics and developing appropriate methodological approaches. It provides opportunities to assist students in building a firm foundation, upon which to engage in independent research and scholarship and to advance existing knowledge. Students prepare papers related to their dissertation topics for presentation and discussion with the group and for external conferences, in the process strengthening their scientific communication skills.

Students taking this course receive a grade of Satisfactory/Unsatisfactory.
Components: Lecture
Requirement Group: Open to doctoral students in Social Work, others with permission (RG2696).

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GRAD 497) 3 credits.
†GRAD 6950. Doctoral Dissertation Research
(GRAD 495) 1 - 9 credits.
†GRAD 6960. Full-Time Doctoral Research
(GRAD 496) 3 credits.
GRAD 6998. Special Readings (Doctoral)
(GRAD 498) Non-credit.
GRAD 6999. Dissertation Preparation
(GRAD 499) Non-credit.
COURSES OF STUDY

SOCI 5001 (1 credits) Instructor Consent Required Proseminar
Required of all M.A. candidates in the first year of study. Covers issues of successful graduate education and professionalization, including transitioning from the role of student to scholar; mentoring; networking; choosing thesis topics; presenting papers at conferences; getting papers published; getting grants; and developing vitae.
Components: Lecture

SOCI 5003 (1 - 3 credits) Teaching Sociology
A survey and discussion of the content, viewpoints and methods that can be employed in teaching sociology. Emphasis is on course preparation for new teachers.
Components: Seminar
Requirement Group: Open only to graduate students in Sociology, others with permission (RG841).

SOCI 5201 (3 credits) The Logic of Social Research
Required of all M.A. candidates in the first year of study. Covers the logic of how to frame and design social research. Topics include the link between theory and method, selection of a research topic, inductive versus deductive reasoning, causality (including research designs for identifying causal relations) and causal errors, conceptualization, operationalization, levels of analysis, measurement, reliability and validity, sampling, using mixed methods, research ethics, and the politics of social research.
Components: Seminar

SOCI 5203 (3 credits) Instructor Consent Required Quantitative Research I
Required of all M.A. candidates in the first year of study. Introduction to quantitative methods of social research. Topics include linear regression, including ANOVA and ANCOVA; hypothesis testing and model selection; regression diagnostics; nonlinearity and functional form; path analysis; and factor analysis.
Components: Seminar

SOCI 5205 (3 credits) Instructor Consent Required Topics in Quantitative Methods
Special topics in qualitative methods in sociological research. Topics will vary by semester.
Components: Seminar

SOCI 5210(3 credits) Instructor Consent Required Applied Survey Design and Analysis
The design, administration, and analysis of sample surveys.
Components: Lecture

SOCI 5221 (3 credits) Instructor Consent Required Qualitative Research I
Introduction to qualitative methods of social research. Topics include epistemologies of qualitative methodologies; ethical issues in qualitative research; the Chicago School; symbolic interactionism and grounded theory; introduction to fieldwork; basic fieldwork techniques; interviewing; narrative analysis; textual analysis; data analysis; content analysis using computers; and writing anlyses of data.
Components: Seminar
Requirement Group: Open to master's and doctoral students in Sociology, others with permission (RG841).

SOCI 5225 (3 credits) Instructor Consent Required Topics in Qualitative Methods
Special topics in qualitative methods in sociological research. Topics will vary by semester.
Components: Seminar

SOCI 5251 (3 credits) Instructor Consent Required Core Theorists
An examination of the original writings of the major figures in sociological theory: Durkheim, Marx, Weber, and Simmel. The course focuses upon the theories of these major figures, their relations with contemporaries, their interconnections, and their influence upon subsequent theory and theory groupings.
Components: Seminar

SOCI 5255 (3 credits) Instructor Consent Required Topics in Sociological Theory
Special topics in sociological theory. Topics will vary by semester.
Components: Seminar

SOCI 5275 (3 credits) Instructor Consent Required Topics in Culture
Special topics in sociological theory and research in culture. Topics will vary by semester.
Components: Seminar

SOCI 5301 (3 credits) Instructor Consent Required Seminar on Crime and Justice
Broad survey of topics and issues relating to crime and the criminal justice system in the United States. Emphasis on policy issues.
Components: Seminar

SOCI 5311 (3 credits) Instructor Consent Required Deviant Behavior
Review of theory and research, with emphasis on their implications for a general theory of deviant behavior.
Components: Lecture

SOCI 5315 (3 credits) Instructor Consent Required Topics in Deviance and Crime
Special topics in sociological theory and research in deviance and crime. Topics will vary by semester.
Components: Seminar

SOCI 5351 (3 credits) Instructor Consent Required Seminar on Society and the Individual
A comparative analysis of the major theoretical approaches to individual-society relations, with an emphasis upon interdisciplinary contributions and trends of development. Contemporary issues and the prospects for theoretical integration are examined in the perspective of the long-term development of the field.
Components: Seminar

SOCI 5355 (3 credits) Instructor Consent Required Topics in Individuals and Society
Special topics in sociological theory and research concerning the relationship between individuals and society. Topics will vary by semester.
Components: Seminar

SOCI 5401 (3 credits) Instructor Consent Required Analysis of Social Organization
An examination of patterns of social organization found in bureaucracies and voluntary associations.
Components: Seminar

SOCI 5406 (3 credits) Health Organizations and Their Environments
An in-depth analysis of the interaction between organizations and their sociological environments. An emphasis is placed on health service organizational obstacles to health planning.
Components: Lecture

SOCI 5411 (3 credits) Instructor Consent Required Sociology of Work
Analysis of work behavior with particular attention to formal and informal organization of labor, white collar, executive and professional roles.
Components: Seminar

SOCI 5421 (3 credits) Instructor Consent Required Seminar in Social Stratification
Social class theories, and problems of distribution of power and privileges. Some attention will be given to a comparative analysis of class systems.
Components: Seminar

SOCI 5425 (3 credits) Instructor Consent Required Topics in Stratification and Inequality
Special topics in sociological theory and research in social stratification and inequality. Topics will vary by semester.
Components: Seminar

SOCI 5453 (3 credits) Instructor Consent Required Medical Sociology
An examination of the institutional pattern of health care, including the social aspects of health and sickness, types of practitioners, and the social organization of therapeutic settings.
Components: Lecture

SOCI 5461 (3 credits) Instructor Consent Required Social Gerontology
A basic consideration of the societal aspects of aging including the social psychological concomitants of adjustments, changing roles, and systems of social relationships.

Requirement Group: Prerequisites: SOCI 5201 (RG3498)
SOCI 5205 (3 credits) Instructor Consent Required Topics in Quantitative Methods
Special topics in quantitative methods in sociological research. Topics will vary by semester.
Components: Seminar

SOCI 5210 (3 credits) Instructor Consent Required Applied Survey Design and Analysis
The design, administration, and analysis of sample surveys.
Components: Lecture

SOCI 5221 (3 credits) Instructor Consent Required Qualitative Research I
Introduction to qualitative methods of social research. Topics include epistemologies of qualitative methodologies; ethical issues in qualitative research; the Chicago School; symbolic interactionism and grounded theory; introduction to fieldwork; basic fieldwork techniques; interviewing; narrative analysis; textual analysis; data analysis; content analysis using computers; and writing analyses of data.
Components: Seminar
Requirement Group: Open to master's and doctoral students in Sociology, others with permission (RG841).

SOCI 5225 (3 credits) Instructor Consent Required Topics in Qualitative Methods
Special topics in qualitative methods in sociological research. Topics will vary by semester.
Components: Seminar

SOCI 5251 (3 credits) Instructor Consent Required Core Theorists
An examination of the original writings of the major figures in sociological theory: Durkheim, Marx, Weber, and Simmel. The course focuses upon the theories of these major figures, their relations with contemporaries, their interconnections, and their influence upon subsequent theory and theory groupings.
Components: Seminar

SOCI 5255 (3 credits) Instructor Consent Required Topics in Sociological Theory
Special topics in sociological theory. Topics will vary by semester.
Components: Seminar

SOCI 5275 (3 credits) Instructor Consent Required Topics in Culture
Special topics in sociological theory and research in culture. Topics will vary by semester.
Components: Seminar

SOCI 5301 (3 credits) Instructor Consent Required Seminar on Crime and Justice
Broad survey of topics and issues relating to crime and the criminal justice system in the United States. Emphasis on policy issues.
Components: Seminar

SOCI 5311 (3 credits) Instructor Consent Required Deviant Behavior
Review of theory and research, with emphasis on their implications for a general theory of deviant behavior.
Components: Lecture

SOCI 5315 (3 credits) Instructor Consent Required Topics in Deviance and Crime
Special topics in sociological theory and research in deviance and crime. Topics will vary by semester.
Components: Seminar

SOCI 5351 (3 credits) Instructor Consent Required Seminar on Society and the Individual
A comparative analysis of the major theoretical approaches to individual-society relations, with an emphasis upon interdisciplinary contributions and trends of development. Contemporary issues and the prospects for theoretical integration are examined in the perspective of the long-term development of the field.
Components: Seminar

SOCI 5355 (3 credits) Instructor Consent Required Topics in Individuals and Society
Special topics in sociological theory and research concerning the relationship between individuals and society. Topics will vary by semester.
Components: Seminar

SOCI 5401 (3 credits) Instructor Consent Required Analysis of Social Organization
An examination of patterns of social organization found in bureaucracies and voluntary associations.
Components: Seminar

SOCI 5406 (3 credits) Health Organizations and Their Environments
An in-depth analysis of the interaction between organizations and their sociological environments. An emphasis is placed on health service organizational obstacles to health planning.
Components: Lecture

SOCI 5411 (3 credits) Instructor Consent Required Sociology of Work
Analysis of work behavior with particular attention to formal and informal organization of labor, white collar, executive and professional roles.
Components: Seminar

SOCI 5421 (3 credits) Instructor Consent Required Seminar in Social Stratification
Social class theories, and problems of distribution of power and privileges. Some attention will be given to a comparative analysis of class systems.
Components: Seminar

SOCI 5425 (3 credits) Instructor Consent Required Topics in Stratification and Inequality
Special topics in sociological theory and research in social stratification and inequality. Topics will vary by semester.
Components: Seminar

SOCI 5453 (3 credits) Instructor Consent Required Medical Sociology
An examination of the institutional pattern of health care, including the social aspects of health and sickness, types of practitioners, and the social organization of therapeutic settings.
Components: Lecture

SOCI 5461 (3 credits) Instructor Consent Required Social Gerontology
A basic consideration of the societal aspects of aging including the social psychological concomitants of adjustments, changing roles, and systems of social relationships.
Components: Lecture
SOCI 5471 (3 credits)
Energy, Environment, and Society
Sociological perspectives on energy production, distribution and consumption; environmental impacts and constraints; alternative energy and environment futures; and cross-national studies of policy formation and implementation.
Components: Seminar

SOCI 5501 (3 credits) Instructor Consent Required
Racism
Variable topics in the study of racism, such as racism and U.S. social policy, white racism, and the social construction of whiteness. Topic may vary by semester.
Components: Seminar

SOCI 5505 (3 credits) Instructor Consent Required
Topics in Racism and Ethnic Group Relations
Special topics in sociological analyses of racism and ethnic group relations. Topics will vary by semester.
Components: Seminar

SOCI 5511 (3 credits)
Seminar on American Jewry
Applications of sociological theory and methods to the analysis of American Jewry.
Components: Seminar

SOCI 5515 (3 credits) Instructor Consent Required
Sociology of Immigration
Theoretical and empirical work on immigration and ethnicity including forms of assimilation, ethnicity and transnationalism; challenges and opportunities for incorporation, and struggles over political, social, economic human rights. The course focuses on the US with selected cases from Europe and Asia.
Components: Seminar

SOCI 5601 (3 credits)
Gender and Society
Components: Seminar

SOCI 5605 (3 credits) Instructor Consent Required
Topics in Gender and Sexualities
Special topics in sociological theory and research in gender and sexualities. Topics will vary by semester.
Components: Seminar

SOCI 5612 (3 credits) Instructor Consent Required
Feminist Theory and Social Science
Examines intellectual background and contemporary context for feminist theoretical debates in the social sciences. Explores these debates with reference to feminist perspectives on political theory, science, economics, postmodernism, postcolonialism, globalization, socialization, and sexuality.
Components: Seminar

SOCI 5651 (3 credits) Instructor Consent Required
Seminar in the Family
An analytical study of the family as a social group in terms of structure, member roles, and function with an examination of ethnic, religious, and class differences. The interrelationship between the family and its cultural context is analyzed with particular reference to the impact of modern culture.
Components: Seminar

SOCI 5703 (3 credits) Instructor Consent Required
The Metropolitan Community
Topics in urban sociology.
Components: Lecture

SOCI 5705 (3 credits) Instructor Consent Required
The Community
A critical analysis of current theories of the nature of the community, its types, functions, processes, agencies, and values. Emphasis is given to community surveys and community organization.
Components: Lecture

SOCI 5706 (3 credits) Instructor Consent Required
Seminar in Comparative Urbanization
Urbanization as a factor in social and cultural change, particularly in developed areas: Asia, Africa and Latin America.
Components: Seminar

SOCI 5751 (3 credits) Instructor Consent Required
Demography
Survey and analysis of theories and present problems in demography. This includes such topics as: population growth and distribution, population composition, mortality, fertility, migration, and population policy.
Components: Seminar

SOCI 5753 (3 credits) Instructor Consent Required
Methods of Population Analysis
The sources and characteristics of demographic data and vital statistics and the methods and problems of population data analysis.
Components: Seminar

SOCI 5757 (3 credits) Instructor Consent Required
Seminar in Human Fertility, Mortality, and Migration
A review and critique of the literature on fertility, mortality and migration, and the dynamic interaction of these variables in population change.
Components: Seminar

SOCI 5801 (3 credits) Course ID: 009923 05-FEB-2008 Instructor Consent Required
Political Sociology
Sociological aspects of political institutions and behavior; social and economic bases of political power, ideology, and mobilization of support; community and national power systems, political parties, and elites.
Components: Seminar

SOCI 5805 (3 credits) Instructor Consent Required
Topics in Political Sociology
Special topics in sociological theory and research in political sociology. Topics will vary by semester.
Components: Seminar

SOCI 5806 (3 credits)
Seminar in Theories of the State
A sociological examination of theoretical analysis of the role of the state in modern society, and the relationship between the state and the applications of these theories to empirical analyses of specific research questions.
Components: Lecture

SOCI 5809 (3 credits) Instructor Consent Required
Inequality and the Welfare State
Analysis of the relationship between systems of racial, class, and gender inequality, and the formation and implementation of social policy by the contemporary U.S. welfare state.
Components: Seminar

SOCI 5821 (3 credits) Instructor Consent Required
Social Movements
Analysis of the conditions and processes underlying movement formation and participation and influencing their careers and outcomes.
Components: Seminar

SOCI 5829 (3 credits) Instructor Consent Required
Social Change
A study of the forces prompting and impeding societal change with particular attention to those operative in contemporary society. Major theories of social change are examined.
Components: Lecture

SOCI 5831 (3 credits) Instructor Consent Required
Law and Society
An overview of theoretical perspectives in the sociology of law, with emphasis on classical social theory.
Components: Lecture

SOCI 5833 (3 credits) Instructor Consent Required
Gender, Politics, and the State
Explores gendered construction of state and politics with attention to changes over time, across cultures and political institutions. Examines key debates within feminist political and legal theories and third world feminist and postcolonialist theories of the state. Discusses links between local resistance, immigration, cultural citizenship, international politics, neoliberal discourse, and global economic restructuring.
Components: Seminar

SOCI 5895 (1-3 credits) Instructor Consent Required
Investigation of Special Topics
A seminar course. Topics vary by semester.
Components: Seminar

SOCI 5899 (1-6 credits) Instructor Consent Required
Independent Study for Graduate Students
Special topic readings or investigations.
Components: Independent Study

SOCI 6005 (3 credits) Instructor Consent Required
Advanced Topics in Sociology
Advanced topics in sociological analysis. Topics will vary by semester.
Components: Seminar

SOCI 6203 (3 credits) Instructor Consent Required
Quantitative Research II
Advanced quantitative methods of social research. Topics include generalized linear models, including binary logit and probit, multinomial logit, ordered logit and probit, and count data; censoring, truncation, and sample selection; panel data; and correlated errors.
Components: Seminar

SOCI 6205 (3 credits) Instructor Consent Required
Advanced Topics in Quantitative Methods
Advanced topics in quantitative methods in sociological research. Topics will vary by semester.
Components: Seminar
SOCI 6231 (3 credits) Instructor Consent Required Qualitative Research II
Advanced topics in qualitative methods of social research. Topics include contemporary debates in qualitative methodology; critical perspectives on qualitative methodology; feminist research; institutional ethnography; the case method; extended case method; Third World and postcolonial approaches to social research; analyzing and reanalyzing field data; applied and evaluation research; participatory and activist research.
Components: Seminar

SOCI 6251 (3 credits) Instructor Consent Required Current Theory and Research
An examination of current theories. Topics include: consideration of their continuities with classical theories, conceptual and measurement problems in testing and constructing current theories, and the interplay between theory and research. Components: Seminar
Requirement Group: Prerequisite: SOCI 5251 (RG524).

SOCI 6255 (3 credits) Instructor Consent Required Advanced Topics in Qualitative Methods
Advanced topics in qualitative methods in sociological research. Topics will vary by semester.
Components: Seminar

SOCI 6265 (3 credits) Instructor Consent Required Advanced Topics in Sociological Theory
Advanced topics in sociological theory. Topics will vary by semester.
Components: Seminar

SOCI 6275 (3 credits) Instructor Consent Required Advanced Topics in Culture
Advanced topics in sociological theory and research in culture. Topics will vary by semester.
Components: Seminar

SOCI 6315 (3 credits) Instructor Consent Required Advanced Topics in Deviance and Crime
Advanced topics in sociological theory and research in deviance and crime. Topics will vary by semester.
Components: Seminar

SOCI 6355 (3 credits) Instructor Consent Required Advanced Topics in Individuals and Society
Advanced topics in sociological theory and research in the relationship between individuals and society. Topics will vary by semester.
Components: Seminar

SOCI 6425 (3 credits) Instructor Consent Required Advanced Topics in Stratification and Inequality
Advanced topics in sociological theory and research in social stratification and inequality. Topics will vary by semester.
Components: Seminar

SOCI 6605 (3 credits) Instructor Consent Required Advanced Topics in Gender and Sexualities
Advanced topics in sociological theory and research in gender and sexualities. Topics will vary by semester.
Components: Seminar

SOCI 6805 (3 credits) Instructor Consent Required Advanced Topics in Political Sociology
Advanced topics in sociological theory and research in political sociology. Topics will vary by semester.
Components: Seminar

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(Grad 397) 3 credits.

†GRAD 5950. Master’s Thesis Research
(Grad 395) 1-9 credits.

†GRAD 5960. Full-Time Master’s Research
(Grad 396) 3 credits.

GRAD 5998. Special Readings (Master’s)
(Grad 398) Non-credit.

GRAD 5999. Thesis Preparation
(Grad 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(Grad 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(Grad 495) 1-9 credits.

†GRAD 6960. Full-Time Doctoral Research
(Grad 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(Grad 498) Non-credit.

GRAD 6999. Dissertation Preparation
(Grad 499) Non-credit.

STATISTICS

Department Head: Distinguished Professor Dipak Dey
Professors: Bass, Chen, Gine, Glaz, Holsinger, Kenny, Kuo, Mukhopadhyay, Ravishanker, Vitale, and Wang
Associate Professors: Chi, Majumdar, Pozdnyakov, and Trpathi
Adjunct Associate Professor: Cappelleri

The Department of Statistics offers work leading to the M.S. and Ph.D. degrees, as well as courses in applied statistics in support of graduate programs in other fields. The M.S. program combines training in both statistical application and theory. To broaden their view of the use of statistics, candidates for the master’s degree are required to enroll in at least one course involving the application of statistics offered by another department on campus except Computer Science and Mathematics. In addition, students are encouraged to become involved in the statistical consultation work done by members of the Department. The doctoral program also provides a balance between statistical theory, statistical methodology, and probability. After completing the necessary course work and a sequence of comprehensive written and oral examinations, the Ph.D. student must write a dissertation representing an original contribution to the field of statistics or probability. It is possible for the dissertation to be predominantly a development of statistical methodology in new areas of application. Both the M.S. and Ph.D. programs allow students sufficient flexibility to pursue their interests and to provide the time to take courses offered by other departments.

There are no official course requirements for admission to graduate study in the Department, but a degree of mathematical facility is necessary for acceptable progress through the program.

The Department of Statistics is housed in the College of Liberal Arts and Sciences Building. Extensive computational facilities are available through three operating systems: Linux, Unix, and PC-Based NT. The Homer Babbidge Library provides excellent coverage of current and past issues of statistics journals as well as books in this field. There is also a separate departmental library.

COURSES OF STUDY

STAT 5005 (3 credits)
Introduction to Applied Statistics
One-, two-, and k-sample problems, regression, elementary factorial and repeated measures designs, covariance.
Use of computer packages, e.g., SAS and MINITAB.
Components: Lecture
Requirement Group: Not open to students who have passed STAT 201 or STAT 2215Q (RG613).

STAT 5015 (3 credits)
Distribution Theory for Statistics
Components: Lecture
Requirement Group: Open to graduate students in Statistics, others with permission (RGB14).

STAT 5099 (1-6 credits) Instructor Consent Required Investigation of Special Topics
Components: Independent Study
STAT 5105 (3 credits)
Quantitative Methods in the Behavioral Sciences
A course designed to acquaint the student with the
application of statistical methods in the behavioral
sciences. Correlational methods include multiple
regression and related multivariate techniques.
Components: Lecture

STAT 5192 (1 - 6 credits)
Supervised Research in Statistics
Components: Practicum

STAT 5315 (3 credits)
Analysis of Experiments
Straight-line regression, multiple regression, regres-
sion diagnostics, transformations, dummy variables,
one-way and two-way analysis of variance, analysis
of covariance, stepwise regression.
Components: Lecture
Requirement Group: Prerequisite: STAT 5005. Not
open to students who have passed STAT 243 or STAT
3115Q (RG615).

STAT 5325 (3 credits)
Sampling Theory
Sampling and non-sampling error, bias, sampling
design, simple random sampling, sampling with
unequal probabilities, stratified sampling, optimum
allocation, proportional allocation, ratio estimators,
regression estimators, super population approach-
es, inference in finite populations.
Components: Lecture
Requirement Group: Open to graduate students in
Statistics, others with permission (RG814).

STAT 5525 (3 credits)
Applied Statistics II
Analysis of variance, regression and correlation,
analysis of covariance, general linear models, robust
regression procedures, and regression diagnostics.
Components: Lecture
Requirement Group: Prerequisite: STAT 5505
(RG815).

STAT 5535 (3 credits)
Introduction to Operations Research
Components: Lecture
Requirement Group: Open to graduate students in
Statistics, others with permission (RG814).

STAT 5605 (3 credits)
Mathematical Statistics I
The sufficiency principle, the likelihood principle,
the invariance principle, point estimation, methods
of evaluating point estimators, hypothesis testing,
methods of evaluating tests, interval estimation,
methods of evaluating interval estimators.
Components: Lecture
Requirement Group: Prerequisite: STAT 5585
(RG816).

STAT 5625 (3 credits)
Applied Time Series
Introduction to prediction using time-series regres-
sion methods with non-seasonal and seasonal data.
Smoothing methods for forecasting. Modeling and
forecasting using univariate autoregressive moving
average models.
Components: Lecture
Requirement Group: Open to graduate students in
Statistics, others with permission (RG814).

STAT 5635 (3 credits)
Applied Probability
Fundamentals of measure and integration theory:
fields, σ-fields, and measures; extension of mea-
sures; Lebesgue-Stieltjes measures and distribution
of means, randomized block designs, Latin and
Graclo-Latin square designs, factorial designs,
two-level factorial and fractional factorial designs,
nested and hierarchical designs, split-plot designs.
Components: Lecture
Requirement Group: Prerequisite: STAT 5005. Not
open to students who have passed STAT 243 or STAT
3515Q (RG615).

STAT 5645 (3 credits)
Advanced Statistical Methods
Multivariate normal distributions, inference about
a mean vector, comparison of several multivari-
ate means, principal components, factor analysis,
canonical correlation analysis, discrimination and
classification, cluster analysis.
Components: Lecture
Requirement Group: Open to graduate students in
Statistics, others with permission (RG814).

STAT 5655 (3 credits)
Statistical Inference I
Exponential families; sufficient statistics, loss func-
tion, decision rules, convexity, prior information,
unbiasedness, Bayesian analysis, minimaxity, admis-
sibility, simultaneous and shrinkage estimation,
invariance, equivariant estimation.
Components: Lecture
Requirement Group: Open to graduate students in
Statistics, others with permission (RG814).

STAT 5665 (3 credits)
Exponential families; sufficient statistics, loss func-
tion, decision rules, convexity, prior information,
unbiasedness, Bayesian analysis, minimaxity, admis-
sibility, simultaneous and shrinkage estimation,
invariance, equivariant estimation.
Components: Lecture
Requirement Group: Open to graduate students in
Statistics, others with permission (RG814).

STAT 6315 (3 credits)
Advanced Probability
Fundamentals of measure and integration theory:
fields, σ-fields, and measures; extension of mea-
sures; Lebesgue-Stieltjes measures and distribution
functions; measurable functions and integration theorems; the Radon-Nikodym Theorem, product measures, and Fubini's Theorem. Introduction to measure-theoretic probability: probability spaces and random variables; expectation and moments; independence, conditioning, the Borel-Cantelli Lemmas, and other topics as time allows.

Components: Lecture
Requirement Group: Open to graduate students in Statistics, others with permission (RG814).

STAT 6425 (1 - 6 credits)
Seminar in Applied Probability
Components: Lecture
Requirement Group: Open to graduate students in Statistics, others with permission (RG814).

STAT 6484 (1 - 6 credits)
Seminar in Applied Statistics
Components: Seminar
Requirement Group: Open to graduate students in Statistics, others with permission (RG814).

STAT 6515 (3 credits)
Statistical Inference II
Statistics and subfields, conditional expectations and probability distributions, uniformly most powerful tests, uniformly most powerful unbiased tests, confidence sets, conditional inference, robustness, change point problems, order restricted inference, asymptotics of likelihood ratio tests.

Components: Lecture
Requirement Group: Open to graduate students in Statistics, others with permission. Prerequisite: STAT 6315 (RG527).

STAT 6594 (1 - 6 credits)
Seminar in Nonparametric Statistics
Components: Lecture
Requirement Group: Open to graduate students in Statistics, others with permission (RG814).

STAT 6625 (1 - 6 credits)
Seminar in Biostatistics
Components: Lecture
Requirement Group: Open to graduate students in Statistics, others with permission (RG814).

STAT 6694 (1 - 6 credits)
Seminar in Multivariate Statistics
Components: Lecture
Requirement Group: Open to graduate students in Statistics, others with permission (RG814).

STAT 6794 (1 - 6 credits)
Seminar in the Theory of Statistical Inference
Components: Lecture
Requirement Group: Open to graduate students in Statistics, others with permission (RG814).

STAT 6894 (1 - 6 credits)
Seminar in the Theory of Probability and Stochastic Processes
Components: Lecture
Requirement Group: Open to graduate students in Statistics, others with permission (RG814).

†GRAD 5930. Full-Time Directed Studies (Master’s Level)
(GRAD 397) 3 credits.

†GRAD 5950. Master’s Thesis Research
(GRAD 395) 1 - 9 credits.

†GRAD 5960. Full-Time Master’s Research
(GRAD 396) 3 credits.

GRAD 5998. Special Readings (Master’s)
(GRAD 398) Non-credit.

GRAD 5999. Thesis Preparation
(GRAD 399) Non-credit.

†GRAD 6930. Full-Time Directed Studies (Doctoral Level)
(GRAD 497) 3 credits.

†GRAD 6950. Doctoral Dissertation Research
(GRAD 495) 1 - 9 credits.

†GRAD 6960. Full-Time Doctoral Research
(GRAD 496) 3 credits.

GRAD 6998. Special Readings (Doctoral)
(GRAD 498) Non-credit.

GRAD 6999. Dissertation Preparation
(GRAD 499) Non-credit.

†GRAD 6950. Master's Thesis Research
(GRAD 395) 1 - 9 credits.

†GRAD 6960. Full-Time Master's Research
(GRAD 396) 3 credits.

Women’s Studies
Program Director: Associate Professor Manisha Desai
Associate Program Director: Assistant Professor Marita McComiskey
Core Faculty: Breen, Crawford, D’Alleva, Desai, Dussart, Makowsky, Meyers, Naples, and Turcotte

In virtually every field of university study, scholarship on women and gender has become increasingly influential because of its path-breaking theoretical perspectives and its empirical findings. The programs of virtually every professional association testify to the vitality and presence of feminist research.

The Women's Studies Graduate Certificate at the University of Connecticut can be earned by students enrolled in a graduate degree program, or as a stand-alone certificate for those who have completed their undergraduate degree.

Although feminist scholarship may be available in other disciplines, Women's Studies offers a concentrated perspective and in-depth analysis. The graduate certificate enables students to pursue interdisciplinary study in this flourishing field while enhancing their educational background by encouraging the integration of personal, academic and political experiences and ideals.

Because the program is interdisciplinary and students will approach the certificate from a range of home fields and with widely varying preparation, all certificate plans of study will be individualized. Each certificate candidate combines the study of Women's Studies theory and methodology, either through current study or prior preparation. The core faculty of the Women's Studies Program will act as advisors to certificate students; careful advising will ensure that each student's program has the appropriate interdisciplinary breadth and fits appropriately with her/his other course work and professional needs.

All Women's Studies certificate plans of study must include work in more than one department and must be approved by the Program Director or her designee, who will coordinate the certificate program.

The requirements for the Graduate Certificate in Women's Studies follow:

1. For non-degree students:
Open to students with a bachelor’s degree upon approval of the Women's Studies Graduate Study Committee.

Requires 12 hours of course work, of which at least nine hours must be at the 300 level or above, including:
Philosophy 5352 - Feminist Theory
Women's Studies 5365 - Women's Studies Research Methodology

Not more than one Women's Studies 5390 may be applied to the certificate.

2. For students enrolled in existing graduate programs:
Least nine hours must be at the 5000 level or above.

Application forms for both options may be obtained from the Women's Studies Program office.

Courses applicable to the Graduate Certificate in Women's Studies include many advanced 4000-level Women's Studies courses and the following graduate-level Women's Studies courses as well as a variety of courses in Anthropology, English, French, History, Human Development and Family Studies, Philosophy, Political Science, Psychology, and Sociology. Each semester the Women's Studies Program publishes a list of the applicable courses to be offered in the following semester.

COURSES OF STUDY

WS 5315 (3 credits)
Gender and Culture
Anthropological perspectives on the analysis of gender with special focus on dynamics of gender, culture, and power.
Components: Lecture
Course Equivalents: ANTH 5315

WS 5333 (3 credits) Instructor Consent Required
Topics in the History of American Women
Components: Lecture
Course Equivalents: HIST 5555

WS 5341 (3 credits)
Analysis of Rituals
Examines various theoretical contributions to the anthropological study of ritual. Controversies and ambiguities surrounding the social and symbolic significance of the ritual act for both men's and women's experiences and participation are addressed.
Components: Lecture
Course Equivalents: ANTH 5341
Requirement Group: Prerequisite: Anthropology 5311 (RG170).

WS 5344 (3 credits) Instructor Consent Required
Psychology of Women and Gender
A survey of research and theory on the interpretation of sex differences; gender, status, and power, and women's life span development.
Components: Lecture
Course Equivalents: PSYC 5102

WS 5365 (3 credits)
Women's Studies Research Methodology for Graduate Students
Discussion of feminist and gender-oriented research methods and their relation to traditional disciplines. Analysis of gender bias in research design and practice. Major independent research project required.
Components: Lecture

WS 5371 (3 credits)
Genders, Sexualities, and Theories
Genders and sexualities with special attention given to lesbian, gay, bisexual, and transgender issues.
Components: Lecture

WS 5390 (1 - 6 credits) Instructor Consent Required
Independent Study for Graduate Students Components: Independent Study

WS 5395 (3 credits)
Special Topics Seminar in Women's Studies
Topics of current interest from a feminist perspective.
Components: Seminar

Graduate Faculty

The Graduate Faculty includes only those individuals appointed by the dean of the Graduate School by authorization of the President. Members of the University Faculties who hold the rank of assistant professor or above at the University of Connecticut may become members of the Graduate Faculty upon recommendation of the department head (or dean of a school or college which is not departmentalized) and approval by the dean of the Graduate School if the professor's department, alone or in conjunction with another department, offers a program leading to a degree awarded through The Graduate School. A professor whose department does not offer a graduate degree program may be appointed to the Graduate Faculty by the dean of the Graduate School on the recommendation of the head of a department, (or dean of a school or college which is not departmentalized) whose graduate degree program(s) the professor would serve.

The following list is current as of March 1, 2009.

Jorgelina Abbate, Assistant Professor of Education, Ph.D., Boston College
Nelly M. Aboud, Associate Professor of Civil Engineering, Ph.D., University of Delaware
Kinetsu Abe, Professor of Mathematics, Ph.D., Brown University, D.Sc., Tohoku University, Japan
William Abikoff, Professor of Mathematics, Ph.D., Polytechnic Institute of Brooklyn
Michael L. Accorsi, Professor of Civil Engineering, Ph.D., Northwestern University
Douglas J. Adams, Assistant Professor of Orthopaedic Surgery, Ph.D., University of Iowa
Eldridge S. Adams, Professor of Ecology and Evolutionary Biology, Ph.D., University of California, Berkeley
Roger G. Adams, Professor of Plant Science in Residence, Ph.D., University of Massachusetts
Douglas H. Adanson, Associate Professor of Chemistry, Ph.D., University of Southern California
Kari L. Adamsons, Assistant Professor of Human Development and Family Studies, Ph.D., University of North Carolina, Greensboro
Adam J. Adler, Associate Professor of Medicine, Ph.D., Columbia University
Daniel S. Adler, Assistant Professor of Anthropology, Ph.D., Harvard University
Nathan N. Adler, Assistant Professor of Molecular and Cell Biology, Ph.D., University of California, Davis
John R. Agar, Professor of Prosthodontics, D.D.S., Medical College of Virginia; M.A., George Washington University
Lee A. Aggison, Jr., Associate Professor of Molecular and Cell Biology in Residence, Ph.D., Wayne State University
V. Bede Agocha, Assistant Professor of Psychology, Ph.D., University of Missouri
H. Leonardo Aguila, Assistant Professor of Immunology, Ph.D., Albert Einstein College of Medicine
Francis W. Ahking, Associate Professor of Economics, Ph.D., Virginia Polytechnic Institute and State
University
Mark Aindow, Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of Liverpool, England
Arlene D. Albert, Professor of Molecular and Cell Biology, Ph.D., University of Virginia
Andrei T. Alexandrescu, Associate Professor of Molecular and Cell Biology, Ph.D., University of Wisconsin
John Alexopoulos, Associate Professor of Plant Science, M.L.A., University of Massachusetts
Michael P. Alfano, Associate Professor of Education in Residence, Ph.D., University of Connecticut
Lynn M. Allichin, Assistant Professor of Nursing, Ph.D., Loyola University
Rodney G. Allen, Assistant Extension Professor, Ph.D., University of Maryland
Pamir Alpay, Associate Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of Maryland
William T. Alpert, Associate Professor of Economics, Ph.D., Columbia University
Marylouise A. Althouse, Associate Professor of Agricultural and Resource Economics, Ph.D., University of Massachusetts
Reza A. Ammar, Professor of Computer Science and Engineering, Ph.D., University of Connecticut
Emmanuel N. Anagnostou, Associate Professor of Civil Engineering, Ph.D., University of Iowa
Amy C. Anderson, Associate Professor of Medicinal Chemistry, Ph.D., Harvard University
Elizabeth H. Anderson, Associate Professor of Nursing, Ph.D., University of Rochester
Shane R. Anderson, Assistant Professor of Human Development and Family Studies, Ph.D., University of Georgia
Stephen A. Anderson, Professor of Family Studies, Ph.D., Kansas State University
Susan Anderson, Professor of Philosophy, Ph.D., University of California, Los Angeles
Sheila M. Andrew, Associate Professor of Animal Science, Ph.D., University of Maryland
Robert F. Andrei, Associate Professor of Geography, Ph.D., State University of New York, Buffalo
Brian J. Aneskevich, Associate Professor of Pharmacology, Ph.D., State University of New York, Stony Brook
Raymond Albin Anselment, Professor of English, Ph.D., University of Rochester
Srdjan D. Antic, Assistant Professor of Neuroscience, M.D., M.S., Belgrade University, Yugoslavia
A. F. Mehdi Anwar, Professor of Electrical Engineering, Ph.D., Clarkson University
Richard O. Anyah, Assistant Professor of Natural Resources and the Environment, Ph.D., North Carolina State University
Theodore E. Arm, Professor of Music, D.M.A., Juilliard School of Music
Frank P. Armstrong, Assistant Professor of Art, M.F.A., Yale University
Lawrence E. Armstrong, Professor of Education, Ph.D., Ball State University
Andrew Arnold, Professor of Medicine, M.D., Harvard University
Alexandru D. Asandei, Associate Professor of Materials Science, Ph.D., Case Western Reserve University
Nehama Aschkenasy, Professor of Judaic and Middle Eastern Studies in Residence, Ph.D., New York University
Robert H. Azelaine, Associate Professor of Behavioral Sciences and Community Health, Ph.D., University of Michigan
Marysol W. Asencio, Associate Professor of Family Studies, Dr.P.H., Columbia University
David J. Atkin, Professor of Communication Sciences, Ph.D., Michigan State University
Carol M. Atkinson-Palombo, Assistant Professor of Geography, Ph.D., Arizona State University
Carol A. Auer, Associate Professor of Plant Science, Ph.D., University of Maryland
Peter J. Austen, Associate Research Professor of Marine Sciences, Ph.D., National University of Ireland
John E. Ayers, Associate Professor of Electrical Engineering, Ph.D., Rensselaer Polytechnic Institute
Uluc Aygun, Assistant Professor of Economics, Ph.D., University of California, Davis
Fakhreddin Azimi, Professor of History, Ph.D., Oxford University, England
Sulin Ba, Associate Professor of Operations and Information Management, Ph.D., University of Texas
Thomas F. Babbar, Professor of Community Medicine and Health Care, Ph.D., University of Arizona
Ammrosios C. Bagtzoglou, Professor of Civil and Environmental Engineering, Ph.D., University of California, Irvine
Ben A. Baht, Associate Professor of Pharmacology, Ph.D., University of California, Santa Barbara
Amanda Bailey, Assistant Professor of English, Ph.D., University of Michigan
William F. Bailey, Professor of Chemistry, Ph.D., University of Notre Dame
Peter C. Baldwin, Associate Professor of History, Ph.D., Brown University
Philip W. Balma, Assistant Professor of Modern and Classical Languages, Ph.D., Indiana University
Raje Banskul, Professor of Electrical Engineering, Ph.D., Harvard University
Rashmi Bansal, Associate Professor of Neuroscience, Ph.D., Central Drug Research Institute (India)
Elisa M. B. Barbaresi, Professor of Neuroscience, Ph.D., McGill University, Canada
Thomas J. Barber, Professor of Mechanical Engineering in Residence, Ph.D., New York University
John S. Barclay, Associate Professor of Natural Resources and the Environment, Ph.D., Ohio State University
Keith Barker, Professor of Computer Science and Engineering, Ph.D., Sheffield University, England
Janet Barnes-Farrell, Professor of Psychology, Ph.D., Pennsylvania State University
Regina Barreca, Professor of English, Ph.D., University of New York
Yaakov Bar-Shalom, Professor of Electrical Engineering, Ph.D., Princeton University
Marianne L. Barton, Associate Clinical Professor of Psychology, Ph.D., University of Connecticut
Richard F. Bass, Professor of Mathematics, Ph.D., University of California, Berkeley
Richard W. Bass, Jr, Professor of Music, Ph.D., University of Texas
Sherry Bassi, Assistant Professor of Nursing, Ed.D., University of Sarasota
Ahsan Basu, Professor of Chemistry, Ph.D., Wayne State University
Dipanjan Basu, Assistant Professor of Civil and Environmental Engineering, Ph.D., Purdue University
Anne R. Bavier, Professor of Nursing, Ph.D., Duquesne University
Donald Baxter, Professor of Philosophy, Ph.D., University of Pittsburgh
Oksan Bayulgen, Assistant Professor of Political Science, Ph.D., University of Texas
J.C. Beall, Professor of Philosophy, Ph.D., University of Massachusetts
Maya A. Beasley, Assistant Professor of Sociology, Ph.D., Stanford University
Tryfon J. Beazoglou, Professor of Behavioral Sciences and Community Health, and Economics, Ph.D., Northwestern University
Cheryl L. Beck, Professor of Pediatric, D.N.Sc., Boston University
Pamela E. Bedore, Assistant Professor of English, Ph.D., University of Rochester
Alexandra A. Bell, Assistant Professor of Education, Ph.D., University of Connecticut
Sandrad L. Bellini, Assistant Professor of Nursing in Residence, D.N.P., Case Western Reserve University
Keith M. Bellizzi, Assistant Professor of Human Development and Family Studies, Ph.D., University of Connecticut
K.M. George Washington University
Iddo Ben Ari, Assistant Professor of Mathematics, Ph.D., Technion-Israel Institute of Technology
Peter A. Benn, Assistant Professor of Pediatrics, Ph.D., University of Birmingham, England
John C. Bennett, Associate Professor of Mechanical Engineering, Ph.D., Johns Hopkins University
C. David Benson, Professor of English, Ph.D., University of California, Berkeley
David R. Benson, Professor of Molecular and Cell Biology, Ph.D., Rutgers University
Edward Benson, Professor of French in Residence, Ph.D., Brown University
Claudio E. Benzecry, Assistant Professor of Sociology, Ph.D., New York University
William H. Berentsen, Professor of Geography, Ph.D., Ohio State University
Theodore Bergman, Professor of Mechanical Engineering, Ph.D., Purdue University
Mary K. Berckaw Edwards, Associate Professor of English in Residence, Ph.D., Northwestern University
Gerald A. Berkowitz, Professor of Plant Science, Ph.D., Brandeis University
Leslie R. Bernstein, Professor of Neuroscience, Ph.D., University of Illinois
Mary Bernstein, Associate Professor of Sociology, Ph.D., New York University
Anne Berthet, Professor of French, Doctorat es Lettres, University of Paris-Sorbonne, France
Samuel J. Best, Associate Professor of Public Policy, Ph.D., State University of New York, Stony Brook
Anjana Bhat, Assistant Professor of Physical Therapy, Ph.D., University of Delaware
Sudip Bhattacharjee, Associate Professor of Operations and Information Management, Ph.D., State University of New York, Buffalo
Pierluigi Bigazzi, Professor of Pathology, M.D., University of Florence, Italy
Robert Bifulco, Jr., Associate Professor of Political Science, Ph.D., Syracuse University
Frederick M. Biggs, Professor of English, Ph.D., Cornell University
Stanley F. Biggs, Professor of Accounting, Ph.D., University of Minnesota
Robert C. Bird, Assistant Professor of Marketing, J.D., Boston University
Robert R. Birge, Professor of Chemistry, Ph.D., Wesleyan University
Thomas O. Blank, Professor of Family Studies, Ph.D., Columbia University
Joel Blatt, Associate Professor of History, Ph.D., University of Rochester
Ron C. Blei, Professor of Mathematics, Ph.D., University of California, Berkeley
Mikhail Blinov, Assistant Professor of Genetics and Developmental Biology, Weizmann Institute of Science, Israel
Lynn Bloom, Professor of English, Ph.D., University of Michigan
Martin Bloom, Professor of Social Work, Ph.D., University of Michigan
Paul B. Bloomfield, Associate Professor of Philosophy, Ph.D., Syracuse University
Thomas C. Blum, Associate Professor of Physics, Ph.D., University of Arizona
Jonathan D. Bobaljik, Professor of Linguistics, Ph.D., Massachusetts Institute of Technology
Monica M. Bock, Associate Professor of Art, M.F.A., M.A., School of the Art Institute of Chicago
Urs Alex Boelsterli, Professor of Pharmaceutical Science, Ph.D., University of Zurich, Switzerland
Steven A. Boggs, Research Professor of Materials Science, Ph.D., University of Toronto, Canada
Robin H. Bogner, Associate Professor of Pharmaceutics, Ph.D., Rutgers University
Richard W. Bohannon, Professor of Physical Therapy, D.Ed., North Carolina State University
Walter F. Bohlen, Professor of Marine Sciences, Ph.D., Massachusetts Institute of Technology
Robert Karl Bohn, Professor of Chemistry, Ph.D., Cornell University
Thomas D. Bontly, Associate Professor of Philosophy, Ph.D., University of Wisconsin
Michael I. Borreto, Professor of Social Work, Ph.D., Brandeis University
Željko Boskovic, Professor of Linguistics, Ph.D., University of Connecticut
James S. Boster, Professor of Anthropology, Ph.D., University of California, Berkeley
Norma Bouchard, Associate Professor of Modern and Classical Languages, Ph.D., Indiana University
Mark A. Boyer, Professor of Political Science, Ph.D., University of Maryland
Wesley C. Brakefield-Younds, Assistant Professor of Sociology, Ph.D., University of Iowa
Mark H. Brand, Professor of Horticulture, Ph.D., Ohio State University
Boris Bravo-Ureta, Professor of Agricultural and Resource Economics, Ph.D., University of Nebraska
Melissa A. Bray, Professor of Education, Ph.D., University of Connecticut
Margaret S. Breen, Associate Professor of English, Ph.D., Rutgers University
Molly A. Brewer, Associate Professor of Obstetrics and Gynecology, M.D., State University of New York, Upstate Medical Center
James G. Bridgeman, Associate Professor of Mathematics, M.A., Yale University
Preston A. Britten IV, Associate Professor of Family Studies, Ph.D., University of Virginia
Robert S. Broadhead, Professor of Sociology, Ph.D., University of California, San Francisco
Stefan B. Brocke, Assistant Professor of Pharmacology, M.D., Dr.med., Free University, Germany
Harold D. Brody, Distinguished Professor of Chemical, Materials and Biomolecular Engineering, Sc.D., Massachusetts Institute of Technology
Edna Brown, Assistant Professor of Human Development and Family Studies, Ph.D., University of Michigan
Judith Brown, Assistant Professor of Allied Health in Residence, Ph.D., University of Connecticut
Pamela A. Brown, Associate Professor of English, Ph.D., Columbia University
Richard David Brown, Professor of History, Ph.D., Harvard University
Scott W. Brown, Professor of Education, Ph.D., Syracuse University
Christian Brueckner, Associate Professor of Chemistry, Ph.D., University of British Columbia, Canada
Mary E. Bruder, Professor of Pediatrics, Ph.D., University of Oregon
Jennifer E. Bruening, Associate Professor Education, Ph.D., Ohio State University
Margaret M. Bruhac, Assistant Professor of Anthropology, Ph.D., University of Massachusetts
Eric Brunner, Associate Professor of Public Policy, Ph.D., University of California, Santa Barbara
Richard S. Bruno, Assistant Professor of Nutritional Sciences, Ph.D., Ohio State University
Kathleen Bruttomesso, Associate Professor of Nursing, D.N.Sc., Boston University
James D. Bryers, Professor of Biostructure and Function, Ph.D., Rice University
Deborah J. Bubela, Assistant Professor of Physical Therapy in Residence, Ph.D., University of Connecticut
Ross W. Buck, Professor of Communication Sciences, Ph.D., University of Pittsburgh
Roger Buckley, Professor of History, Ph.D., McGill University, Canada
Ann C. Bucklin, Professor of Marine Sciences, Ph.D., University of California, Berkeley
Karen Bullock, Associate Professor of Social Work, Ph.D., Boston University
Shawn C. Burdette, Assistant Professor of Chemistry, Ph.D., Massachusetts Institute of Technology
Diane J. Burgess, Associate Professor of Pharmaceutics, Ph.D., University of London, England
Mary M. Burke, Associate Professor of English, Queen's University, Ireland
Peter Burkhard, Associate Professor of Molecular and Cell Biology, Ph.D., University of Basel, Switzerland
Joseph A. Burleson, Assistant Professor of Behavioral Science and Community Health, Ph.D., University of Texas
Laura J. Burton, Assistant Professor of Education, Ph.D., University of Connecticut
Leslie Anne Burton, Professor of Psychology, Ph.D., University of Chicago
Andrew M. Bush, Assistant Professor of Ecology and Evolutionary Biology, Ph.D., Harvard University
Joseph T. Bushey, Assistant Professor of Civil and Environmental Engineering, Ph.D., Carnegie-Mellon University
Sandra L. Bushmich, Professor of Pathobiology, D.V.M., New York College of Veterinary Medicine
Daylin J. Butler, Assistant Professor of Political Science, Ph.D., University of Michigan
Timothy B. Byrne, Associate Professor of Geology and Geophysics, Ph.D., University of California, Santa Cruz
Kerry L. Bystrum, Assistant Professor of English, Ph.D., Princeton University
Zbigniew M. Bzymek, Associate Professor of Mechanical Engineering, Ph.D., Technical University of Warsaw, Poland
Janime N. Caira, Professor of Ecology and Evolutionary Biology, Ph.D., University of Nebraska
Andrea Calabrese, Professor of Linguistics, Dottore in Lettere, University of Padova, Italy
Paul J. Campagnola, Assistant Professor of Physiology, Ph.D., Yale University
Gerard M. Campbell, Associate Professor of Operations and Information Management, Ph.D., Indiana University
Jacqueline G. Campbell, Assistant Professor of History, Ph.D., Duke University
Pamela Campbell, Associate Professor of Education, Ph.D., University of Florida
Scott C. Campbell, Assistant Professor of English, Ph.D., Rutgers University
Daniel A. Caner, Associate Professor of History and Classics, Ph.D., University of California, Berkeley
Marie E. Cantino, Associate Professor of Physiology and Neurobiology, Ph.D., University of Washington
Chengyu Cao, Assistant Professor of Mechanical Engineering, Ph.D., Massachusetts Institute of Technology
Qing Cao, Assistant Professor of Management, Ph.D., University of Chicago
Claudia Carello, Professor of Psychology, Ph.D., University of Connecticut
Paul J. Campagnola, Assistant Professor of Cell Biology
Fabiana A. Cardetti, Assistant Professor of Mathematics, Ph.D., Louisiana State University
Ellen C. Carillo, Assistant Professor of English, Ph.D., University of Pittsburgh
Gordon G. Carmichael, Professor of Microbiology, Ph.D., Harvard University
Joan M. Caron, Assistant Professor of Physiology, Ph.D., University of Connecticut
Vincent Albin Carrafiello, Professor of Business Law, J.D., University of Connecticut
John H. Carson, Professor of Biochemistry, Ph.D., Massachusetts Institute of Technology
Fred V. Carstensen, Professor of Economics, Ph.D., Yale University
C. Barry Carter, Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., Oxford University, England
Mark G. Carter, Assistant Research Professor of Animal Science, Ph.D., Johns Hopkins University
Douglas J. Casa, Associate Professor of Education, Ph.D., University of Connecticut
Tutta M. Casa, Assistant Professor of Education in Residence, Ph.D., University of Connecticut
Odette Casamayor-Cisneros, Assistant Professor of Modern and Classical Languages, Ecole des Hautes Etudes en Sciences Sociales, France
Linda S. Cauley, Assistant Professor of Immunology, D.Phil., University of Oxford, England
Noel A. Cazenave, Associate Professor of Sociology, Ph.D., Tulane University
Roger Celestin, Professor of French, Ph.D., City University of New York
Baki M. Cetegen, Professor of Mechanical Engineering, Ph.D., California Institute of Technology
Roger J. S. Chaffin, Professor of Psychology, Ph.D., University of Illinois
Sandra M. Chafouleas, Associate Professor of Education, Ph.D., Syracuse University
John A. Chandy, Associate Professor of Electrical and Computer Engineering, Ph.D., University of Illinois
Audrey R. Chapman, Professor of Community Medicine and Health Care, Ph.D., Columbia University
William D. Chapple, Professor of Physiology and Neurobiology, Ph.D., Stanford University
Bodhisattwa Chaudhuri, Assistant Professor of Pharmaceutical Science, Ph.D., New Jersey Institute of Technology
Robin L. Chazdon, Professor of Ecology and Evolutionary Biology, Ph.D., Cornell University
Ming-Hui Chen, Professor of Statistics, Ph.D., Purdue University
Thomas T. Chen, Professor of Molecular and Cell Biology, Ph.D., University of Alberta (Canada)
Zhiyi Chi, Associate Professor of Statistics, Ph.D., Brown University
Hsu-Chih (Simon) Cheng, Assistant Professor of Sociology, Ph.D., Indiana University
Martin G. Cherniak, Professor of Medicine and Community Medicine, M.D., Stanford University; M.P.H., University of California, Berkeley
Rosa H. Chinchilla, Associate Professor of Spanish, Ph.D., State University of New York, Stony Brook
Wilson K. S. Chiu, Associate Professor of Mechanical Engineering, Ph.D., Rutgers University
Yung-Sze Choi, Professor of Mathematics, Ph.D., Cornell University
Richard E. Christenson, Assistant Professor of Civil and Environmental Engineering, Ph.D., University of Notre Dame
James J. Chrobak, Associate Professor of Psychology, Ph.D., University of North Carolina
Maria Chrysochoou, Assistant Professor of Civil and Environmental Engineering, Ph.D., Stevens Institute of Technology
Ock-K. Chun, Assistant Professor of Nutritional Sciences, Ph.D., Seoul National University, Korea
Olga M. Church, Professor of Nursing, Ph.D., University of Illinois
Kathleen M. Cienkowski, Associate Professor of Communication Sciences, Ph.D., University of Minnesota
Daniel L. Cicco, Professor of Natural Resources and the Environment, Ph.D., University of Connecticut
Kevin P. Claffey, Associate Professor of Physiology, Ph.D., Boston University
John M. Clapp, Professor of Finance, Ph.D., Columbia University
Austen Clark, Professor of Philosophy, D.Phil, Oxford University, England
Christopher F. Clark, Professor of History, Ph.D., Harvard University
Richard L. Clark, Assistant Professor of Political Science, Ph.D., University of Connecticut
Richard M. Clark, Professor of Nutritional Science, Ph.D., Virginia Polytechnic Institute and State University
Robert B. Clark, Associate Professor of Medicine, M.D., Stanford University
John C. Clausen, Professor of Natural Resources and the Environment, Ph.D., University of Minnesota
John Garry Clifford, Professor of Political Science, Ph.D., Indiana University
Casey D. Cobb, Associate Professor of Education, Ed.D., Arizona State University
Denis A. Coble, Associate Professor of Allied Health, Ed.D., Boston University
Felix G. Coe, Assistant Professor of Ecology and Evolutionary Biology, Ph.D., University of Connecticut
Carl A. Coelho, Professor of Communication Sciences, Ph.D., University of Connecticut
Robert D. Colbert, Associate Professor of Education, Ph.D., University of Wisconsin
James L. Cole, Associate Professor of Molecular and Cell Biology, Ph.D., University of California, Berkeley
Richard B. Cole, Assistant Professor of Political Science, J.D., University of Virginia; Ph.D., University of Connecticut
Marga A. Coler, Professor of Nursing, Ed.D., University of Massachusetts
Robert K. Colwell, Professor of Ecology and Evolutionary Biology, Ph.D., University of Michigan
Cynthia R. Collins, Associate Professor of Nursing in Residence, D.N.Sc., Ph.D., The Catholic University of America
Edna W. Comer, Associate Professor of Social Work, Ph.D., University of North Carolina
Robert Cone, Professor of Pathology, Ph.D., University of Michigan
Xiaomei Cong, Assistant Professor of Nursing, Ph.D., Case Western Reserve University
Brian S. Connelly, Assistant Professor of Psychology, Ph.D., University of Minnesota
Joanne C. Conover, Associate Professor of Physiology and Neurobiology, Ph.D., University of Bath, England
Keith Conrad, Assistant Professor of Mathematics, Ph.D., Harvard University
Lisa H. Conti, Assistant Professor of Psychiatry, Ph.D., University of Vermont
Thomas J. Cooke, Professor of Geography, Ph.D., Indiana University
David N. Cooper, Associate Extension Professor, Labor Education Center, Ed.D., Rutgers University
Douglas J. Cooper, Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of Colorado
Michael M. Copenhagen, Assistant Professor of Allied Health Sciences, Ph.D., Virginia Polytechnic Institute and State University
Antonia Cordero, Associate Professor of Social Work, D.S.W., Hunter College of the City University of New York
Vernon F. Cormier, Professor of Geology and Geophysics, Ph.D., Columbia University
Metin Cosgel, Professor of Economics, Ph.D., University of Iowa
Frank Costigliola, Professor of History, Ph.D., Cornell University
Robin Côté, Professor of Physics, Ph.D., Massachusetts Institute of Technology
Ronald Cotterill, Professor of Agricultural and Resource Economics, Ph.D., University of Wisconsin
Kenneth A. Couch, Associate Professor of Economics, Ph.D., University of Wisconsin
Robin H. Coulter, Professor of Marketing, Ph.D., University of Pittsburgh
Eleni Coundouriotis, Associate Professor of English, Ph.D., Columbia University
Jonathan Covault, Assistant Professor of Psychiatry, Ph.D., M.D., University of Iowa
Ann E. Cowan, Assistant Professor of Biochemistry, Ph.D., University of Colorado
Marvin Rountree Cox, Associate Professor of History, Ph.D., Yale University
Michael D. Coyne, Associate Professor of Education, Ph.D., University of Oregon
Thomas C. Craemer, Assistant Professor of Public Policy, Ph.D., State University of New York, Stony Brook
James J. Crall, Associate Professor of Pediatric Dentistry, D.D.S., University of Iowa; Sc.D., Harvard University
Mary Crawford, Professor of Psychology, Ph.D., University of Delaware
Jean M. Crespi, Associate Professor of Geology and Geophysics, Ph.D., University of Colorado
Joseph Crivello, Professor of Physiology and Neurobiology, Ph.D., University of Wisconsin
Stephen J. Crocker, Assistant Professor of Neuroscience, Ph.D., University of Ottawa, Canada
Neva L. Crogan, Associate Professor of Nursing, Ph.D., Washington State University
Robert G. Cromley, Professor of Geography, Ph.D., Ohio State University
Laura J. Crow, Professor of Dramatic Arts, M.F.A., University of Wisconsin
Dean G. Cruess, Associate Professor of Psychology, Ph.D., University of Miami
Jose M. Cruz, Assistant Professor of Operations and Information Management, Ph.D., University of Massachusetts
Jun-Hong Cui, Associate Professor of Computer Science and Engineering, Ph.D., University of California, Los Angeles
Steven Cunningham, Associate Professor of Economics, Ph.D., Florida State University
Regina M. Cusson, Professor of Nursing, Ph.D., University of Maryland
Martha J. Cutter, Associate Professor of English, Ph.D., Brown University
Mary E. Cuyan, Associate Professor of History, Ph.D., Northwestern University
Carol A. Daisy, Assistant Professor of Nursing, Ph.D., University of Texas, Austin
David W. D’Alessio, Associate Professor of Communication Sciences, Ph.D., Michigan State
University
Anne E. D’Alleva, Associate Professor of Art and Art History, Ph.D., Columbia University
Eliane DalMolin, Professor of French, Ph.D., Cornell University
Hans G. Dam, Professor of Marine Sciences, Ph.D., State University of New York, Stony Brook
Joseph A. D’Ambrosio, Associate Professor of Oral Diagnosis, D.D.S., M.S., State University of New York, Buffalo
Roy G. D’Andrade, Professor of Anthropology, Ph.D., Harvard University
Kenneth H. Dangman, Assistant Professor of Medicine, Ph.D., Columbia University; M.D., M.P.H., University of Connecticut
Melinda D. Daniels, Assistant Professor of Geography, Ph.D., University of Illinois
Michael J. Darre, Professor of Animal Science, Ph.D., University of Illinois
Asis K. Das, Professor of Microbiology, Ph.D., University of Calcutta, India
Dipak K. Das, Professor of Surgery, Ph.D., University of Calcutta, India
Arnold Martin Dashefsky, Professor of Sociology, Ph.D., University of Minnesota
Kenneth Dautrich, Associate Professor of Survey Research, Ph.D., Rutgers University
Carl Wolfgang David, Professor of Chemistry, Ph.D., University of Michigan
Kay W. Davidson, Professor of Social Work, D.S.W., City University of New York
John A. Davis, Professor of History, D.Phil., Oxford University, England
Cornelia H. Dayton, Professor of History, Ph.D., Princeton University
Robert W. Day, Assistant Professor of Operations and Information Management, Ph.D., University of Maryland
Frederick D. Day-Lewis, Assistant Research Professor of Geologival Sciences, Ph.D., Stanford University
Caroline N. Dealy, Associate Professor of BioStructure and Function, Ph.D., University of Connecticut
John W. Dean, III, Associate Professor of Periodontology, D.D.S., University of North Carolina; Ph.D., University of Connecticut
Thomas A. Deans, Associate Professor of English, Ph.D., University of Massachusetts
Angel L. de Blas, Professor of Physiology and Neurobiology, Ph.D., Indiana University
Andrew S. Deener, Assistant Professor of Sociology, Ph.D., University of California, Los Angeles
Thomas DeFranco, Professor of Education, Ph.D., New York University
Sylvain De Guise, Associate Professor of Pathobiology, D.M.V., University of Montreal, Canada; Ph.D., University of Quebec, Canada
Anne M. Delany, Assistant Professor of Medicine, Ph.D., Dartmouth College
Colleen Delaney, Professor of Nursing, Ph.D., University of Connecticut
Anthony J. DeMaria, Research Professor of Electrical Engineering, Ph.D., University of Connecticut
Steven A. Demurjian, Professor of Computer Science and Engineering, Ph.D., Ohio State University
Craig R. Denegar, Professor of Physical Therapy, Ph.D., University of Virginia; M.P.T., Slippery Rock University
Kelly E. Dennis, Assistant Professor of Art and Art History, Ph.D., University of California, Los Angeles
Manisha Desai, Associate Professor of Women’s Studies, Ph.D., Washington University
Murray Paul Deutscher, Professor of Biochemistry, Ph.D., Albert Einstein College of Medicine
Dipak Dey, Professor of Statistics, Ph.D., Purdue University
Dhammika Dharmapala, Associate Professor of Economics, Ph.D., University of California, Berkeley
Moustapha Diaby, Associate Professor of Operations and Information Management, Ph.D., State University of New York, Buffalo
Patricia I. Diaz, Assistant Clinical Professor of Oral Health and Diagnosis Sciences, D.D.S., Instituto de Ciencias de la Salud, Colombia; Ph.D., University of Adelaide, Australia
Ana Maria Diaz-Marcos, Assistant Professor of Modern and Classical Languages, Ph.D., University of Massachusetts
Barbara Dicks, Associate Professor of Social Work, Ph.D., University of Pittsburgh
Corl. A. Diebler, Assistant Professor of Art, M.F.A., Syracuse University
Dimo P. Dimov, Assistant Professor of Management, Ph.D., University of London, United Kingdom
Jennifer N. Dineen, Assistant Professor of Political Science, Ph.D., University of Connecticut
James Elmer Dinger, Associate Professor of Animal Science, Ph.D., University of Maryland
Richard N. Dino, Associate Professor of Management in Residence, Ph.D., State University of New York, Buffalo
Michael Tinendfass, Associate Professor of History, Ph.D., Columbia University
Peter C. Diplock, Associate Extension Professor, Ph.D., University of Massachusetts
James A. Dixon, Associate Professor of Psychology, Ph.D., University of Wisconsin
Andrey V. Dobrynin, Associate Professor of Materials Science, Ph.D., Moscow Institute of Physics and Technology, Russia
Walter C. Dolde, Associate Professor of Finance, Ph.D., Yale University
Amy K. Donahue, Associate Professor of Public Policy, Ph.D., Syracuse University
Morgaen L. Donaldson, Assistant Professor of Education, Ed.D., Harvard University
Anna Dongari-Bagtzoglou, Associate Professor of Periodontology, Ph.D., University of Texas
Eric Donkor, Associate Professor of Electrical Engineering, Ph.D., University of Connecticut
Laura K. M. Donofrio, Assistant Professor of Family Studies, Ph.D., University of Connecticut
Sam T. Donta, Professor of Medicine, M.D., Albert Einstein College of Medicine
David Dorsky, Assistant Professor of Medicine, Ph.D., Harvard University
Mary Anne Doyle, Professor of Education, Ph.D., State University of New York, Buffalo
Diane Drachman, Associate Professor of Social Work, Ph.D., University of California, Los Angeles
M. Hicham Drissi, Associate Professor of Orthopaedic Surgery, Ph.D., University of Paris, France
Anna Mae Duane, Assistant Professor of English, Ph.D., Fordham University
Jeffrey R. Dudas, Assistant Professor of Political Science, Ph.D., University of Washington
Valerie B. Duffy, Professor of Allied Health, Ph.D., University of Connecticut
Amy E. Dunbar, Associate Professor of Accounting, Ph.D., University of Texas
Jacqueline P. Duncan, Associate Clinical Professor of Prosthodontics, D.M.D., M.Dent.Sc., University of Connecticut
Gerald V. Dunne, Professor of Physics, Ph.D., Imperial College, England
Christophe Dupraz, Assistant Professor of Marine Science, Ph.D., Fribourg University, Switzerland
Françoise Dussart, Professor of Anthropology, Ph.D., Australian National University
Niloy K. Dutta, Professor of Physics in Residence, Ph.D., Cornell University
Stephen B. Dyson, Assistant Professor of Political Science, Ph.D., Washington State University
Mary U. Eberle, Assistant Professor of Pediatrics, J.D., University of Michigan
Clare Eby, Professor of English, Ph.D., University of Michigan
James B. Edson, Associate Professor of Marine Sciences, Ph.D., Pennsylvania State University
Inger-Marie Egi, Assistant Professor of Psychology, Ph.D., University of Rochester
Elizabeth A. Eipper, Professor of Neuroscience and Physiology, Ph.D., Harvard University
Ellen Eisenberg, Professor of Oral Diagnosis, D.M.D., University of Pennsylvania
Shlomo Eisenberg, Professor of Microbiology, Ph.D., McGill University, Canada
Crawford L. Elder, Professor of Philosophy, Ph.D., Yale University
George C. Elliott, Associate Professor of Horticulture, Ph.D., North Carolina State University
Chris S. Elphick, Assistant Professor of Ecology and Evolutionary Biology, Ph.D., University of Nevada
John D. Enderle, Professor of Electrical and Systems Engineering, Ph.D., Rensselaer Polytechnic Institute
Arthur J. Engler, Associate Professor of Nursing, D.N.Sc., The Catholic University of America
Gary M. English, Professor of Dramatic Arts, M.F.A., Northwestern University
Howard I. Epstein, Professor of Civil Engineering, Ph.D., Northwestern University
Paul M. Epstein, Associate Professor of Pharmacology, Ph.D., Albert Einstein College of Medicine
Pamela Erickson, Professor of Anthropology, Ph.D., University of California, Los Angeles; Ph.D., State University of New York, Buffalo
Monty Escabi, Associate Professor of Electrical and Computer Engineering, Ph.D., University of California, Berkeley
Susan Essock, Professor of Psychology, Ph.D., Brown University
Richard B. Everson, Assistant Clinical Professor, M.D., University of Rochester; M.P.H., University of North Carolina
Edward D. Eyler, Professor of Physics, Ph.D., Harvard University
Michael Faggella-Luby, Assistant Professor of Education, Ph.D., University of Kansas
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amir Faghi</td>
<td>Professor of Mechanical Engineering, Ph.D., University of California, Berkeley</td>
</tr>
<tr>
<td>Pouran Faghi</td>
<td>Professor of Allied Health, M.D., University of Isfahan, Iran</td>
</tr>
<tr>
<td>A. Harris Fairbanks</td>
<td>Associate Professor of English, Ph.D., University of California, Berkeley</td>
</tr>
<tr>
<td>Tai-Hsi Fan</td>
<td>Assistant Professor of Mechanical Engineering, Ph.D., Georgia Institute of Technology</td>
</tr>
<tr>
<td>Kristie M. Farrar</td>
<td>Assistant Professor of Communication Sciences, Ph.D., University of California, Santa Barbara</td>
</tr>
<tr>
<td>Anne F. Farrell</td>
<td>Assistant Professor of Family Studies, Ph.D., Hofstra University</td>
</tr>
<tr>
<td>Harry A. Frank</td>
<td>Professor of Chemistry, Ph.D., Boston University</td>
</tr>
<tr>
<td>Till Daniel Frank</td>
<td>Assistant Professor of Psychology, Ph.D., Vrije Universiteit, The Netherlands</td>
</tr>
<tr>
<td>James F. Franklin</td>
<td>Professor of Dramatic Arts, M.F.A., Brandeis University</td>
</tr>
<tr>
<td>Wayne S. Franklin</td>
<td>Professor of English, Ph.D., University of Pittsburgh</td>
</tr>
<tr>
<td>Gregory C. Frantz</td>
<td>Professor of Civil Engineering, Ph.D., University of Texas</td>
</tr>
<tr>
<td>Salvatore Frasca, Jr.</td>
<td>Associate Professor of Pathobiology, V.M.D., University of Pennsylvania, Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>Alain Frogley</td>
<td>Professor of Music, D.Phil., Oxford University, England</td>
</tr>
<tr>
<td>Linda Heraldo Gacad</td>
<td>Assistant Professor of Nursing in Residence, D.N.Sc., Ph.D., The Catholic University of America</td>
</tr>
<tr>
<td>Moshe Gai</td>
<td>Professor of Physics, Ph.D., State University of New York, Stony Brook</td>
</tr>
<tr>
<td>Jon Gajewski</td>
<td>Assistant Professor of Linguistics, Ph.D., Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Robert V. Gallo</td>
<td>Professor of Physiology and Neurobiology, Ph.D., Purdue University</td>
</tr>
<tr>
<td>Puixian Gao</td>
<td>Assistant Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., Georgia Institute of Technology</td>
</tr>
<tr>
<td>Robert X. Gao</td>
<td>Professor of Mechanical Engineering, Ph.D., Technical University of Berlin, Germany</td>
</tr>
<tr>
<td>Anita I. Garey</td>
<td>Assistant Professor of Family Studies, Ph.D., University of California, Berkeley</td>
</tr>
<tr>
<td>Robert S. Garfinkel</td>
<td>Professor of Information Management, Ph.D., Johns Hopkins University</td>
</tr>
<tr>
<td>Antonio E. Garmendia</td>
<td>Professor of Pathobiology, Ph.D., Washington State University</td>
</tr>
<tr>
<td>Norman W. Garrick</td>
<td>Associate Professor of Civil Engineering, Ph.D., Purdue University</td>
</tr>
<tr>
<td>Keith A. Gary</td>
<td>Assistant Professor of Psychiatry, Ph.D., University of Missouri</td>
</tr>
<tr>
<td>Jose A. Gascon</td>
<td>Assistant Professor of Chemistry, Ph.D., Louisiana State University</td>
</tr>
<tr>
<td>M. Katherine Gavin</td>
<td>Associate Professor of Education, Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>Jose R. Gaztambide-Geigel</td>
<td>Assistant Professor of Communication Sciences, J.D., University of Puerto Rico, Ph.D., Stanford University</td>
</tr>
<tr>
<td>Steven J. Geary</td>
<td>Professor of Pathobiology, Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>Mekonnen Gebremichael</td>
<td>Assistant Professor of Civil and Environmental Engineering, Ph.D., University of Iowa</td>
</tr>
<tr>
<td>Antoni P. D. Gajewski</td>
<td>Associate Professor of Physiology, Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>Barbara M. Gage</td>
<td>Professor of Psychology, Ph.D., Stanford University</td>
</tr>
<tr>
<td>Therese L. Gage</td>
<td>Professor of Social Work, Ph.D., University of New York</td>
</tr>
<tr>
<td>Robert J. Fisher</td>
<td>Professor of Chemical Engineering in Residence, Ph.D., University of Delaware</td>
</tr>
<tr>
<td>Roslyn H. Fitch</td>
<td>Associate Research Professor of Physiology, Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>William Francis Fitzgerald</td>
<td>Professor of Marine Sciences, Ph.D., Massachusetts Institute of Technology and Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>Daniel L. Fletcher</td>
<td>Professor of Animal Science, Ph.D., University of Florida</td>
</tr>
<tr>
<td>Teresa E. Foley</td>
<td>Assistant Professor of Education in Residence, Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>Guo-Hua Fong</td>
<td>Assistant Professor of Physiology, Ph.D., University of Illinois</td>
</tr>
<tr>
<td>Julian D. Ford</td>
<td>Associate Professor of Psychiatry, Ph.D., State University of New York, Stony Brook</td>
</tr>
<tr>
<td>David R. Forman</td>
<td>Assistant Professor of Human Development and Family Studies, Ph.D., University of Iowa</td>
</tr>
<tr>
<td>Richard F. Fortinsky</td>
<td>Professor of Medicine and Community Health, Ph.D., Brown University</td>
</tr>
<tr>
<td>Carol Fowler</td>
<td>Professor of Psychology, Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>Karla Harbin Fox</td>
<td>Professor of Business Law, J.D., Duke University</td>
</tr>
<tr>
<td>Martin D. Fox</td>
<td>Professor of Electrical Engineering, Ph.D., Duke University; M.D., University of Miami</td>
</tr>
<tr>
<td>Harry A. Frank</td>
<td>Professor of Chemistry, Ph.D., Boston University</td>
</tr>
<tr>
<td>Marion Frank</td>
<td>Professor of Oral Diagnosis, Ph.D., Brown University</td>
</tr>
<tr>
<td>Till Daniel Frank</td>
<td>Assistant Professor of Psychology, Ph.D., Vrije Universiteit, The Netherlands</td>
</tr>
<tr>
<td>James F. Franklin</td>
<td>Professor of Dramatic Arts, M.F.A., Brandeis University</td>
</tr>
<tr>
<td>Wayne S. Franklin</td>
<td>Professor of English, Ph.D., University of Pittsburgh</td>
</tr>
<tr>
<td>Gregory C. Frantz</td>
<td>Professor of Civil Engineering, Ph.D., University of Texas</td>
</tr>
<tr>
<td>Salvatore Frasca, Jr.</td>
<td>Associate Professor of Pathobiology, V.M.D., University of Pennsylvania; Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>Alain Frogley</td>
<td>Professor of Music, D.Phil., Oxford University, England</td>
</tr>
<tr>
<td>Linda Heraldo Gacad</td>
<td>Assistant Professor of Nursing in Residence, D.N.Sc., Ph.D., The Catholic University of America</td>
</tr>
<tr>
<td>Moshe Gai</td>
<td>Professor of Physics, Ph.D., State University of New York, Stony Brook</td>
</tr>
<tr>
<td>Jon Gajewski</td>
<td>Assistant Professor of Linguistics, Ph.D., Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Robert V. Gallo</td>
<td>Professor of Physiology and Neurobiology, Ph.D., Purdue University</td>
</tr>
<tr>
<td>Puixian Gao</td>
<td>Assistant Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., Georgia Institute of Technology</td>
</tr>
<tr>
<td>Robert X. Gao</td>
<td>Professor of Mechanical Engineering, Ph.D., Technical University of Berlin, Germany</td>
</tr>
<tr>
<td>Anita I. Garey</td>
<td>Assistant Professor of Family Studies, Ph.D., University of California, Berkeley</td>
</tr>
<tr>
<td>Robert S. Garfinkel</td>
<td>Professor of Information Management, Ph.D., Johns Hopkins University</td>
</tr>
<tr>
<td>Antonio E. Garmendia</td>
<td>Professor of Pathobiology, Ph.D., Washington State University</td>
</tr>
<tr>
<td>Norman W. Garrick</td>
<td>Associate Professor of Civil Engineering, Ph.D., Purdue University</td>
</tr>
<tr>
<td>Keith A. Gary</td>
<td>Assistant Professor of Psychiatry, Ph.D., University of Missouri</td>
</tr>
<tr>
<td>Jose A. Gascon</td>
<td>Assistant Professor of Chemistry, Ph.D., Louisiana State University</td>
</tr>
<tr>
<td>M. Katherine Gavin</td>
<td>Associate Professor of Education, Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>Jose R. Gaztambide-Geigel</td>
<td>Assistant Professor of Communication Sciences, J.D., University of Puerto Rico, Ph.D., Stanford University</td>
</tr>
<tr>
<td>Steven J. Geary</td>
<td>Professor of Pathobiology, Ph.D., University of Connecticut</td>
</tr>
<tr>
<td>Mekonnen Gebremichael</td>
<td>Assistant Professor of Civil and Environmental Engineering, Ph.D., University of Iowa</td>
</tr>
<tr>
<td>Maurice Gell</td>
<td>Professor of Chemical, Materials and Biomolecular Engineering in Residence, Ph.D., Yale University</td>
</tr>
<tr>
<td>Chimmy Ghosh</td>
<td>Professor of Finance, Ph.D., Pennsylvania State University</td>
</tr>
<tr>
<td>Carmelo Giacotto</td>
<td>Professor of Finance, Ph.D., University of Kentucky</td>
</tr>
<tr>
<td>Gerald Gianutsos</td>
<td>Associate Professor of Pharmacology, Ph.D., University of Rhode Island; J.D., University of Connecticut</td>
</tr>
<tr>
<td>Charles Giardina</td>
<td>Associate Professor of Molecular and Cell Biology, Ph.D., State University of New York, Stony Brook</td>
</tr>
<tr>
<td>George N. Gibson</td>
<td>Professor of Physics, Ph.D., University of Illinois, Chicago</td>
</tr>
<tr>
<td>Harvey R. Gilbert</td>
<td>Professor of Communication Sciences, Ph.D., University of Wisconsin</td>
</tr>
<tr>
<td>Emma Gilligan</td>
<td>Assistant Professor of History, Ph.D., University of Melbourne, Australia</td>
</tr>
<tr>
<td>Lucy L. Gilson</td>
<td>Associate Professor of Management, Ph.D., Georgia Institute of Technology</td>
</tr>
<tr>
<td>Vassilis Gelaszewski</td>
<td>Associate Professor of Biochemistry, Ph.D., University of Wisconsin</td>
</tr>
<tr>
<td>Barry Glassner</td>
<td>Professor of Sociology, Ph.D., Washington University</td>
</tr>
<tr>
<td>Joseph Glaz</td>
<td>Professor of Statistics, Ph.D., Rutgers University</td>
</tr>
<tr>
<td>Sarah Glaz</td>
<td>Professor of Mathematics, Ph.D., Rutgers University</td>
</tr>
<tr>
<td>Wendy J. Glenn</td>
<td>Associate Professor of Education, Ph.D., Arizona State University</td>
</tr>
<tr>
<td>Paulo Goes</td>
<td>Professor of Operations and Information Management, Ph.D., University of Rochester</td>
</tr>
<tr>
<td>Bernard Godfrey</td>
<td>Associate Professor of Ecology and Evolutionary Biology, Ph.D., University of Alberta, Canada</td>
</tr>
<tr>
<td>Johann Gogarten</td>
<td>Professor of Molecular and Cell Biology, Ph.D., University of Giessen, Germany</td>
</tr>
<tr>
<td>Swapna S. Gokhale</td>
<td>Associate Professor of Computer Science and Engineering, Ph.D., Duke University</td>
</tr>
<tr>
<td>Ali Gokirmak</td>
<td>Assistant Professor of Electrical and Computer Engineering, Ph.D., Cornell University</td>
</tr>
<tr>
<td>A. Jon Goldberg</td>
<td>Professor of Prosthodontics, Ph.D., University of Michigan</td>
</tr>
<tr>
<td>David J. Goldman</td>
<td>Associate Professor of Molecular and Cell Biology, Ph.D., Ohio State University</td>
</tr>
<tr>
<td>Jane A. Goldman</td>
<td>Associate Professor of Family Studies, Ph.D., University of Wisconsin</td>
</tr>
<tr>
<td>Irving Goldschneider</td>
<td>Professor of Pathology, M.D., University of Pennsylvania</td>
</tr>
<tr>
<td>Joseph H. Goelce</td>
<td>Associate Professor of Finance, Ph.D., Washington University</td>
</tr>
<tr>
<td>Miguel Gomez</td>
<td>Professor of Spanish, Ph.D., State University of New York, Stony Brook</td>
</tr>
</tbody>
</table>
Chun-Hsi Huang, Associate Professor of Computer Science and Engineering, Ph.D., State University of New York, Buffalo
Xinyu Huang, Assistant Research Professor of Mechanical Engineering, Ph.D., Virginia Polytechnic Institute and State University
Andrea Hubbard, Associate Professor of Toxicology, Ph.D., University of Tennessee
Greg Huber, Assistant Professor of Cell Biology, Ph.D., Boston University
Bryan D. Huey, Assistant Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of Pennsylvania
Jonathan Hufstader, Associate Professor of English, Ph.D., Harvard University
Nancy A. Humphreys, Professor of Social Work, M.S.W., University of California, Los Angeles
Timothy Hunter, Professor of Dramatic Arts, M.F.A., Yale University
Charles G. Huntington III, Assistant Professor of Community Medicine and Healthcare, M.P.H., George Washington University
Maria M. Hurley, Associate Professor of Medicine, M.D., University of Connecticut
Richard E. Hurley, Associate Professor of Accounting in Residence, J.D., Union University; Ph.D., University of Connecticut
Mohamed Hussein, Professor of Accounting, Ph.D., University of Pittsburgh
Hora T. Ilies, Assistant Professor of Mechanical Engineering, Ph.D., University of Wisconsin
Effie Ioannidou, Assistant Professor of Oral and Diagnosis, D.D.S., University of Thessaloniki, Greece; M.Dent.Sc., University of Connecticut
Guillermo Irizarry, Associate Professor of Modern and Classical Languages, Ph.D., University of Texas
Jason Irizarry, Assistant Professor of Education, Ed.D., University of Massachusetts
Muhammad Munirul Islam, Professor of Physics, Ph.D., University of London, England
John N. Ivan, Professor of Civil Engineering, Ph.D., Northwestern University
Laurinda A. Jaffe, Professor of Physiology, Ph.D., University of California, Los Angeles
Faquir C. Jain, Professor of Electrical Engineering, Ph.D., University of Connecticut
Menka Jain, Assistant Professor of Physics, University of Puerto Rico
Subhash C. Jain, Professor of Marketing, Ph.D., University of Oregon
Thomas John Jambeck, Associate Professor of English, Ph.D., University of Colorado
Marlon C. James, Assistant Professor of Education, Ph.D., Texas A & M University
Ingela Jansson, Assistant Professor of Pharmacology, Ph.D., University of Stockholm, Sweden
Juha M. Javanainen, Professor of Physics, Doc.Theor. Phys., Helsinki University, Finland
Bahram Javid, Professor of Electrical Engineering, Ph.D., Pennsylvania State University
Damon T. Jenkins, Assistant Clinical Professor of Reconstructive Sciences, D.M.D., University of Medicine and Dentistry of New Jersey; M.P.H., Louisiana State University
Jim Jiang, Assistant Professor of Endodontology, D.D.S., West China University of Medical Science; Ph.D., University of Connecticut
Elizabeth C. Jockusch, Associate Professor of Ecology and Evolutionary Biology, Ph.D., University of California, Berkeley
Raymond Leonard Joesten, Professor of Geology and Geophysics, Ph.D., California Institute of Technology
Elaine Johansen, Associate Professor of Political Science, Ph.D., Florida State University
Blair T. Johnson, Professor of Psychology, Ph.D., Purdue University
Edna Johnson, Assistant Professor of Nursing, Ph.D., University of South Carolina
Harriette Johnson, Professor of Social Work, Ph.D., Rutgers University
Sara R. Johnson, Associate Professor of Modern and Classical Languages, Ph.D., University of California, Berkeley
Eileen H. Jokinen, Associate Research Scientist, Ph.D., Wayne State University
Cynthia S. Jones, Associate Professor of Ecology and Evolutionary Biology, Ph.D., University of California, Berkeley
Richard T. Jones, Associate Professor of Physics, Ph.D., Virginia Polytechnic Institute and State University
Kyungseon Joo, Associate Professor of Physics, Ph.D., Massachusetts Institute of Technology
Eric H. Jordan, Professor of Mechanical Engineering, Ph.D., University of Wisconsin
Michelle Judge, Assistant Professor of Nursing in Residence, Ph.D., University of Connecticut
Mary E. Junda, Professor of Music, Ed.D., Columbia University
Ivo Kalajzic, Assistant Professor of Reconstructive Sciences in Residence, M.D., Zagreb University, Croatia; Ph.D., Split University School of Medicine, Croatia
Seth C. Kalichman, Professor of Psychology, Ph.D., University of South Carolina
Devendra Kalonia, Associate Professor of Pharmaceutics, Ph.D., University of Connecticut
Peter M. Kaminsky, Associate Professor of Music, Ph.D., University of Rochester
Brendan M. Kane, Assistant Professor of History, Ph.D., Princeton University
Lawrence A. Kappers, Professor of Physics, Ph.D., University of Missouri
Orv Karon, Professor of Education, Ph.D., University of Wisconsin
Rajeswari M. Kasi, Assistant Professor of Materials Science, Ph.D., University of Massachusetts
Theo Zenon Kattamis, Professor of Chemical, Materials and Biomolecular Engineering, Sc. D., Massachusetts Institute of Technology
Alfred Judah Katz, Associate Professor of Laboratory Medicine, M.D., University of Pennsylvania
Leonard D. Katz, Assistant Professor of Philosophy, Ph.D., Princeton University
Blythe M. Kaufman, Assistant Clinical Professor of Oral Health and Diagnostic Sciences, D.M.D., M.Dent.Sc., University of Connecticut
Douglas Kaufman, Associate Professor of Education, Ph.D., University of New Hampshire
Bruce A. Kay, Assistant Professor of Psychology, Ph.D., University of Connecticut
Reza B. Kazemi, Associate Professor of Prosthodontics and Operative Dentistry, D.M.D., Marshall University
Kazem Kazerounian, Professor of Mechanical Engineering, Ph.D., University of Illinois
Gary W. Kazmer, Associate Professor of Animal Science, Ph.D., Virginia Polytechnic Institute and State University
Thomas J. Kehle, Professor of Education, Ph.D., University of Kentucky
Marijke T. Kehrnhahn, Associate Professor of Education, Ph.D., University of Connecticut
Jacqueline P. Kelleher, Assistant Professor of Education, Ph.D., University of Connecticut
John R. Kelly, Professor of Prosthodontics and Operative Dentistry, D.D.S., Ohio State University; M.S., Marquette University; D.M.D., Harvard University
Kristin A. Kelly, Associate Professor of Political Science, Ph.D., University of Wisconsin
Debra Kendall, Professor of Molecular and Cell Biology, Ph.D., Northwestern University
Amy L. Kenefick, Associate Professor of Nursing, Ph.D., University of Massachusetts
Anne M. Kenny, Associate Clinical Professor, M.D., University of Nebraska
David A. Kenny, Professor of Psychology, Ph.D., Northwestern University
Gerard J. Kerins, Assistant Professor of Geriatrics, M.D., Universidad del Norte, Mexico
Jane E. Kerstetter, Associate Professor of Allied Health Professions, Ph.D., University of Connecticut
Quentin C. Kessel, Professor of Physics in Residence, Ph.D., University of Connecticut
Nirattaya Khamsenman, Assistant Professor of Mathematics in Residence, Ph.D., University of California, Los Angeles
Mazhar Iqbal Khan, Professor of Pathobiology, Ph.D., Princeton University
Yusuf M. Khan, Assistant Professor of Orthopaedic Surgery, Ph.D., Drexel University
Vasili Kharchenko, Professor of Physics, Ph.D., D.Sc., Ioffe Physical-Technical Institute, USSR
Auggelos Kiyas, Assistant Professor of Computer Science and Engineering, Ph.D., City University of New York
Deborah L. Kidder, Assistant Professor of Management, Ph.D., University of Minnesota
Duck O. Kim, Professor of Neuroscience and Otolaryngology, D.Sc., Washington University
Jeong-Ho Kim, Assistant Professor of Civil and Environmental Engineering, Ph.D., University of Illinois
Yoo-Ah Kim, Assistant Professor of Computer Science and Engineering, Ph.D., University of Maryland
Samson M. Kimenyi, Associate Professor of Economics, Ph.D., George Mason University
Stephen M. King, Professor of Biochemistry, Ph.D., University College, London, England
Claire C. King'oo, Assistant Professor of English, Ph.D., University of Pennsylvania
Peter R. Kingstone, Associate Professor of Political Science, Ph.D., University of California, Berkeley
Jeffrey M. Kinsella-Shaw, Associate Professor of Physical Therapy, Ph.D., University of Connecticut
Linda Schmid Klein, Professor of Finance, Ph.D., Florida State University
Valdo C. Klein, Professor of Social Work, Ph.D., Florida State University
Lawrence Klobutcher, Professor of Biochemistry, Ph.D., Yale University
David A. Knecht, Professor of Molecular and Cell Biology, Ph.D., University of Wisconsin
Amy E. Kneedler Donahue, Assistant Professor of Political Science, Ph.D., Syracuse University
Gregory A. Kneidel, Associate Professor of English, Ph.D., University of Chicago
Vicki I. Knolbacher, Professor of Economics, Ph.D., University of Wisconsin
John D. Knopf, Assistant Professor of Finance, Ph.D., New York University
Bruce M. Koeppen, Professor of Medicine, M.D., University of Chicago; Ph.D., University of Illinois
Dennis E. Koppel, Professor of Biochemistry, Ph.D., Columbia University
Robert A. Kosher, Professor of Biostructure and Function, Ph.D., Temple University
Shiva P. Kotha, Assistant Professor of Mechanical Engineering, Ph.D., Rutgers-The State University
Alexander Kovner, Professor of Physics, Ph.D., Tel Aviv University, Israel
Jeffrey Kramer, Associate Professor of Health Systems Management in Residence, Ph.D., University of Connecticut
William J. Kraemer, Professor of Education, Ph.D., University of Wyoming
Henry R. Kranzler, Professor of Psychiatry, M.D., Rutgers-The State University
Barbara E. Kream, Professor of Medicine, Ph.D., Yale University
James N. Kremer, Professor of Marine Sciences, Ph.D., University of Rhode Island
Patricia M. Kremer, Associate Professor of Marine Sciences in Residence, Ph.D., University of Rhode Island
Donald L. Kreutzer, Professor of Pathology and Surgery, Ph.D., University of Kansas
David J. Kruchkoff, Professor of Oral Diagnosis, D.D.S., Washington University
George A. Kuchel, Associate Professor of Medicine, M.D., McGill University, Canada
Andrew J. Kuhnberg, Associate Professor of Orthodontics, D.M.D, M.Dent.Sc., University of Connecticut
Lisa T. Kuhn, Assistant Professor of Biostructure and Function, University of California, Santa Barbara
Martin Kuldorff, Associate Professor of Community Medicine and Health Care, Ph.D, Cornell University
Lisa T. Kuhn, Assistant Professor of Biostructure and Function, Ph.D., University of California, Santa Barbara
Challa V. Kumar, Professor of Chemistry, Ph.D., International Institute of Technology, India
Sangamesh G. Kumbar, Assistant Professor of Orthopaedic Surgery, Ph.D., Kamchatka University, India
Lynn Kuo, Professor of Statistics, Ph.D., University of California, Los Angeles
Brenda J. Kurz, Associate Professor of Social Work, Ph.D., University of North Carolina
Shigeuki Kuwada, Professor of Neuroscience, Ph.D., University of Cincinnati
Yulia A. Kuzovkina-Eischen, Assistant Professor of Plant Science, Ph.D., Ohio State University
Jeffrey W. Ladewig, Assistant Professor of Political Science, Ph.D., University of Texas
Song Lai, Assistant Professor of Diagnostic Imaging and Therapeutics, Ph.D., Case Western Reserve University
Marc LaLande, Professor of Genetics and Developmental Biology, Ph.D., University of Toronto (Canada)
Jairsh V. Lalla, Assistant Clinical Professor of Oral Health and Diagnostic Sciences, B.D.S., Government Dental College and Hospital, India; Ph.D., University of Connecticut
Daniel Landau, Associate Professor of Economics, Ph.D., University of Chicago
Richard N. Langlois, Professor of Economics, Ph.D., Stanford University
Ronald Otto Langner, Professor of Pharmacology, Ph.D., University of Rhode Island
Charles Lansing, Assistant Professor of History, Ph.D., Yale University
Neal Larrabee, Associate Professor of Music, D.M.A., State University of New York, Stony Brook
Christine A. LaSala, Associate Professor of Obstetrics and Gynecology, M.D., Albert Einstein College of Medicine
Cato T. Laurencin, Professor of Orthopaedic Surgery and Professor of Chemical, Materials and Biomolecular Engineering, M.D., Harvard University; Ph.D., Massachusetts Institute of Technology
Zita Lazzarini, Associate Professor of Community Medicine, J.D., University of California, San Francisco; M.P.H., Harvard University
Nicholas E. Leadbeater, Assistant Professor of Chemistry, Ph.D., Cambridge University, England
Colin W. Leach, Associate Professor of Psychology, Ph.D., University of Michigan
Ronnie Leavitt, Clinical Associate Professor of Physical Therapy, Ph.D., University of Connecticut
Douglas S. Lee, Assistant Professor of Marine Sciences, Ph.D., Michigan State University
Hanhao Lee, Assistant Professor of Electrical and Computer Engineering, Ph.D., University of Minnesota
Ho-uk Lee, Assistant Professor of Management, Ph.D., Texas A&M University
Juliet Lee, Associate Professor of Molecular and Cell Biology, Ph.D., University College and Middlesex School of Medicine, England
Kangho Lee, Associate Professor of Music, D.M.A., New England Conservatory
Kyoo-Hwan Lee, Assistant Professor of Mathematics, Ph.D., Seoul National University, Korea
Linda K. Lee, Professor of Agricultural and Resource Economics, Ph.D., Iowa State University
Jeffrey A. Lefebvre, Associate Professor of Political Science, Ph.D., University of Connecticut
Leo Lefrançois, Professor of Medicine and Pathology, Ph.D., Wake Forest University
Robin R. Leger, Assistant Professor of Orthopaedic Surgery, Ph.D., New York University
Ana I. Legrand, Assistant Professor of Plant Science in Residence, Ph.D., University of Maryland
Yu Lei, Assistant Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of California, Riverside
Gerald Leibowitz, Associate Professor of Mathematics, Ph.D., Massachusetts Institute of Technology
Richard W. Lemons, Jr., Assistant Professor of Education, Ed.D., Harvard University
Donald H. Les, Professor of Ecology and Evolutionary Biology, Ph.D., Eastern Michigan University
Joan Letendre, Assistant Professor of Social Work, Ph.D., University of Illinois
Donald J. Leu, Professor of Education, Ph.D., University of California, Berkeley
Eric S. Levine, Associate Professor of Pharmacology, Ph.D., Princeton University
Thomas H. Levine, Assistant Professor of Education, Ph.D., Stanford University
Elena Levy, Associate Professor of Psychology, Ph.D., University of Chicago
Carol W. Lewis, Professor of Political Science, Ph.D., Princeton University
Judy Lewis, Professor of Community Medicine and Health Care, M.Phil, Yale University
Louise A. Lewis, Associate Professor of Ecology and Evolutionary Biology, Ph.D., Ohio State University
Paul O. Lewis, Associate Professor of Ecology and Evolutionary Biology, Ph.D., Ohio State University
Dmitry Leykekhman, Assistant Professor of Mathematics, Ph.D., Cornell University
Baikun Li, Assistant Professor of Civil and Environmental Engineering, Ph.D., University of Cincinnati
James (Yuhaohao) Li, Assistant Professor of Genetics and Developmental Biology, Ph.D., University of Texas
Xue-Jun Li, Assistant Professor of Neuroscience, Ph.D., Fudan University, China
Yi Li, Professor of Plant Science, Ph.D., State University of New York College of Environmental Science and Forestry, Syracuse
Zhihai Li, Assistant Professor of Medicine, M.D., Henan Medical University, China; Ph.D., Mount Sinai School of Medicine
Bruce T. Liang, Clinical Professor of Medicine, M.D., Harvard University
Kathryn R. Libal, Assistant Professor of Social Work, Ph.D., University of Washington
Alexander C. Lichtler, Associate Professor of Pediatrics, Ph.D., University of Florida
Jay R. Lieberman, Professor of Orthopaedic Surgery, M.D., Albany Medical School
James R. Ligas, Associate Professor of Surgery, M.D., Ph.D., Case Western Reserve University
Diane C. Lillo-Martín, Professor of Linguistics, Ph.D., University of California, San Diego
Carolyln A. Lin, Professor of Communication Sciences, Ph.D., Michigan State University
Senjie Lin, Associate Professor of Marine Sciences, Ph.D., State University of New York, Stony Brook
Yao Lin, Assistant Professor of Chemistry, Ph.D., University of Massachusetts
Richard Roy Lindquist, Associate Professor of Pathology, M.D., Hahnemann Medical School
Jocelyn Linnekin, Professor of Anthropology, Ph.D., University of Michigan
Ellen Litman, Assistant Professor of English, M.F.A., Syracuse University
Catherine A. Little, Assistant Professor of Education, Ph.D., College of William and Mary
Lanbo Liu, Associate Professor of Geological Sciences, Ph.D., Stanford University
Ehu Liu, Assistant Professor of Accounting, Ph.D., University of California, Irvine
Leslie M. Loew, Professor of Physiology, Ph.D., Cornell University
Thomas L. Long, Associate Professor of Nursing in Residence, Ph.D., Indiana University of Pennsylvania
Rigoberio A. Lopez, Professor of Agricultural and Resource Economics, Ph.D., University of Florida
Joseph A. Lorenzo, Professor of Medicine, M.D., State University of New York, Brooklyn
Jacqueline E. Loss, Associate Professor of Modern and Classical Languages, Ph.D., University of Texas
William Frank Lott, Associate Professor of Economics, Ph.D., North Carolina State University
Ph.D., Cornell University

Joseph J. Loeb, Professor of Physiology and Neurobiology, Ph.D., Stanford University

Charles Austin Low, Professor of Psychology, Ph.D., Carnegie-Mellon University

Nicholas L. Lownes, Assistant Professor of Civil and Environmental Engineering, Ph.D., University of Texas at Austin

Alvaro Lozano-Robledo, Assistant Professor of Mathematics, Ph.D., Boston University

Tianfeng Lu, Assistant Professor of Mechanical Engineering, Ph.D., Princeton University

Michael Lubatkin, Professor of Management, D.B.A., University of Tennessee

Peter B. Luh, Professor of Electrical Engineering, Ph.D., Harvard University

Alan G. Lurie, Professor of Oral and Maxillofacial Radiology, D.D.S., University of California, Los Angeles;

Ph.D., University of Rochester

George Lykotrafitis, Assistant Professor of Mechanical Engineering, Ph.D., California Institute of Technology

Michael P. Lynch, Professor of Philosophy, Ph.D., Syracuse University

Rachael J. Lynch, Associate Professor of English, Ph.D., Boston University

Allison A. MacKay, Associate Professor of Civil and Environmental Engineering, Ph.D., Massachusetts Institute of Technology

Ross D. MacKinnon, Professor of Geography, Ph.D., Northwestern University

Glen G. MacLeod, Professor of English, Ph.D., Princeton University

R. Lamont MacNeil, Professor of Periodontology, D.D.S., Dalhousie University (Canada); M.Dent.Sc., University of Connecticut

Joseph W. Madaus, Associate Professor of Education in Residence, Ph.D., University of Connecticut

Nora Y. Madjar, Assistant Professor of Management, Ph.D., University of Illinois

Wolodymyr Madych, Professor of Mathematics, Ph.D., University of Minnesota

Victor J. Magley, Associate Professor of Psychology, Ph.D., University of Illinois

James S. Magnuson, Associate Professor of Psychology, Ph.D., University of Rochester

Elizabeth Mahan, Associate Extension Professor, Ph.D., University of Texas

Charles W. Mahoney, Associate Professor of English, Ph.D., Cornell University

Kevin Mains, Professor of Neuroscience, Ph.D., Harvard University

Veronica A. Makowsky, Professor of English, Ph.D., Princeton University

Barrie P. Malcolm, Associate Professor of Social Work, Ph.D., Columbia University

Ramesh B. Mallia, Associate Professor of Civil Engineering, Ph.D., University of Massachusetts

Ronald L. Mallett, Professor of Physics, Ph.D., Pennsylvania State University

Sanjay M. Mallya, Assistant Professor of Oral Diagnosis, Ph.D., University of Connecticut

José E. Manautou, Associate Professor of Pharmacology and Toxicology, Ph.D., Purdue University

Richard A. Mancini, Assistant Professor of Animal Science, Ph.D., Kansas State University

Iou Mandoiu, Associate Professor of Computer Science and Engineering, Ph.D., Georgia Institute of Technology

Philipp Manschel, Professor of Physics, Ph.D., Weizmann Institute, Israel

John J. Manning, Associate Professor of English, Ph.D., University of Michigan

Alan S. Marcus, Assistant Professor of Education, Ph.D., Stanford University

Harris L. Marcus, Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., Northwestern University

Philip Irving Marcus, Professor of Molecular and Cell Biology, Ph.D., University of Colorado

Carl M. Masrel, Professor of Education, Ph.D., University of Wyoming

Evan Markus, Professor of Psychology, Ph.D., University of Toronto, Canada

James R. Marsden, Professor of Operations and Information Management, Ph.D., Purdue University

J.D., University of Kentucky

Jean I. Marsden, Professor of English, Ph.D., Harvard University

Kerry L. Marsh, Associate Professor of Psychology, Ph.D., Ohio State University

Samuel Martinez, Associate Professor of Anthropology, Ph.D., Johns Hopkins University

Franco Masiandarco, Professor of Italian, Ph.D., Harvard University

Richard P. Mason, Assistant Professor of Radiology, Ph.D., University of Connecticut

Robert P. Mason, Professor of Marine Sciences, Ph.D., University of Connecticut

John E. Mathieu, Professor of Management, Old Dominion University

Xenia Matschke, Assistant Professor of Economics, Ph.D., University of Wisconsin

Nilanjan Maulik, Associate Professor of Surgery, Ph.D., University College of Science, India

Stephen Clark Maxson, Professor of Psychology, Ph.D., University of Chicago

Gerald D. Maxwell, Professor of Neuroscience, Ph.D., University of Oregon

Peter F. Maye, Assistant Clinical Professor of Reconstructive Sciences, Ph.D., Wesleyan University

Anisya P. Mayer, Assistant Professor of Education, Ph.D., University of California, Davis

Bruce D. Mayer, Associate Professor of Genetics and Developmental Biology, Ph.D., Rockefeller University

Stephanie M. Mazzerolle, Assistant Professor of Education in Residence, Ph.D., University of Connecticut

Augustus Mazzocca, Professor of Art, M.F.A., Rhode Island School of Design

Richard J. McAvoy, Professor of Plant Science, Ph.D., Rutgers University

Sally McBearty, Professor of Anthropology, Ph.D., University of Illinois

Eadna Mccreery, Professor of Human Development and Family Studies, Ph.D., Cornell University

Kevin H. Madsen, Associate Professor of Anthropology, Ph.D., University of Connecticut

Robert McCartney, Associate Professor of Computer Science and Engineering, Ph.D., Brown University

Sylvia McClain, Associate Professor of Music, D.M.A., University of Texas

D. Elizabeth McCoy, Associate Professor of Education in Residence, Ph.D., University of Connecticut

Louise D. McCullough, Assistant Professor of Neurology, Ph.D., M.D., University of Connecticut

Jeffrey McCutcheon, Assistant Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., Yale University

Dana S. McDermott, Associate Professor of Dramatic Arts, Ph.D., University of California, Berkeley

Monika L. McDermott, Associate Professor of Political Science, Ph.D., University of California, Los Angeles

Deborah McDonald, Associate Professor of Nursing, Ph.D., Columbia University

Robert A. McDonald, Professor of Dramatic Arts, Ph.D., Michigan State University

Jean M. McGivney-Burelle, Assistant Professor of Education, Ph.D., University of Connecticut

Mary M. McGrane, Associate Professor of Nutritional Sciences, Ph.D., Vanderbilt University

Patrick J. McKenna, Professor of Mathematics, Ph.D., University of Michigan

George B. McManus, Professor of Marine Sciences, Ph.D., State University of New York, Stony Brook

Ralph B. Mc Neal, Jr., Associate Professor of Sociology, Ph.D., University of North Carolina

Lucy McNeese, Associate Professor of French, Ph.D., Harvard University

Catherine Medina, Associate Professor of Social Work, Ph.D., Columbia University

Jonathan C. Meiers, Professor of Prosthodontics and Operative Dentistry, D.M.D., University of Pennsylvania

Steven Mellor, Associate Professor of Psychology, Ph.D., Wayne State University

R. Michael Meneghini, Assistant Professor of Orthopaedic Surgery, M.D., Indiana University

Venu G. Menon, Associate Professor of Mathematics, Ph.D., University of Connecticut

Antoine Ménoret, Assistant Professor of Medicine, Ph.D., University of Nantes (France)

John D. Meyer, Clinical Associate Professor of Medicine, M.D., Cornell University; M.P.H., Boston University

Judith P. Meyer, Associate Professor of History, Ph.D., University of Iowa

Michael Meyer, Professor of English, Ph.D., University of Connecticut

Thomas H. Meyer, Associate Professor of Natural Resources and the Environment, Ph.D., Texas A&M University

Diana T. Meyers, Professor of Philosophy, Ph.D., City University of New York

Thomas J. Miceli, Professor of Economics, Ph.D., Brown University

Claire F. Michaels, Research Professor of Psychology, Ph.D., University of Connecticut

Laurent D. Michel, Associate Professor of Computer Science and Engineering, Ph.D., Brown University

Robert Michel, Professor of Chemistry, Ph.D., Sheffield Polytechnic, England

H. Harvey Michaels, Research Professor of Physics, Ph.D., University of Delaware

Stephanie Milani, Assistant Professor of Psychology, Ph.D., Vanderbilt University

David B. Miller, Professor of Psychology, Ph.D., University of Miami

David Robert Miller, Professor of Natural Resources and the Environment, Ph.D., University of Nebraska

Robert F. Miller, Professor of Music, Ph.D., University of Illinois

Ross L. Miller, Professor of English, Ph.D., Cornell University

Stuart S. Miller, Professor of Hebrew and Jewish History, Ph.D., New York University

Tyson A. Miller, Assistant Professor of Chemistry, Ph.D., University of Illinois

David L. Mills, Associate Professor of Music, Ph.D., University of Miami

Robert A. Milvae, Associate Professor of Animal Science, Ph.D., Cornell University

Mina Mina, Professor of Pediatric Dentistry, Ph.D., University of Connecticut

Peter J. Minetti, Associate Professor of Landscape Architecture, M.L.A., Harvard University

Aranon Minkler, Associate Professor of Economics, Ph.D., University of California, Davis
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyr E. M'lan</td>
<td>Assistant Professor of Statistics, Ph.D.</td>
<td>McGill University, Canada</td>
</tr>
<tr>
<td>William A. Mohler</td>
<td>Assistant Professor of Genetics and Developmental Biology, Ph.D.</td>
<td>Stanford University</td>
</tr>
<tr>
<td>Andrew Miosek</td>
<td>Professor of Physiology and Neurobiology, Ph.D., Cornell University</td>
<td></td>
</tr>
<tr>
<td>Carlton W. Molette</td>
<td>Professor of Dramatic Arts, Ph.D., Florida State University</td>
<td></td>
</tr>
<tr>
<td>Julio Morales</td>
<td>Professor of Social Work, Ph.D., Brandeis University</td>
<td></td>
</tr>
<tr>
<td>Olivier F. Morand</td>
<td>Assistant Professor of Economics, Ph.D., Arizona State University</td>
<td></td>
</tr>
<tr>
<td>D. Kent Mostor</td>
<td>Professor of Neuroscience, M.D., Yale University</td>
<td></td>
</tr>
<tr>
<td>Michael E. Morrell</td>
<td>Assistant Professor of Political Science, Ph.D., Arizona State University</td>
<td></td>
</tr>
<tr>
<td>John B. Morris</td>
<td>Professor of Toxicology, Ph.D., University of Rochester</td>
<td></td>
</tr>
<tr>
<td>Thomas Morris</td>
<td>Associate Professor of Agronomy, Ph.D., Iowa State University</td>
<td></td>
</tr>
<tr>
<td>Edward Everett Morse</td>
<td>Professor of Laboratory Medicine, M.D., Harvard University</td>
<td></td>
</tr>
<tr>
<td>Timothy F. Morse</td>
<td>Associate Professor of Community Medicine and Health Care, Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Elaine M. Mosakowski</td>
<td>Professor of Management, Ph.D., University of California, Berkeley</td>
<td></td>
</tr>
<tr>
<td>Maureen T. Muroy</td>
<td>Associate Professor of Family Studies, Ph.D., University of Maryland</td>
<td></td>
</tr>
<tr>
<td>Natalie Munro</td>
<td>Associate Professor of Anthropology, Ph.D., University of Arizona</td>
<td></td>
</tr>
<tr>
<td>Brenda Murphy</td>
<td>Professor of English, Ph.D., Brown University</td>
<td></td>
</tr>
<tr>
<td>Kevin D. Murphy</td>
<td>Associate Professor of Mechanical Engineering, Ph.D., Duke University</td>
<td></td>
</tr>
<tr>
<td>Frank E. Musiek</td>
<td>Professor of Communication Sciences, Ph.D., Case Western Reserve University</td>
<td></td>
</tr>
<tr>
<td>William E. Mastin</td>
<td>Assistant Professor of Chemical, Materials, and Biomolecular Engineering, Ph.D., Illinois Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Kathyrn Myers</td>
<td>Professor of Art, M.F.A., University of Wisconsin</td>
<td></td>
</tr>
<tr>
<td>Jennifer A. Nadeau</td>
<td>Associate Professor of Animal Science, Ph.D., University of Tennessee</td>
<td></td>
</tr>
<tr>
<td>Letitia G. Naigles</td>
<td>Professor of Psychology, Ph.D., University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Lakshmi S. Nair</td>
<td>Assistant Professor of Chemical, Materials, and Biomolecular Engineering, Ph.D., Sree Chitra Tirunal Institute for Medical Science and Technology, India</td>
<td></td>
</tr>
<tr>
<td>Suresh K. Nair</td>
<td>Professor of Operations and Information Management, Ph.D., Northwestern University</td>
<td></td>
</tr>
<tr>
<td>Ravindra Nanada</td>
<td>Professor of Orthodontics, Ph.D., University of Nymegen, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>Gustavo Nancalares</td>
<td>Assistant Professor of Spanish, Ph.D., University of California, Santa Barbara</td>
<td></td>
</tr>
<tr>
<td>Nancy A. Naples</td>
<td>Professor of Sociology, Ph.D., City University of New York</td>
<td></td>
</tr>
<tr>
<td>Michael J. Mulcahy</td>
<td>Assistant Professor of Sociology, Ph.D., University of Arizona</td>
<td></td>
</tr>
<tr>
<td>Daniel K. Mulkey</td>
<td>Assistant Professor of Physiology and Neurobiology, Ph.D., Wright State University</td>
<td></td>
</tr>
<tr>
<td>Maureen T. Muroy</td>
<td>Associate Professor of Family Studies, Ph.D., University of Maryland</td>
<td></td>
</tr>
<tr>
<td>Sheryl Olson</td>
<td>Associate Professor of History, Ph.D., University of Toronto, Canada</td>
<td></td>
</tr>
<tr>
<td>Ami Omara-Otunnu</td>
<td>Associate Professor of History, D.Phil., Oxford University, England</td>
<td></td>
</tr>
<tr>
<td>Yoshiaki Omori</td>
<td>Assistant Professor of Economics, Ph.D., State University of New York</td>
<td></td>
</tr>
<tr>
<td>James M. O'Neil</td>
<td>Professor of Family Studies, Ph.D., University of Maryland</td>
<td></td>
</tr>
<tr>
<td>Michael J. O'Neill</td>
<td>Associate Professor of Molecular and Cell Biology, Ph.D., University of Texas</td>
<td></td>
</tr>
<tr>
<td>Rachel J. O'Neill</td>
<td>Associate Professor of Molecular and Cell Biology, Ph.D., La Trobe University</td>
<td></td>
</tr>
<tr>
<td>Flavia O'Rourke</td>
<td>Assistant Professor of Pharmacology, Ph.D., University of Connecticut</td>
<td></td>
</tr>
<tr>
<td>James O'Rourke</td>
<td>Associate Professor of Pathology, M.D., Georgetown University</td>
<td></td>
</tr>
<tr>
<td>Isaac M. Ortega</td>
<td>Associate Professor of Natural Resources and the Environment, Ph.D., Texas Tech University</td>
<td></td>
</tr>
<tr>
<td>Nicholas J. Orvitz</td>
<td>Associate Professor of Art, Ph.D., University of California, Los Angeles</td>
<td></td>
</tr>
<tr>
<td>Jeffrey P. Oslieb</td>
<td>Professor of Geography, Ph.D., State University of New York, Buffalo</td>
<td></td>
</tr>
<tr>
<td>Mark E. Overmyer-Velazquez</td>
<td>Associate Professor of History, Ph.D., Yale University</td>
<td></td>
</tr>
<tr>
<td>Juris Ozols</td>
<td>Professor of Biochemistry, Ph.D., University of Washington</td>
<td></td>
</tr>
<tr>
<td>Joel Pacher</td>
<td>Professor of Pharmacology, Ph.D., New York University</td>
<td></td>
</tr>
<tr>
<td>Eung-Kwon Pae</td>
<td>Assistant Professor of Orthodontics, D.D.S., Yonsei University, Korea</td>
<td></td>
</tr>
<tr>
<td>Joseph Pancras</td>
<td>Assistant Professor of Marketing, Ph.D., New York University</td>
<td></td>
</tr>
<tr>
<td>Fotos Papadopoulos</td>
<td>Professor of Chemistry, Ph.D., University of Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Peter Papallo</td>
<td>Assistant Extension Professor, M.S.W., Smith College</td>
<td></td>
</tr>
<tr>
<td>Richard S. Parham</td>
<td>Assistant Professor of Molecular and Cell Biology, Ph.D., Montana State University</td>
<td></td>
</tr>
<tr>
<td>Melina A. Pappademos</td>
<td>Assistant Professor of History, Ph.D., New York University</td>
<td></td>
</tr>
<tr>
<td>Osvaldo F. Pardo</td>
<td>Associate Professor of Spanish, Ph.D., University of Michigan</td>
<td></td>
</tr>
<tr>
<td>Serena M. Parekh</td>
<td>Assistant Professor of Philosophy, Ph.D., Boston College</td>
<td></td>
</tr>
<tr>
<td>Kouroush Parham</td>
<td>Assistant Professor of Surgery, Ph.D., Northern Illinois University</td>
<td></td>
</tr>
<tr>
<td>Crystal L. Park</td>
<td>Assistant Professor of Psychology, Ph.D., University of Delaware</td>
<td></td>
</tr>
<tr>
<td>Cheryl A. Parks</td>
<td>Associate Professor of Social Work, Ph.D., Bryn Mawr College</td>
<td></td>
</tr>
<tr>
<td>Richard S. Parnas</td>
<td>Associate Professor of Chemical, Materials, and Biomolecular Engineering, Ph.D., University of California, Los Angeles</td>
<td></td>
</tr>
<tr>
<td>Ugur Pasaogullari</td>
<td>Assistant Professor of Mechanical Engineering, Ph.D., Pennsylvania State University</td>
<td></td>
</tr>
<tr>
<td>Andrew J. Pask</td>
<td>Associate Professor of Molecular and Cell Biology, Ph.D., La Trobe University, Australia</td>
<td></td>
</tr>
<tr>
<td>Krishna Pattipati</td>
<td>Professor of Electrical Engineering, Ph.D., University of Connecticut</td>
<td></td>
</tr>
<tr>
<td>Spiro Pavlopoulos</td>
<td>Assistant Professor of Pharmacy, Ph.D., Monash University, Australia</td>
<td></td>
</tr>
<tr>
<td>Geraldine S. Pearson</td>
<td>Assistant Professor of Psychiatry, Ph.D., University of Connecticut</td>
<td></td>
</tr>
<tr>
<td>Douglas M. Pease</td>
<td>Professor of Physics, Ph.D., University of Connecticut</td>
<td></td>
</tr>
<tr>
<td>Mark W. Pezuh</td>
<td>Associate Professor of Chemistry, Ph.D., Yale University</td>
<td></td>
</tr>
<tr>
<td>Vanessa P. Pelizzon</td>
<td>Associate Professor of English, Ph.D., University of Missouri</td>
<td></td>
</tr>
<tr>
<td>John J. Peluso</td>
<td>Professor of Physiology and Obstetrics and Gynecology, Ph.D., West Virginia University</td>
<td></td>
</tr>
<tr>
<td>David G. Pendrys</td>
<td>Associate Professor of Behavioral Sciences and Community Health, Ph.D., University of Minnesota</td>
<td></td>
</tr>
<tr>
<td>Rafael Perez-Escamilla</td>
<td>Professor of Nutritional Sciences, Ph.D., University of California, Davis</td>
<td></td>
</tr>
<tr>
<td>Linda S. Pescattello</td>
<td>Professor of Education, Ph.D., University of Connecticut</td>
<td></td>
</tr>
<tr>
<td>Rachel V. Peterson</td>
<td>Associate Professor of Education, Ph.D., Virginia Polytechnic Institute and State University</td>
<td></td>
</tr>
<tr>
<td>Thomas J. Peters</td>
<td>Professor of Computer Science and Engineering, Ph.D., Wesleyan University</td>
<td></td>
</tr>
<tr>
<td>Cynthia Wyeth Peterson</td>
<td>Professor of Physics, Ph.D., Cornell University</td>
<td></td>
</tr>
<tr>
<td>Donald R. Peterson</td>
<td>Assistant Professor of Medicine, Ph.D., University of Connecticut</td>
<td></td>
</tr>
<tr>
<td>Douglas E. Peterson</td>
<td>Professor of Oral Diagnosis, Ph.D., University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Richard S. Peterson</td>
<td>Professor of English, Ph.D., University of California, Berkeley</td>
<td></td>
</tr>
<tr>
<td>Nancy M. Petchell</td>
<td>Associate Professor of Psychiatry, Ph.D., Harvard University</td>
<td></td>
</tr>
<tr>
<td>Carol A. Pfeiffer</td>
<td>Associate Professor of Medicine, Ph.D., Washington University</td>
<td></td>
</tr>
<tr>
<td>Jerry R. Phillips</td>
<td>Associate Professor of English, Ph.D., Essex University, England</td>
<td></td>
</tr>
</tbody>
</table>
John D. Phillips, Associate Professor of Accounting, Ph.D., University of Iowa
Samuel Pickering, Professor of English, Ph.D., Princeton University
Michael Pikal, Professor of Pharmaceutics, Ph.D., Iowa State University
Carol C. Pilbeam, Professor of Medicine, Ph.D., Yale University
George A. Pleasko, Associate Professor of Accounting, Ph.D., University of Wisconsin
E. Carol Polifroni, Associate Professor of Nursing, Ed.D., Rutgers University
Robert S. Pomeroy, Professor of Agricultural and Resource Economics, Ph.D., Cornell University
Steven Pothasher, Professor of Neuroscience, Ph.D., McGill University, Canada
Gary N. Powell, Professor of Management and Organization, Ph.D., University of Massachusetts
Vladimir Pozdnyakov, Associate Professor of Statistics, Ph.D., University of Pennsylvania
Felicia Pratto, Professor of Psychology, Ph.D., New York University
Jeremy Pressman, Assistant Professor of Political Science, Ph.D., Massachusetts Institute of Technology
Kim Price, Assistant Professor of Sociology, Ph.D., University of Massachusetts
Janet L. Pritchard, Associate Professor of Art and Art History, M.F.A., University of New Mexico
Catherine A. Proenza, Associate Professor of Physiology and Neurobiology, Ph.D., Colorado State University
Lynn Puddington, Associate Professor of Medicine in Residence, Ph.D., Wake Forest University
Girish N. Punj, Professor of Marketing, Ph.D., Carnegie-Mellon University
Bandana Purkayastha, Associate Professor of Sociology, Ph.D., University of Connecticut
Diane M. Quinn, Associate Professor of Psychology, Ph.D., University of Michigan
Justin D. Rudolf, Professor of Medicine and Microbiology, M.D., University of California, San Francisco
Lawrence G. Raisz, Professor of Medicine, M.D., Harvard University
T. V. Rajan, Professor of Pathology, Ph.D., Yeshiva University
Sanguthere Rajasekaran, Professor of Computer Science and Engineering, Ph.D., Harvard University
Ramamurthy Ramprasad, Assistant Professor of Computer Science and Engineering, Ph.D., Pennsylvania State University
Susan M. Randolph, Associate Professor of Economics, Ph.D., Cornell University
Theodore P. Rasmussen, Associate Professor of Animal Science, Ph.D., University of Wisconsin
Kathryn S. Ratcliff, Assistant Professor of Sociology, Ph.D., University of Wisconsin
Naliniravishanker, Professor of Statistics, Ph.D., New York University
George H. Ratcliffe, Professor of Physics, Ph.D., Stanford University
Subhash Ray, Professor of Economics, Ph.D., University of California, Santa Barbara
Heather L. Read, Assistant Professor of Psychology, Ph.D., Loyola University
Thomas Roschio, Associate Professor of English, Ph.D., Rutgers University
Ernst J. Reichenberger, Assistant Professor of BioStructure and Function, Ph.D., University of Erlangen, Germany
Gregory P. Reilly, Assistant Professor of Management, Ph.D., University of Wisconsin
Sally M. Reis, Professor of Education, Ph.D., University of Connecticut
Susan T. Reine, Professor of Behavioral Sciences and Community Health, Ph.D., Yale University
Howard Lee Reiter, Professor of Political Science, Ph.D., Harvard University
Wolf-Dieter Reiter, Professor of Molecular and Cell Biology, Ph.D., University of Munich, Germany
J. Larry Renfro, Professor of Physiology and Neurobiology, Ph.D., University of Oklahoma
Michael W. Renfro, Associate Professor of Mechanical Engineering, Ph.D., Purdue University
Jeffrey H. Renshaw, Professor of Music, Ph.D., University of Rochester
Xaé A. Reyes, Associate Professor of Education, Ph.D., University of Colorado
Eric N. Rice, Assistant Professor of Music, Ph.D., Columbia University
John P. Rickards, Professor of Psychology, Ph.D., Pennsylvania State University
Sandra A. Rigazio-DiGilio, Professor of Family Studies, Ed.D., University of Massachusetts
Diana Rios, Associate Professor of Communication Sciences, Ph.D., University of Texas
Guillermo R. Risatti, Assistant Professor of Pathobiology and Veterinary Science, D.V.M., Universidad Nacional de Río Cuarto (Argentina)
Ph.D., University of Nebraska
Gonzalo M. River, Assistant Professor of Genetics and Developmental Biology in Residence, D.V.M., National University of Río Cuarto, Argentina; Ph.D., Cornell University
Gary A. Rohns, Professor of Geology and Geophysics, Ph.D., Texas A&M University
Mark D. Robbins, Associate Professor of Political Science, Ph.D., Syracuse University
JoAnn L. Robinson, Professor of Human Development and Family Studies, Ph.D., Cornell University
Victoria L. Robinson, Assistant Professor of Molecular and Cell Biology, Ph.D., University of Iowa
Thomas W. Roby, Associate Professor of Mathematics, Ph.D., Massachusetts Institute of Technology
Bartolo Roccaforte, Professor of Dramatic Arts, M.F.A., University of Connecticut
Constance Rock, Assistant Professor of Music, D.M.A., University of Connecticut
Vladimir I. Rodionov, Associate Professor of Physiology, Ph.D., Moscow State University, Russia
Nancy Rodriguez, Professor of Nutritional Sciences, Ph.D., West Virginia University
Shirley A. Roe, Professor of History, Ph.D., Harvard University
Helen Jane Rogers, Professor of Education, Ph.D., University of Massachusetts
Luke G. Rogers, Assistant Professor of Mathematics, Ph.D., Yale University
Blanka Rogina, Assistant Professor of Genetics and Developmental Biology, Ph.D., Zagreb University, Croatia
Elaina D. Rojas, Assistant Professor of Education in Residence, Ph.D., University of Connecticut
Tracy Romano, Associate Professor of Marine Sciences, Ph.D., University of Rochester
Yuhang Rong, Associate Professor of Education in Residence, Ph.D., University of Connecticut
Dale Aj Rose, Professor of Dramatic Arts, M.A., Michigan State University
Barry A. Rosenberg, Assistant Professor of Art and Art History, M.A., University of California, Los Angeles
Daniel W. Rosenberg, Professor of Medicine, Ph.D., University of Michigan
Andrew J. Rosman, Associate Professor of Accounting, Ph.D., University of North Carolina
Stephen Ross, Professor of Economics, Ph.D., Sydney University, Australia
George A. Rossetti, Jr., Associate Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., Pennsylvania State University
Edward F. Rossonimo, Professor of BioStructure and Function, Ph.D., Rockefeller University
David W. Rowe, Professor of Genetics and Developmental Biology, M.D., University of Vermont
Chandrasekhar Roychoudhuri, Research Professor of Electrical Engineering, Ph.D., University of Jadavpur, India
Lisa M. Werkmeister Rosas, Assistant Professor of Social Work, Ph.D., Smith College
Helen M. Rozwadowski, Associate Professor of History, Ph.D., University of Pennsylvania
Margaret A. Rubega, Associate Professor of Ecology and Evolutionary Biology, Ph.D., University of California, Irvine
Maria F. Rubio, Assistant Professor of Physiology and Neurobiology, M.D., Ph.D., University of Alicante, Spain
Mark Rudnicki, Assistant Professor of Natural Resources and the Environment, Ph.D., University of Alberta, Canada
Jay G. Rueckl, Associate Professor of Psychology, Ph.D., University of Wisconsin
Alberta Carol Rusaw, Assistant Extension Professor of Political Science, Ed.D., Virginia Polytechnic Institute and State University
Jeffrey L. Rummel, Associate Professor of Operations and Information Management, Ph.D., University of Rochester
Patchanee Runguangnant, Assistant Clinical Professor of Prosthodontics, D.D.S., Chiangmai University, Thailand; M.S.D., Indiana University
James A. Russell, Professor of Chemistry, Ph.D., Clarkson College of Technology
Alexander C. Russell, Associate Professor of Computer Science and Engineering, Ph.D., Massachusetts Institute of Technology
Karen S. Ryker, Professor of Dramatic Arts, M.F.A., Brandeis University
Ronald M. Sabettel, Professor of Family Studies, Ph.D., University of Connecticut
Jean Sabatine, Professor of Dramatic Arts, M.A., University of Utah
John R. Saddlemire, Associate Professor of Education, D.Ed., Pennsylvania State University
Kamran Safavi, Associate Professor of Endodontology, D.M.D., University of Tehran, Iran
Richard L. Saint Marie, Assistant Professor of Neuroscience, Ph.D., University of Wisconsin
John D. Salamone, Professor of Psychology, Ph.D., Emory University
Jung C. Salazar, Associate Professor of Pediatrics, M.D., Universidad Javeriana, Colombia; M.P.H., University of Minnesota
Eugene M. Salorio, Associate Professor of Management in Residence, D.B.A., Harvard University
Shawn Salvant, Assistant Professor of English, Ph.D., University of California, Berkeley
Ronald W. Salz, Assistant Professor of Natural Resources and Engineering, Ph.D., University of Massachusetts
Lisa M. Sánchez González, Associate Professor of English, Ph.D., University of California, Los Angeles
Johannes C. Sanders, Professor of Sociology, Ph.D., Northwestern University
Lisa M. Sanetti, Professor of Education, Ph.D., University of Wisconsin
Theo Sanford, Associate Professor of Nursing in Residence, Ph.D., University of Connecticut
Ramesh Sankaranarayanan, Assistant Professor of Operations and Information Management, Ph.D., New York University
Rexford E. Santerre, Professor of Finance, Ph.D., University of Connecticut
Mansoor Sarfarazi, Professor of Surgery, Ph.D., University of Wales, United Kingdom
Timothy F. Saternow, Professor of Dramatic Arts, M.F.A., Yale University
Sue A. Saunders, Associate Extension Professor (Education), Ph.D., University of Georgia
Robin M. Schader, Assistant Professor of Education,
Ph.D., University of Connecticut
 Carl Walter Schafer, Professor of Ecology and Evolutionary Biology, Ph.D., University of Connecticut
 Sylvia Schafer, Associate Professor of History, Ph.D., University of California, Berkeley
 John B. Schenkmann, Professor of Pharmacology, Ph.D., State University of New York, Upstate Medical Center, Syracuse
 Stephen L. Schensul, Professor of Community Medicine and Health Care, Ph.D., University of Minnesota
 Ralf Schiffer, Assistant Professor of Mathematics, Ph.D., University of Quebec, Canada
 Martin R. Schiller, Associate Professor of Neuroscience, Ph.D., Utah State University
 Gian Pietro Schincaglia, Clinical Assistant Professor of Periodontology, D.M.D., Ph.D., University of Ferrara, Italy
 Carl D. Schlichting, Professor of Ecology and Evolutionary Biology, Ph.D., University of Texas
 Martin R. Schiller, Assistant Professor of Neuroscience, Ph.D., Utah State University
 Cathy J. Schum-D-Vals, Assistant Professor of English, Ph.D., University of Massachusetts
 Cristian P. Schultheiss, Associate Professor of Plant Science, Ph.D., University of Delaware
 Eric T. Schultz, Associate Professor of Ecology and Evolutionary Biology, Ph.D., University of California, Santa Barbara
 Kristin E. Schwab, Associate Professor of Plant Science, M.L.A., Iowa State University
 Richard L. Schwab, Professor of Education, Ph.D., University of Connecticut
 Jeffrey S. Schweitzer, Research Professor of Physics, Ph.D., Purdue University
 Peter J. Schweitzer, Assistant Professor of Physics, Ph.D., Ruhr University, Germany
 Kurt Schwemken, Professor of Ecology and Evolutionary Biology, Ph.D., University of California, Berkeley
 Daniel A. Scola, Research Professor of Materials Science, Ph.D., University of Connecticut
 George M. Scott, Professor of Information Management, Ph.D., University of Washington
 Lyle A. Scruggs, Associate Professor of Political Science, Ph.D., Duke University
 Laurietz Sedea Ramirez, Associate Professor of Spanish, Ph.D., University of Wisconsin
 Thomas A. P. Seery, Associate Professor of Chemistry, Ph.D., University of Southern California
 Joan V. Segal, Assistant Professor of Community Medicine and Health Care, M.A., New York University
 M.S., University of Connecticut
 Kathleen Segerson, Professor of Economics, Ph.D., Cornell University
 Margaret J. Sekellick, Associate Professor of Molecular and Cell Biology in Residence, Ph.D., University of Connecticut
 Kristen Sellek, Assistant Professor of Mathematics in Residence, Ph.D., Zeki Simoesa, Associate Professor of English, Ph.D., Pennsylvania State University
 Gim Seow, Associate Professor of Accounting, Ph.D., University of Oregon
 Anjish Seth, Assistant Professor of Geography, Ph.D., University of Michigan
 Peter Setlow, Professor of Biochemistry, Ph.D., Brandeis University
 John Settlage, Associate Professor of Education, Ph.D., University of Missouri
 Murphy A. Sewall, Professor of Marketing, Ph.D., Washington University
 Farhad Ali Shah, Associate Professor of Agricultural and Resource Economics, Ph.D., University of California, Berkeley
 John D. Shalney, Professor of Medicine, M.D., University of California, Los Angeles

Linda H. Shapiro, Associate Professor of Physiology, Ph.D., University of Michigan
 Lionel S. Shapiro, Assistant Professor of Philosophy, Ph.D., University of Pittsburgh
 Yael Sharvit, Associate Professor of Linguistics, Ph.D., Rutgers University
 Brenda Shaw, Associate Professor of Chemistry, Ph.D., University of Illinois
 Fran Shaw, Associate Professor of English, Ph.D., Union University
 Leon L. Shaw, Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of Florida
 Montgomery T. Shaw, Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., Princeton University
 Thomas F. Shea, Associate Professor of English, Ph.D., Rutgers University
 Barry G. Sheckley, Professor of Education, Ph.D., University of Connecticut
 Nancy W. Sheehan, Associate Professor of Family Studies, Ph.D., University of Wisconsin
 Deborah A. Shelton, Associate Professor of Nursing, Ph.D., University of Virginia
 Zhijie Shi, Assistant Professor of Computer Science and Engineering, Ph.D., Princeton University
 Dong-Guk Shin, Professor of Computer Science and Engineering, Ph.D., University of Michigan
 Nancy Shoemaker, Professor of History, Ph.D., University of Virginia
 Sandra E. Shumway, Research Professor of Marine Sciences, Ph.D., D.Sc., University College of North Wales, United Kingdom
 Alexander A. Shwartz, Professor of Computer Science and Engineering, Ph.D., Brown University
 Stuart Jay Sidman, Professor of Mathematics, Ph.D., Harvard University
 Del L. Siegle, Associate Professor of Education in Residence, Ph.D., University of Connecticut
 John A. Silander, Professor of Ecology and Evolutionary Biology, Ph.D., Duke University
 Lawrence K. Silbart, Professor of Allied Health, Ph.D., University of Michigan
 Helena Silva, Assistant Professor of Electrical and Computer Engineering, Ph.D., Cornell University
 Blanca G. Silvestrini, Professor of History, Ph.D., State University of New York, Albany
 Evelyn M. Simoesa, Associate Professor of Computer Science, Ph.D., Purdue University
 Louise B. Simmons, Associate Professor of Social Work, Ph.D., Massachusetts Institute of Technology
 Christine M. Simon, Professor of Ecology and Evolutionary Biology, Ph.D., State University of New York, Stony Brook
 Richard H. Simon, Professor of Surgery, M.D., St. Louis University
 Brandy M. Simonsen, Assistant Professor of Education, Ph.D., University of Oregon
 William Simonsen, Professor of Political Science, Ph.D., New York University
 Zekia Simoesa, Associate Professor of Management, Ph.D., University of Connecticut
 Matthew M. Singer, Assistant Professor of Political Science, Ph.D., University of Oregon
 Merrick C. Singer, Professor of Anthropology, Ph.D., University of Utah
 Amellie C. Skoog, Associate Professor of Marine Sciences, Ph.D., University of Göteborg, Sweden
 Laurie E. Sloan, Associate Professor of Art, M.F.A., Temple University
 Joseph W. Smey, Professor of Physical Therapy, Ed.D., Clark University
 Henry M. Smilowitz, Associate Professor of Pharmacology, Ph.D., Massachusetts Institute of Technology
 Alevtina L. Smirnova, Assistant Research Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., St. Petersburg State University, Russia
 Alexia Smith, Assistant Professor of Anthropology in Residence, Ph.D., Boston University
 Ellen R. Smith, Assistant Extension Professor - Social Work, Ph.D., Smith College
 Katharine C. Smith, Associate Professor of English, Ph.D., University of Connecticut
 Michael Smith, Professor of Chemistry, Ph.D., Purdue University
 Winthrop Ware Smith, Professor of Physics, Ph.D., Massachusetts Institute of Technology
 Joan A. Smyth, Associate Professor of Pathobiology, Ph.D., Queens University, Ireland
 Leslie B. Snyder, Professor of Communication Sciences, Ph.D., Stanford University
 William B. Snyder, Associate Professor of Linguistics, Ph.D., Massachusetts Institute of Technology
 David R. Solomon, Assistant Professor of Mathematics, Ph.D., Cornell University
 David Arthur Sonstroem, Professor of English, Ph.D., Harvard University
 Richard H. Sosis, Associate Professor of Anthropology, Ph.D., University of New Mexico
 Gregory A. Sotz, Associate Professor of Materials Science, Ph.D., University of Florida
 David Souder, Assistant Professor of Management, Ph.D., University of Minnesota
 Larz S.W. Spangberg, Professor of Endodontics, Doct. Ondont., University of Umea, Sweden
 Karen Spaulding, Professor of History, Ph.D., University of California, Berkeley
 Robin Spath, Assistant Professor of Social Work, Ph.D., Brandeis University
 Cheryl Spaulding, Associate Professor of Education, Ph.D., Stanford University
 Tammie Spaulding, Assistant Professor of Communication Sciences, University of Arizona
 Susan Spiggle, Associate Professor of Marketing, Ph.D., University of Connecticut
 Nikolaus A. Spoerel, Assistant Professor of Biochemistry, Ph.D., Free University, West Germany
 Ramon Segura, Associate Professor of Music, Ph.D., Yale University
 Narasimhan Srinivasan, Associate Professor of Marketing, Ph.D., State University of New York, Buffalo
 Srinivasaraghavan Srimath, Assistant Professor of Marketing, Ph.D., Purdue University
 Pramod K. Srivastava, Professor of Medicine, Ph.D., Osmania University, India
 Ranjan Srivastava, Associate Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of Maryland
 Jan Stallard, Associate Professor of Operations and Information Management, Ph.D., University of California, Los Angeles
 Glenn Stanley, Professor of Music, Ph.D., Columbia University
 Megan E. Staples, Assistant Professor of Education, Ph.D., Stanford University
 Jason M. Stephens, Assistant Professor of Education, Ph.D., Stanford University
 Robert W. Stephens, Professor of Music, Ph.D., Indiana University
 Jennifer Sterling-Folker, Associate Professor of Political Science, Ph.D., University of Chicago
 David A. Stern, Professor of Dramatic Arts, Ph.D., Temple University
 Richard G. Stevens, Professor of Community Medicine and Health Care, Ph.D., University of Washington
 Ellen Storey, Associate Professor of Medicine, M.D., M.P.H., Harvard University
Gary P. Storhoff, Associate Professor of English, Ph.D., University of Connecticut
Linda D. Strausbaugh, Professor of Molecular and Cell Biology, Ph.D., Wesleyan University
Zoe L. Strickler, Assistant Professor of Art, M.Des., University of Alberta, Canada
William C. Stwalley, Professor of Physics, Ph.D., Harvard University
George M. Sugai, Professor of Education, Ph.D., University of Washington
Steven Suib, Professor of Chemistry, Ph.D., University of Illinois
Mark E. Sullivan, Associate Extension Professor, Ph.D., University of Connecticut
Wei Sun, Assistant Professor of Mechanical Engineering, Ph.D., University of Pittsburgh
Chong Sook Paik Sung, Professor of Chemistry, Ph.D., Polytechnic Institute of New York
Charles M. Super, Professor of Family Studies, Ph.D., Harvard University
Harvey Alan Swadlow, Professor of Psychology, Ph.D., University of Miami
Harinrath Swaminathan, Professor of Education, Ph.D., University of Toronto, Canada
Mark S. Swanson, Professor of Physics, Ph.D., University of Missouri
Whitney Tabor, Associate Professor of Psychology, Ph.D., Stanford University
Melissa A. Tafaya, Assistant Professor of Communication Sciences, Ph.D., Arizona State University
Bette Talvacchia, Professor of Art, Ph.D., Stanford University
Rachel B. Tamblyn, Assistant Professor of Human Development and Family Studies, Ph.D., University of Georgia
Jiong Tang, Associate Professor of Mechanical Engineering, Ph.D., Pennsylvania State University
Susan Tannenbaum, Assistant Professor of Medicine, M.D., State University of New York, Brooklyn
Jason M. Tanzer, Professor of Oral Diagnosis, D.M.D., Tufts University; Ph.D., Georgetown University
Geoffrey W. Taylor, Professor of Electrical Engineering, Ph.D., University of Toronto, Canada
Ronald L. Taylor, Professor of Sociology, Ph.D., Boston University
Thomas D. Taylor, Professor of Prosthodontics, D.D.S., University of Iowa; M.S.D., University of Minnesota
Mohammad Taherianpoor, Assistant Professor of Electrical and Computer Engineering, Ph.D., University of Texas
Jennifer C. Telford, Assistant Professor of Nursing, Ph.D., University of Virginia
Howard Tennen, Professor of Community Medicine and Health Care, Ph.D., University of Massachusetts
Alexander Tepleyev, Associate Professor of Mathematics, Ph.D., Cornell University
Mark Terasaki, Associate Professor of Physiology, Ph.D., University of California, Berkeley
Erin Tervillegger, Associate Professor of Mathematics, Ph.D., University of Missouri
Carolyn M. Teschke, Professor of Molecular and Cell Biology, Ph.D., Washington State University
Lakhshman S. Thakur, Associate Professor of Information Management, Eng.Sc., Columbia University
Edward A. Thibodeau, Assistant Professor of Behavioral Sciences and Community Health, D.M.D., Tufts University; Ph.D., University of Rochester
Rebecca L. Thomas, Assistant Professor of Social Work, Ph.D., Temple University
Robert Mark Thorton, Professor of Geology and Geophysics, Ph.D., University of Washington
Roger S. Thrall, Professor of Medicine, Ph.D., Marquette University
X. Cindy Tian, Associate Professor of Animal Science, Ph.D., Cornell University
Robert S. Tilton, Associate Professor of English, Ph.D., Stanford University
Jennifer S. Tinu, Assistant Professor of Molecular Medicine, M.D., University of Maryland
Jeffrey Lynn Tolleson, Professor of Mathematics, Ph.D., Michigan State University
Lang Tong, Associate Professor of Electrical Engineering, Ph.D., University of Notre Dame
Kathleen Tonge, Assistant Professor of English, Ph.D., University of Notre Dame
Thomas Torgersen, Professor of Marine Sciences, Ph.D., Columbia University
Constantine Trahiotis, Professor of Neuroscience, Ph.D., Wayne State University
Marcia C. Trappe-Cardoso, Associate Professor of Clinical Medicine, M.D., University of Sao Paulo, Brazil
Roger M. Travis, J r., Associate Professor of Classics, Ph.D., University of California, Berkeley
Kimberly R. H. Treadwell, Associate Professor of Psychology, Ph.D., T. U. Ong University
Gautam Tripathi, Associate Professor of Economics, Ph.D., Northwestern University
John Gordon Troyer, Associate Professor of Philosophy, Ph.D., Harvard University
Lisa Troyer, Professor of Sociology, Ph.D., Stanford University
Stephen L. Trumbo, Professor of Ecology and Evolutionary Biology, Ph.D., University of North Carolina
Nathaniel S. Trumbull, Assistant Professor of Geography, Ph.D., University of Washington
Mary P. Truxaw, Assistant Professor of Education, Ph.D., University of Connecticut
Eileen Tuczynski, Assistant Professor of Economics, Ph.D., University of Michigan
Pei-Tsan Tsai, Assistant Professor of Physiology and Neurobiology, Ph.D., University of California, Berkeley
Petros Tsiouras, Professor of Pediatrics, M.D., National University of Athens, Greece
Gaye Tuchman, Professor of Sociology, Ph.D., Brandeis University
Shuana K. Tucker, Assistant Professor of Education, Ph.D., University of Illinois
Jennifer Tufts, Assistant Professor of Communication Sciences, Ph.D., Pennsylvania State University
Y. Alex Tung, Associate Professor of Operations and Information Management, Ph.D., University of Kentucky
Peter Turchin, Professor of Ecology and Evolutionary Biology, Ph.D., Duke University
Heather M. Turcotte, Assistant Professor of Political Science, Ph.D., University of California, Santa Cruz
Jane A. Ungemack, Assistant Professor of Community Medicine and Health Care, Dr.P.H., Columbia University
Flavio Andres Uribe, Assistant Professor of Orthodontics, D.D.S., Instituto de Ciencias de la Salud, Colombia; M.Dent.Sc., University of Connecticut
Eduardo Urios-Aparisi, Assistant Professor of Modern and Classical Languages, Ph.D., University of Illinois
Emiliano Valdez, Professor of Mathematics, Ph.D., University of Wisconsin
Theodore C. Van Alst, Jr., Assistant Professor of Modern and Classical Languages, Ph.D., University of Connecticut
Donna Lee Van Cott, Associate Professor of Political Science, Ph.D., Georgetown University
Harry van der Hulst, Professor of Linguistics, Ph.D., Leiden University, The Netherlands
Jaci L. VanHeest, Assistant Professor of Education in Residence, Ph.D., Michigan State University
Thomas J. Van Hoof, Assistant Professor of Nursing, M.D., M.A., University of Connecticut; Ed.D., Columbia University
Herbert J. Van Kruiningen, Professor of Pathobiology, D.V.M., Ph.D., Cornell University; M.D., Brown University
C. Arthur VanLear, Associate Professor of Communication Sciences, Ph.D., University of Utah
John F. Veiga, Professor of Management and Organization, D.B.A., Kent State University
Anthony T. Veilla, Associate Professor of Medicine, Ph.D., Cornell University
Sandra G. Velema, Assistant Professor of Animal Science in Residence, Ph.D., University of Connecticut
Charles R. Venkatesh, Assistant Professor of Political Science, Ph.D., University of Massachusetts
Kumar S. Venkitanarayanan, Associate Professor of Animal Science, Ph.D., University of Connecticut
Fiona H. Vernal; Assistant Professor of History, Ph.D., Yale University
John A. Verno, Assistant Professor of Finance, Ph.D., City University, England; Ph.D., University of Pennsylvania
Roel J. Versteeg, Assistant Professor of Geology and Geophysics, Ph.D., University of Paris, France
Alexander C. Via, Associate Professor of Geography, Ph.D., University of Arizona
Olga Vinogradova, Assistant Professor of Pharmaceutical Science, Ph.D., Case Western Reserve University
Pieter Vischer, Professor of Marine Sciences, Ph.D., University of Groningen, The Netherlands
Richard A. Vitale, Professor of Statistics, Ph.D., Brown University
Eppapante (Penny) Villanueva, Assistant Research Professor of Marine Sciences, Ph.D., University of Massachusetts
Jason C. Vokoun, Assistant Professor of Natural Resources and the Environment, Ph.D., University of Missouri
Jeff S. Volek, Associate Professor of Education, Ph.D., Pennsylvania State University
Maxim Volkushev, Associate Professor of Psychology, Ph.D., Russian Academy of Sciences
John C. Volin, Professor of Natural Resources and the Environment, Ph.D., University of Wisconsin
Susanne Beck von Bodman, Associate Professor of Plant Science, Ph.D., University of Illinois
Katharina von Hentenbrink, Professor of German, Ph.D., University of California, Los Angeles
Brian E. Waddington, Assistant Professor of Political Science, Ph.D., City University of New York
Sunita Wadhwa, Assistant Professor of Orthodontics, D.D.S., Columbia University; Ph.D., University of California
David L. Wagner, Professor of Ecology and Evolutionary Biology, Ph.D., University of California, Berkeley
Julie A. Wagner, Associate Professor of Behavioral Sciences and Community Health, Ph.D., University of Rhode Island
Naiji L. Wagner, Assistant Professor of Modern and Classical Languages, Ph.D., Graz University, Austria
David M. Watzman, Assistant Professor of Neurology, M.D., Ph.D., City University of New York
Randall S. Wallack, Associate Professor of Physiology and Neurobiology, Ph.D., Mayo Graduate School of the Mayo Clinic
Michael Wallace, Professor of Sociology, Ph.D., Indiana University
Alina L. Waller, Professor of History, Ph.D., University of Massachusetts
Stephen Walsh, Associate Professor of Nursing, Sc.D., Harvard University
Guanghua Wang, Associate Professor of History, Ph.D., Michigan State University
Guilin Wang, Associate Professor of Civil and Environmental Engineering, Ph.D., Massachusetts Institute of Technology
Lei Wang, Assistant Professor of Electrical and Computer Engineering, Ph.D., University of Illinois
Shih-Lun (Alex) Wang, Associate Professor of Communication Sciences in Residence, Ph.D., University of Texas
Tixiang Wang, Associate Professor of Mathematics, Ph.D., University of Connecticut
Yazhen Wang, Professor of Statistics, University of California, Berkeley
Yong Wang, Assistant Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., Duke University
Zhao-Wen Wang, Assistant Professor of Neuroscience, Ph.D., Michigan State University
J. Evan Ward, Associate Professor of Marine Sciences, Ph.D., University of Delaware
Julie Wargo Aikins, Assistant Professor of Psychology, Ph.D., Pennsylvania State University
Glenn S. Warner, Professor of Natural Resources and the Environment, Ph.D., University of Minnesota
Nicholas Warren, Assistant Professor of Medicine, Sc.L., University of Massachusetts, Lowell
Ruth A. Washington, Associate Professor of Molecular and Cell Biology in Residence, Ph.D., Wayne State University
Dudley T. Watkins, Professor of Physiology, M.D., Ph.D., Western Reserve University
James Watras, Associate Professor of Physiology, Ph.D., Washington State University
Janet S. K. Watson, Associate Professor of History, Ph.D., Stanford University
Julianne Wayne, Associate Professor of Social Work, Ed.D., Clark University
David Weakliem, Professor of Sociology, Ph.D., University of Wisconsin
Shannon E. Weaver, Associate Professor of Family Studies, Ph.D., University of Maryland
Catherine M. Weber, Associate Professor of Family Medicine, Ph.D., Rutgers University
Mei Wei, Associate Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of New South Wales, Australia
Friedmann J. Weidauer, Associate Professor of Modern and Classical Languages, Ph.D., University of Wisconsin
Robert A. Weiss, Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of Massachusetts
Sandra K. Weller, Professor of Microbiology, Ph.D., University of Wisconsin
Barrett O. Wells, Associate Professor of Physics, Ph.D., Stanford University
Kentwood D. Wells, Professor of Ecology and Evolutionary Biology, Ph.D., Cornell University
Megan E. Welsh, Assistant Professor of Education, Ph.D., University of Arizona
Raymond William Wengel, Professor of Plant Science, Ph.D., University of Wisconsin
Mark E. Westa, Associate Professor of Plant Science, M.L.A., Harvard University
Scott L. Wetstone, Assistant Professor of Community Medicine and Health Care, M.D., University of Connecticut
Samuel Crane Wheeler, Professor of Philosophy, Ph.D., Princeton University
Bruce A. White, Professor of Physiology, Ph.D., University of California, Berkeley
Robert Bruce Whittatch, Professor of Marine Sciences, Ph.D., University of Chicago
Michael M. Whitney, Assistant Professor of Marine Sciences, Ph.D., University of Delaware
Benjamin L. Willhite, Assistant Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., University of Notre Dame
Roger B. Wilken, Professor of English, Ph.D., University of Rochester
Michael Willenborg, Professor of Accounting, Ph.D., Pennsylvania State University
Peter K. Willett, Professor of Electrical Engineering, Ph.D., Princeton University
Michelle Williams, Associate Professor of Psychology, Ph.D., University of Georgia
Michael R. Willig, Professor of Ecology and Evolutionary Biology, Ph.D., University of Pittsburgh
Brian G. Willis, Associate Professor of Chemical, Materials and Biomolecular Engineering, Ph.D., Massachusetts Institute of Technology
Richard A. Wilson, Professor of Anthropology, Ph.D., London School of Economics and Political Science, United Kingdom
Andrew Winokur, Professor of Psychiatry, M.D., Tufts University, Ph.D., University of Pennsylvania
Steven E. Winter, Associate Professor of English, Ph.D., Yale University
Steven K. Wisensale, Professor of Family Studies, Ph.D., Brandeis University
Sebastian Wogenstein, Assistant Professor of German, Ph.D., University of Tübingen, Germany
Leslie Wolfson, Professor of Neurology, M.D., Albert Einstein College of Medicine
Charles W. Wolgemuth, Assistant Professor of Physiology, Ph.D., University of Arizona
Walter W. Woodward, Assistant Professor of History, Ph.D., University of Connecticut
Bradley Wright, Associate Professor of Sociology, Ph.D., University of Wisconsin
Dennis L. Wright, Associate Professor of Medicinal Chemistry, Ph.D., Ohio University
Carol A. Wu, Assistant Professor of Medicine, Ph.D., Vanderbilt University
Catherine H. Wu, Professor of Medicine, Ph.D., City University of New York
George Y. Wu, Professor of Medicine, M.D., Ph.D., Albert Einstein College of Medicine
Yufeng Wu, Assistant Professor of Computer Science and Engineering, Ph.D., University of California, Davis
Ren-He Xu, Associate Professor of Genetics and Developmental Biology, M.D., Hengyang Medical College, China; Ph.D., University of Tokyo Japan
Mary E. Yakimowski, Associate Professor of Education in Residence, Ph.D., University of Connecticut
David A. Yalof, Associate Professor of Management, Ph.D., Johns Hopkins University
Xiaodong Yang, Assistant Professor of Mathematics, Ph.D., University of Minnesota
Xiuqin Yang, Professor of Natural Resource Management and Engineering, Ph.D., Ohio State University
Xudong Yao, Assistant Professor of Chemistry, Ph.D., University of Maryland
Charles Yarish, Professor of Ecology and Evolutionary Biology, Ph.D., Rutgers University
Philip L. Yeagle, Professor of Molecular and Cell Biology, Ph.D., Duke University
Edwin Yegr, Associate Professor of Art, M.L.A., Yale University
Susanne F. Yelin, Associate Professor of Physics, Ph.D., Ludwig-Maximilians Universität, Germany
Fang Yin, Assistant Professor of Operations and Information Management, Ph.D., University of Texas
Mark A. Youn, Assistant Professor of Management, Ph.D., Pennsylvania State University
Michael Young, Associate Professor of Education, Ph.D., Vanderbilt University
Ji Yu, Assistant Professor of Genetics and Developmental Biology, Ph.D., University of Texas
Lixia Yue, Assistant Professor of Physiology, Ph.D., McGill University, Canada
Richard A. Zeff, Associate Professor of Pathology, Ph.D., Rush University
Bi Zhang, Professor of Mechanical Engineering, Ph.D., Tokyo Institute, Japan
Chuanrong Zhang, Assistant Professor of Geography, Ph.D., University of Wisconsin
Peng Zhang, Assistant Professor of Mechanical Engineering, Ph.D., University of Illinois
Shengli Zhou, Associate Professor of Electrical and Computer Engineering, Ph.D., University of Minnesota
Qiang Zhu, Associate Professor of Endodontology, Ph.D., University of Connecticut
Qing Zhu, Associate Professor of Electrical and Systems Engineering, Ph.D., University of Pennsylvania
Christian M. Zimmermann, Associate Professor of Economics, Ph.D., Carnegie Mellon University
Steven A. Zinn, Professor of Animal Science, Ph.D., Michigan State University
Mark G. Zurolo, Associate Professor of Art, M.F.A., Yale University
Adam Zweifach, Associate Professor of Molecular and Cell Biology, Ph.D., Yale University
EMERITUS FACULTY AND STAFF

List provided by the Department of Human Resources, University of Connecticut, March 23, 2009.

John L. Abbott, Professor, English
Mark Abrahamson, Professor, Sociology
Arthur S. Abramson, Professor, Linguistics
Harold J. Abramson, Professor, Sociology
Cynthia H. Adams, Associate Vice President, Multicultural Affairs
Alexandra Adelstein, Lecturer, Statistics
William A. Ahlo, Professor, Poultry Science
Janet M. Aitken, Professor, Geology and Geography
Robert A. Aldrich, Professor, Natural Resources
George J. Allen, Professor, Psychology
Max M. Allen, Associate Professor, Psychology
Polly R. Allen, Professor, Economics
Derek W. Allinson, Professor, Plant Science
Carol P. Anderson, Associate Professor
Robert L. Anderson, Extension Agent, Plant Science
Ronald F. Aronson, Professor, Chemical Engineering
Gerhard Austin, Associate Professor, Psychology
Isabelle K. Atwood, Assistant Vice President
for Business Services
Gerhard Austin, Associate Professor, Modern and Classical Languages
Philip E. Austin, President Emeritus
Alphonse Avital, Director, Waterbury Campus
Leonid V. Azaroff, Professor, Materials Science
Beryl E. Bagley, Professor, Music
Leon E. Bailey, Associate Vice President, Academic Affairs
James L. Baird, Jr., Director, Avery Point Campus
Alexandria Y. Baldwin, Professor, Curriculum and Instruction
Robert C. Baldwin, Interim Dean, Extended and Continuing Education
Frank W. Ballard, Professor, Dramatic Arts
William G. Barber, Jr., Extension Agent, Cooperative Extension Service
Gene J. Barberet, Professor, Modern and Classical Languages
Robert L. Bard, Professor, Law
Reuben M. Baron, Professor, Psychology
Peter S. Barth, Professor, Economics
John Bartok, Extension Professor
Ralph H. Bartram, Professor, Physics
Floyd L. Bass, Professor, Educational Leadership
Curt F. Beck, Professor, Political Science
David R. Bedding, Associate Professor
Robert L. Bee, Professor, Anthropology
James P. Bell, Professor, Chemical Engineering
Robert B. Bendel, Professor, Animal Science
Carroll O. Bennett, Professor, Chemical Engineering
Edward Benson, Professor in Residence, Modern and Classical Languages
Harold Berger, Associate Professor, English Henrietta Bernal, Professor, Nursing
Philip E. Best, Professor, Materials Science Institute
Bernard. Bible, Professor, Plant Science
Virginia O. Birdsell, Professor, English
Alessandra Bizzicchi, Professor, Modern and Classical Languages
Martin Bloom, Professor, Social Work
Richard H. Bloomer, Professor, Educational Psychology
Philip J. Blumberg, Professor, Law and Business
James M. Bobbitt, Professor, Chemistry
Paul Bock, Professor, Civil Engineering
Charles W. Boer, Professor, English
Edward G. Boettiger, Professor, Biology
Marcia Bok, Professor, Social Work
I. Michael Borroto, Professor, Social Work
Larry W. Bowman, Professor, Political Science
John P. H. Brand, Associate Dean and Director, College of Agriculture and Natural Resources
Emory Braswell, Professor, Molecular and Cell Biology
William F. Brazzil, Professor, Educational Leadership
John J. Bridge, Associate Professor, Journalism
Judith Bridges, Professor
John C. Brittain, Professor, Law
Stephen H. Broderick, Senior Cooperative Extension Educator
Garry M. Brodsky, Professor, Philosophy
Joyce E. Broder, Professor, Art
Irene O. Brown, Associate Professor, Family Studies
Lynn R. Brown, Professor, Animal Science
John W. Brubacher, Professor, Educational Leadership
Alan Bush, Professor, Physiology and Neurobiology
Kathleen A. Bruttomesso, Associate Professor, Nursing
Raymond J. Buck, Jr., Director, University Publications
Joseph I. Budnick, Professor, Physics
Carroll N. Burke, Professor, Pathobiology
Clarence R. Calder, Jr., Professor, Curriculum and Instruction
David N. Camaione, Professor, Sport, Leisure, and Exercise Sciences
George S. Campbell, Professor, Aerospace Engineering
Warren C. Campbell, Associate Professor, Music
Wesley W. Carnegie, Professor, Marketing
Alex A. Cardoni, Associate Professor, Pharmacy Practice
Eric W. Carlson, Professor, English
Joseph B. Cary, Jr., Professor, English
Fred A. Cazel, Jr., Professor, History
Bertrand L. Chamberland, Professor, Chemistry
Norman A. Chance, Professor, Anthropology
Dennis J. Chapron, Associate Professor, Pharmacy Practice
Ann Charters, Professor, English
Peter K. Cheo, Professor, Electrical and Computer Engineering
Alphs C. Chiang, Professor, Economics
Peggy L. Chinn, Professor, Nursing
Jack M. Chinsky, Professor, Psychology
Arthur Chovnick, Professor, Molecular and Cell Biology
Olga Church, Professor, Nursing
Robert C. Church, Associate Professor, Animal Industries
Antonio Cirugia, Professor, Modern and Classical Languages
Philip C. Clapp, Professor, Metallurgy
George A. Clark, Professor, Ecology and Evolutionary Biology
Mary Jane Cleare, Extension Professor, Institute of Public Service
Albert K. Cohen, Professor, Sociology
Maidie Cohen, Professor, Communication Sciences
Steven D. Cohen, Professor, Pharmaceutical Science
Administration
Frederick G. Humphrey, Associate Professor, Chemistry
Cecile N. Hurley, Lecturer, Chemistry
James F. Hurley, Professor, Mathematics
Norma I. Huyck, Professor, Allied Health
Olimpiad S. Ioffe, Professor, Law
Judith W. Irwin, Professor, Curriculum and Instruction
Mary R. Isaacson, Associate Professor, Music
Muhammad M. Islam, Professor, Physics
Edward F. Iwanicki, Professor, Educational Leadership
Lee A. Jacobus, Professor, English
Kay J. Janney, Professor, Dramatic Arts
Robert G. Jeffers, Associate Professor, Mechanical Engineering
Roy E. Jeffrey, Cooperative Extension Educator
William J. Jellema, Professor, Educational Leadership
Hugo H. John, Professor, Natural Resources Management and Engineering
Edna E. Johnson, Assistant Professor, Nursing
Harry M. Johnson, Professor, Finance
James R. Johnson, Stationary Engineer
Keith Johnson, Professor, Finance
Thomas H. Jones, Jr., Professor, Educational Leadership
David Jordan, Professor, Electrical and Systems Engineering
Thomas S. Kane, Associate Professor, English
Stephen J. Kaplowski, Professor, Modern and Classical Languages
Vera T. Kaska, Professor, Physical Therapy
Nafe E. Katter, Professor, Dramatic Arts
Leonard Katz, Professor, Psychology
Lewis Katz, Professor, Chemistry
Jean Lewis Keihl, Professor, Art
E. Duwayne Keller, Professor, Family Studies
David C. Kelly, Professor, Art
Edward T. Kelly, Associate Professor, Pharmacy Practice
Judith A. Kelly, Professor, Molecular and Cell Biology
Quentin Kessel, Professor, Physics
Lamia K. Khairallah, Academic Assistant IV, Biology
Timothy J. Killeen, Associate Dean, Liberal Arts and Sciences
Ilpyong J. Kim, Professor, Political Science
Lousia D. Kirchner, Associate Professor, Modern and Classical Languages
Irving Kirsch, Professor, Psychology
Herbert Klei, Professor, Chemical Engineering
David L. Kleinman, Professor, Electrical Engineering
Paul G. Klemens, Professor, Physics
Charles H. Knapp, Professor, Electrical and Systems Engineering
James R. Knox, Professor, Materials Science
Jane L. Knox, Lecturer, Chemistry
Kirvin L. Knox, Dean, Agriculture and Natural Resources
Richard F. Kochaneck, Professor, Accounting
Uwe Koenig, Professor, Statistics
Herbert A. Koenig, Professor, Mechanical Engineering
Beverly L. Koerner, Professor, Nursing
Norman Kogan, Professor, Political Science
David A. Kollas, Associate Professor, Plant Science
Harold V. Koontz, Associate Professor, Ecology and Evolutionary Biology
Jay S. Kothe, Professor, Plant Science
Paul A. Kramer, Professor, Pharmaceutical Science
Jerry S. Krasser, Associate Professor, Dramatic Arts
Ronald A. Krause, Professor, Chemistry
Hallie M. Krieger, Professor, Molecular and Cell Biology
Leonard J. Krimmerman, Professor, Philosophy
Henry Krisch, Professor, Political Science
Karen O. Kupperman, Professor, History
Saul Kuttner, Professor, Social Work
Rein Laak, Professor, Civil Engineering
Barbara A. Ladabouche, Extension Educator
Management and Administrative Sciences
Walter Godchaux, Professor-in-Residence, Molecular and Cell Biology
Bruce D. Goldman, Professor, Physiology and Neurobiology
Paul B. Goodwin, Professor, History
Michael Gordon, Professor, Sociology
Rae B. Gordon, Professor, Modern and Classical Languages
Richard P. Gosselin, Professor, Mathematics
Albert B. Gray, Associate Agent, Cooperative Extension Service
Norman Gray, Professor, Geology and Geophysics
Robert Green, Professor, Social Work
Irwin M. Greenblatt, Professor, Molecular and Cell Biology
Norbert D. Greene, Professor, Metallurgy
Stephen Greenspan, Professor, Educational Psychology
Michael T. Gregorion, Professor, Dramatic Arts
John Gregoropoulos, Professor, English
Gary F. Griffin, Professor, Plant Science
Robinson A. Grover, Associate Professor, Philosophy
John Gregoropoulos, Professor, Art
Joan J. Hall, Associate Professor, Psychology
John W. Hallauer, Professor, English
A. J. Robert Guttay Professor, Plant Science
Robin Robinson Grover, Associate Professor, Philosophy
Mary L. Haskins, Associate Professor, Agricultural and Resource Economics
Yukap Hahn, Professor, Physics
Karl L. Hammaker, Professor, Psychology
Nathan S. Hale, Professor, Animal Science
Joan J. Hall, Professor, English
John W. Hallauer, Professor, Dramatic Arts
Peter L. Halvorson, Professor, Geography
Edward L. Hamlin, Extension Professor and Director, Center for Economic Education
Roger N. Hancock, Professor, Philosophy
Roger W. Hansell, Professor, Mathematics
Betsy C. Hanson, Professor, Political Science
Gail A. Harkness, Professor, Nursing
Walter L. Harper, Associate Professor, Plant Science
Harry J. Hartley, President Emeritus and University Professor, Education
Howard C. Hayden, Professor, Physics
Janice E. Hayes, Professor, Nursing
John A. Healey, Assistant Professor, Physics
Jerold S. Heiss, Professor, Sociology
Charles F. Helmboldt, Professor, Animal Diseases
John H. Herr, Professor, Dramatic Arts
Eleanor Herrmann, Professor, Nursing
David K. Herzberger, Professor, Modern and Classical Languages
Michie M. Hesselbrock, Professor, Social Work
Stuart M. Heywood Professor, Molecular and Cell Biology
John W. Higgins, Professor
Lawrence E. Hightower, Professor, Molecular and Cell Biology
Winthrop Hilding, Professor, Mechanical Engineering
Dennis Hill, Professor, Pathobiology
Evan Hill, Professor, Journalism
William A. Hines, Professor, Materials Science
Kasumi M. Hirayama, Professor, Social Work
Gilbert J. Hite, Professor, Medicinal Chemistry
Eleanor B. Hotte, Professor, Economics and Family Studies
G. Michael Howard, Professor, Chemical Engineering
Trevor Howes, Professor, Gridding Center
Samuel J. Huang, Professor, Chemistry
Ann L. Huckenberg, Associate Professor, Business Administration
Donald W. Huffman, Associate Professor, Business Administration
Madeleen M. Huffman, Associate Professor, Business
Carol J. Jammie-Keefe, Professor, Nutritional Sciences
Doris A. Lane, Professor, Home Economics
Luane J. Lange, Associate Professor, Cooperative Extension
Lawrence Langer, Associate Professor, History
Lee S. Langston, Professor, Mechanical Engineering
Peter J. LaPlaca, Associate Professor, Marketing
Howard B. Lasnik, Distinguished Professor, Linguistics
Jerome Laszlo, Professor, Music
Hans Lauffer, Professor, Molecular and Cell Biology
Seth Leacock, Professor, Anthropology
Edward R. Leadbetter, Professor, Molecular and Cell Biology
Judith Lee, Professor, Social Work
Tsong C. Lee, Professor, Agricultural and Resource Economics
David A. Leeming, Professor, English
Scott K. Lehman, Associate Professor, Philosophy
John W. Leonard, Professor, Civil and Environmental Engineering
Robert L. Leonard, Associate Professor, Agricultural and Resource Economics
Jay W. Lerman, Professor, Communication Sciences
Manuel Lerman, Professor, Mathematics
Muriel W. Lessner, Associate Professor, Nursing
Homer C. Liese, Associate Professor, Geology and Geophysics
Betty Z. Liles, Professor, Communication Science
Jia Ding Lin, Professor, Civil Engineering
T. Foster Lindley, Professor, Philosophy
David P. Lindorff, Professor, Electrical Engineering and Computer Science
Richard E. Lindstrom, Professor, Pharmacy
Frederick P. Lipschultz, Associate Professor, Physics
Lester Lipsky, Professor, Computer Science and Engineering
Oscar I. Lifot, Associate Professor, Mathematics
Edgar Litt, Professor, Political Science
John L. C. Lof, Professor, Electrical Engineering and Computer Science
Director, Computer Center
Charles H. Logan, Professor, Sociology
Richard F. Long, Professor, Civil and Environmental Engineering
Robert W. Lougee, Professor, History
Bernard W. Lovell, Associate Professor, Computer Science and Engineering
Jean Lucas-Lenard, Professor, Molecular and Cell Biology
Harvey D. Luce, Assistant Professor, Plant Science
Patricia A. Lutnes, Associate Professor, Music
Robert W. Lyuster, Professor, Philosophy
Hugh C. Macgill, Professor, Law
Benedict V. Maciuika, Professor, History
David P. Madacci, Professor
Bernard Magubane, Professor, Anthropology
Joseph J. Maisano, Jr., Extension Agent, Cooperative Extension Service
Alexandros Makriyanis, Professor, Pharmaceutical Sciences
Louis A. Malkus, Professor, Animal Science
Anthony N. Maluccio, Professor, Social Work
Alfred J. Mannenbach, Professor, Curriculum and Instruction
Diane Margolis, Associate Professor, Sociology
David Markowitz, Associate Professor, Physics
Nila Marrone, Associate Professor, Modern and Classical Languages
Ruth Martin, Professor, Social Work
Freud J. Maryanski, Provost and Executive Vice President for Academic Affairs
Matthew S. Meshkinian, Professor, Electrical Engineering
Ian Mayo-Smith, Professor and Director, Institute of Public Service
B. Robert McCaw, Associate Professor, Dramatic Arts
Terrence C. McCormick, Associate Professor, Modern and Classical Languages
William A. McEachern, Professor, Economics
Arthur J. McEvily, Jr., Professor, Metallurgy
Steven V. Owen, Professor, Educational Psychology
Peter W. McNabb, Executive Assistant, President's Office
Arthur S. McGrade, Professor, Philosophy
Joan M. McGuire, Professor, Educational Psychology
Michael P. McHugh, Professor, Modern and Classical Languages
David W. McKain, Professor, English
Charles A. McLauglin, Professor, English
Arlane R. Meade, Professor, Agricultural Publications
Judith A. Meagher, Professor, Education
Mamoud A. Melehy, Professor, Electrical and Systems Engineering
Dorethea A. Mercier, Lecturer and Assistant Dean, Family Studies
Edward H. Merritt, Extension Educator
Stephen D. Messner, Professor, Finance
Judith Meyer, Professor, Geography
Diana T. Meyers, Professor, Philosophy
David Michaels, Professor, Linguistics
Audrey Miller, Professor, Chemistry
David R. Miller, Professor, Natural Resources Management and Engineering
Stephen M. Miller, Professor, Economics
Thomas W. Miller, Professor, Allied Health
Ruth G. Millikan, Professor, Philosophy
Lillian P. Minaya-Rowe, Professor, Curriculum and Instruction
Carlton W. Molette, Professor, Dramatic Arts
Edward C. Monahan, Professor, Marine Sciences
Richard S. Montgomery, Assistant Professor, Mathematics
Sigmund J. Montgomery, Associate Professor, Accounting
Julio Morales, Professor, Social Work
Sarah M. Morehouse, Professor, Political Science
Janet M. Morlanty, Associate Professor
John E. Morral, Professor Metallurgy
Thomas A. Morrison, Professor, Accounting
Joseph J. Morrow, Associate Professor, Kinesiology
Donald L. Mosher, Professor, Psychology
William T. Moyhnian, Professor, English
Ulrich T. Mueller-Westphoven, Professor, Chemistry
Enrico Mignani, Professor, Psychology
Patrick B. Mullarney, Associate Professor, Educational Leadership
Bajali Munkur, Associate Professor, Molecular and Cell Biology
Jane Murdock, Associate Professor, Nursing
Donald L. Murray, Professor, Dramatic Arts;
Associate Dean, Fine Arts
George H. Murray, Associate Extension Professor, Institute of Public Service
Milton L. Myers, Associate Professor, Economics
Dennison J. Nash, Professor, Anthropology
Frederick H. Nelson, Extension Agent, Cooperative Extension Services
Marilyn R. Nelson, Professor, English
Saul H. Nesselroth, Extension Professor
Kenneth J. Neubeck, Professor, Sociology
Jerome H. Newnight, Professor, Mathematics
Julius Newman, Professor, Social Work
William M. Newman, Professor, Sociology
R. Kent Newmyer, Professor, History
Kar A. Nieforth, Professor, Pharmacy
Swend W. Nielsen, Professor, Pathobiology
Emiliana P. Noether, Professor, History
Corine T. Norgaard, Professor, Accounting
Richard L. Norgaard, Professor, Finance
Robert B. Northrop, Professor, Electrical Engineering
Kenneth P. Nunn, Associate Professor, Finance
John F. Nye, Jr., Extension Agent, Cooperative Extension Service
Edward J. P. O'Connor, Professor, Music
James D. O'Hara, Professor, English
Robert M. Orme, Assistant Professor, Nursing
Nelson R. Orringer, Professor, Spanish
Arnold T. Orza, Associate Professor, Hartford Campus
Andrew Paesani, Jr., Associate Professor, Communication Sciences
Emilio Pagoulatos, Professor, Agricultural and Resource Economics
David D. Palmer, Associate Professor, Psychology
William J. Parizek, Associate Professor, Pathobiology
Thomas G. Paterson, Professor, History
Daniel J. Patrylak, Professor, Music
Gretel P elo, Professor, Nutrition Sciences
Perti J. Peao, Professor, Anthropology
Theodore A. Perry, Professor, Modern and Classical Languages
Kim T. Phillips, Associate Professor, History (Avery Point)
Robert L. Phillips, Professor, Hartford Campus
Anthony R. Philpotts, Professor, Geology and Geophysics
Raymond J. Pichey, Professor, Social Work
Louis J. Pierro, Professor, Animal Genetics
Louis J. Pierro, Professor, Animal Genetics
Raymond J. Pichey, Professor, Social Work
Donald I. Potter, Professor, metallurgy and Materials Engineering
Antony Pratt, Associate Professor, Art
Ralph R. Prince, Professor, Agricultural Engineering
Matthew W. Proser, Professor, English
Donald W. Protheroe, Professor, Curriculum and Instruction
Virginia T. Pyle, Professor, Music
Judith M. Quinn, Assistant Professor, Nursing
John E. Rabensteiner, Associate Professor, Educational Psychology
Kenneth J. Randolph, Associate Professor, Communication Sciences
George N. Raney, Professor, Mathematics
Victoria S. Read, Associate Professor, English
Howard A. Reed, Professor, History
Compton Rees, Jr., Associate Professor, English
Charles D. Reese, Extension Professor, Labor Education
Melvyn L. Reich, Professor, Educational Psychology
Joseph S. Renzulli, Distinguished Professor, Educational Psychology
David E. Repass, Professor, Political Science
Richard R. Reynolds, Associate Professor, English
Peter H. Rich, Associate Professor, Ecology and Evolutionary Biology
Anne H. Rideout, Professor, Cooperative Extension Service
Hallas H. Ridgeway, Lecturer, Civil Engineering
John W. Riesen, Professor, Animal Science
Thomas P. Riggio, Professor, English
Kenneth Ring, Professor, Psychology
Jack L. Roach, Professor, Sociology
Arthur D. Roberts, Professor, Curriculum and Instruction
Howard M. Roberts, Associate Professor, Mathematics
Pamela L. Roberts, Associate Professor, Allied Health
Thomas J. Roberts, Professor, English
James S. Rock, Extension Agent, Cooperative Extension Service
William H. Roe, Professor, Education
Dorothy T. Rogers, Professor, Allied Health Professions
Vincent R. Rogers, Professor, Curriculum and Instruction
Ronald P. Rohner, Professor, Family Studies
Jerry N. Roip, Professor, Dramatic Arts
Antonio H. Romano, Dean, Liberal Arts and Sciences
Gabriel Rosado, Associate Professor,
Modern and Classical Languages
Barbara Rosen, Associate Professor, English
Philip Rosenberg, Professor, Pharmacology
Mary Lou Rosencrans, Professor, Family Studies
Mark Ross, Professor, Communication Sciences
Marvin Rothstein, Professor, Information Management
Doffie Rotter, Associate Professor, Psychology
Julian B. Rotter, Professor, Psychology
John A. Roulier, Professor, Computer Science and Engineering
John T. Rourke, Professor, Political Science
Paul F. Rotvetti, Director, William Benton Museum of Art
Donald E. Rowe, Specialist IV A, Athletics
Chauncy N. Rucker, Associate Professor, Education
Arnold Russek, Professor, Physics
Robert G. Ryder, Professor, Family Studies
Benjamin D. Sachs, Professor, Psychology
Jacqueline Sachs, Professor, Communication Sciences
Howard R. Sacks, Professor, Law
Stephen R. Sacks, Professor, Economics
Barbara Sanders, Professor, Psychology
Gerald W. Sazama, Associate Professor, Economics
Beldon H. Schaffer, Professor and Director, Institute of Public Service
James H. Scherler, Professor, Mathematics
Paul A. Scholl, Associate Professor, Educational Psychology
Robert Schor, Professor, Physics
David B. Schroeder, Professor, Natural Resources Management and Engineering
R. Jack Schultz, Professor, Ecology and Evolutionary Biology
Tobias L. Schwartz, Associate Professor, Molecular and Cell Biology
Ilse Schwinck, Associate Professor, Molecular and Cell Biology
Charles F. Scott, Assistant Professor, Family Studies
George M. Scott, Professor, Operations and Information Management
H. Constance Scott, Assistant Professor, Nursing
James J. Scully, Professor, English
Edgar E. (Gene) Sellers, Assistant Dean, Graduate School
William M. Servedio, Associate Professor, Kinesiology
Anita M. Shaffer, Senior Extension Educator
Jerome A. Shaffer, Professor, Philosophy
Donald P. Shankweiler, Professor, Psychology
W. Wayne Shannon, Professor, Political Science
Robert A. Shaw, Professor, Curriculum and Instruction
Robert E. Shaw, Professor, Psychology
Stan Shaw, Professor, Educational Psychology
Herbert H. Sheathelm, Professor, Educational Leadership
Mark R. Shibles, Professor, Educational Leadership
Jay S. Shivers, Professor, Kinesiology
Tom B. Shockey, Assistant Professor, Modern and Classical Languages
Howard A. Sholl, Professor, Computer Science
Harvey H. Shore, Associate Professor, Management and Organization
Esther W. Shoup, Extension Agent, Cooperative Extension Service
Eileen Silverstein, Professor, Law
Anthony P. Simonelli, Professor, Pharmacy
Giovanni Sinicropi, Professor, Modern and Classical Languages
Philip J. Sleeper, Professor and Director, Instructional Media and Technology
Erling A. Smith, Professor, Civil and Environmental Engineering
Jerome Smith, Professor, Psychology
Robbins B. Smith, Extension Professor,
EMERITUS FACULTY AND STAFF
Robert J. Smith, Associate Professor, Mathematics
William P. Snively, Professor, Economics
Lester B. Snyder, Professor, Law
Roman Solecki, Professor, Mechanical Engineering
Avo Somer, Professor, Music
Ralph G. Somes, Adjunct Lecturer, Nutritional Sciences
Harold E. Spencer, Professor, Art
Kenneth A. Speranza, Associate Professor, Pharmacy
Eugene Spiegel, Professor, Mathematics
Herbert F. Sper, Professor, Information Management
Donald F. Squires, Professor, Marine Sciences
Emily B. Stanley, Associate Professor, English
Bruce M. Stave, Distinguished Professor, History
Edward Staveski, University Systems
Richard J. Stee, Director of Administrative Services, Computer Center
Frederick E. Steigert, Associate Professor, Physics
Randolph P. Steiner, Associate Professor, Geological Sciences
Milton R. Stern, Distinguished Alumni Professor, English
Norman D. Stevens, Director, University Libraries
James H. Stewart, Extension Professor, Labor Education Center
Donald G. Stitts, Professor, Agricultural and Resource Economics
Frank A. Stone, Professor, Educational Leadership
Frederick A. Streams, Professor, Ecology and Evolutionary Biology
Ardelle Striker, Professor, Dramatic Arts
Peter R. Strutt, Professor, Metallurgy
Archibald Stuart, Professor, Social Work
James D. Stuart, Professor, Chemistry
Michael Studdert-Kennedy, Professor, Psychology
Linda R. Suess, Professor, Nursing
Thomas A. Suits, Professor, Modern and Classical Languages
Donald W. Sundstrom, Professor, Chemical Engineering
Vincent Suprunowicz, Professor, Electrical and Systems Engineering
Richard Swibold, Professor, Art
Colin C. Taft, Professor, Law
Daniel W. Talmadge, Associate Professor, Poultry Science
John Tanaka, Professor, Chemistry
Barbara E. Teasley, Associate Professor, Allied Health Professions
Nehemiah Tec, Professor, Sociology
Morton J. Tenzer, Associate Professor, Political Science
Donald Tepas, Professor, Psychology
Thomas M. Terry, Associate Professor, Molecular and Cell Biology
Roger K. Thalacker, Director, Alumni Affairs
Janice A. Thibodeau, Professor, Nursing
Evelyn B. Thoman, Professor, Psychology
John C. Thompson, Associate Professor, Business Administration
Richard Thornton, Professor, Art and Art History
David Tibbere, Associate Professor, Physical Therapy
Solomon Tilles, Associate Professor, Modern and Classical Languages
Tuzo Ting Ching, Professor, Computer Science and Engineering
Gerald Tirozzo, Professor, Education
Theodore A. Toedt, Associate Professor, Industrial Administration
Rudolf L. Tokes, Professor, Political Science
Edmond C. Tomastik, Associate Professor, Mathematics
Terry J. Tondro, Professor, Law School
John L. Toner, Director, Athletics
Mark E. Tourtellotte, Professor, Pathobiology
Francis R. Trainor, Professor, Ecology and Evolutionary Biology
Appendix
Academic Integrity in Graduate Education and Research

The assurance of integrity in graduate education and research is of paramount concern. Academic and scholarly activity at the graduate level takes many forms at the University of Connecticut, including, but not limited to, classroom activity, laboratory or field experience, and artistic expression. The Graduate School of the University of Connecticut upholds the highest ethical standards in its teaching, research, and service missions.

The Code of Conduct and the statement of Hearing and Appeal Procedures that follow pertain to matters involving graduate academic and scholarly misconduct. Responsibility for such misconduct requires intent but is not excused by ignorance. Thus, it is important for students to be conversant with the tenets of this Code. Matters of a disciplinary nature in which graduate students may become involved are to be addressed by Section III of the University’s “Student Conduct Code,” enforcement of which is within the purview of the Dean of Students.

The Dean of the Graduate School is charged with responsibility for coordinating the process by which an allegation of academic misconduct on the part of a graduate student is reported, investigated, and adjudicated. The Graduate Faculty Council, in accordance with the provisions of its By-Laws, is responsible for the formulation of policies and procedures pertaining to any and all matters of academic integrity in graduate education and research and to proper handling of allegations of violations. Members of the Graduate Faculty have primary responsibility to promote and to sustain the highest ethical standards in its teaching, research, and publication. All members of the University community have a responsibility to uphold the highest standards of teaching, scholarship, research, and publication and to report any violation of academic integrity of which they have knowledge.

A. Forms of Academic and Scholarly Misconduct

There are many forms of academic and scholarly misconduct. Categories of academic and scholarly misconduct are identified below, and where appropriate, illustrations are given. These categories and illustrations are not intended to be exhaustive.

Cheating could occur during a course (e.g., on a final examination), on an examination required for a particular degree (e.g., the doctoral General Examination, the Final Examination for the master’s or the doctoral degree, or a foreign language translation test), or at other times during graduate study.

Plagiarism involves taking the thoughts, words, or ideas of others and passing them off as one’s own.
MISREPRESENTATION could involve, for example, taking an examination for another student; submitting for evaluation work done by another individual; submitting the same work for evaluation in two or more courses without prior approval; unauthorized use of previously completed scholarly work or research for a thesis, dissertation, or publication; or making false, inaccurate, or misleading claims or statements when applying for admission to the Graduate School or in any scholarly or research activity, including publication.

UNAUTHORIZED POSSESSION, USE, OR DESTRUCTION OF ACADEMIC OR RESEARCH MATERIALS, which include, for example, examinations, library materials, laboratory or research supplies or equipment, research data, notebooks, or computer files.

COMPUTER VIOLATIONS include but may not be limited to unauthorized use, tampering, sabotage, or piracy of computer files or data and the like.

FABRICATION OR FALSIFICATION IN RESEARCH could involve, for example, deliberate falsification of experimental results or tampering in any way with actual experimental results or research data.

RESEARCH VIOLATIONS involving, for example, human subject violations (including ethical and social violations), animal care violations, inappropriate breaches of confidentiality, deliberate obstruction of the research progress of another individual, or deliberate disregard for applicable University, local, State, or federal regulations.

CONFLICTS OF INTEREST such as, for example, unauthorized use of University or faculty academic or research facilities, materials, or resources for unapproved purposes; or allowing or attempting to use personal relationships (academic or otherwise) between a graduate student and any member of the University community to influence improperly academic judgments, scholarly evaluations, or decision making.

TAMPERING with any document or computer file pertaining to academics or research, including, for example, student academic records, official transcripts, laboratory journals, examination papers, and the like.

ANY ATTEMPT TO INFLUENCE IMPROPERLY, for example, by means of bribery or threat, any member of the faculty, the staff, or the administration of the University in any matter pertaining to academics or research.

AIDING OR ABETTING another individual in the planning or the commission of any act of academic misconduct.

ANY IMPROPRIETY OR ACT OF MISCONDUCT COMMITTED BY A GRADUATE STUDENT IN A TEACHING ROLE in the University, such as requesting or accepting a favor in exchange for a grade or engaging in any form of sexual harassment.

DELIBERATE OBSTRUCTION of an investigation of any act of academic or research misconduct.

B. ACADEMIC MISCONDUCT WITHIN A PARTICULAR COURSE

When an instructor believes there is sufficient evidence to demonstrate a clear case of academic misconduct within a particular course taught by that instructor, the instructor shall notify the student in writing, and also orally if possible, that unless the student requests a hearing to contest the instructor's belief, the instructor shall impose the appropriate academic consequences warranted by the circumstances. This should occur within 30 days of discovery of the alleged academic misconduct. The appropriate academic consequence for serious offenses is generally considered to be failure in the course. For less serious offenses regarding small portions of the course work, failure for that portion is suggested, with the requirement that the student repeat the work satisfactorily for no credit.

The faculty member is responsible for saving the evidence of academic misconduct in its original form and need not return any of the papers or other materials to the student. Copies of the student's work and information about other evidence will be provided to the student upon request.

The student is given seven days from this first written notice to respond. If the student confesses or does not respond to the written notice of the instructor's belief of academic misconduct and appropriate consequences within the course, the academic consequences shall be imposed and a report submitted to the Dean of the instructor's school or college and to the Dean of the Graduate School.

If a student chooses to contest the instructor's belief of academic misconduct, the student must make a written request to the Office of the Dean of the Graduate School for a hearing to determine the facts of the alleged misconduct.

C. ALLEGATIONS OF ACADEMIC MISCONDUCT

The following procedures apply in most instances where academic misconduct is alleged. In some cases, misconduct may be alleged for students who are supported through a federally funded fellowship or training grant program or through other federal grants (e.g., as a Research Assistant). In such instances, the procedures stipulated by agreements between the University and the federal government will prevail, including use of the University's policy and procedures for review of alleged unethical research practices. The procedures described in this document will apply to those allegations not subsumed by such agreements. In addition, standards governing the professional conduct of students in particular fields may be relevant in certain settings (e.g., clinical, counseling, therapeutic, etc.). Allegations of professional misconduct based on such standards may be brought forward under this code.

Whenever an alleged violation of this code has been filed with the Office of the Dean of the Graduate School, the accused is to be notified in writing within ten working days. The written statement filed with the Office of the Dean should describe fully the alleged misconduct and the circumstances involved (i.e., the name of the individual alleged to be responsible for the misconduct; date, time, place of the alleged misconduct; name(s) of person(s) who might have been involved in or have knowledge of the alleged misconduct; and any other pertinent information). The statement must bear the signature(s) of the individual(s) submitting it, and it must be dated. A copy of the statement will be sent to the accused within ten working days of its filing. The Dean of the Graduate School will discuss the alleged misconduct with the dean of the relevant school or college. The Dean of the Graduate School will then make a determination regarding whether the alleged violation should be resolved at the Graduate School level in accordance with the hearing and appeal procedures contained herein or whether the alleged violation should be referred to the field of study, academic department, school or college in which the infraction is thought to have occurred. (Such a determination will also be made when an accused student, pursuant to section B, requests a hearing.)

If the alleged violation is referred to the field of study, academic department, school or college, it will be addressed and resolved in accordance with applicable procedures prescribed in the pertinent field of study, academic department, school or college, the Office of the Dean of the Graduate School will notify the accused in writing of this determination. In the event that the alleged violation is referred to the field of study, academic department, school or college, the Office of the Dean of the Graduate School should be notified of any outcome of the case. In either event, the Dean of the school or college in which the alleged misconduct occurred is notified that a report of alleged misconduct has been received.

If the alleged violation is to be resolved at the Graduate School level, the report of alleged misconduct is referred to the Office of the Dean of the Graduate School, which confirms the allegation(s) and the existence of supporting evidence. The Office reviews the allegation(s) and the evidence to determine whether a violation(s) of this Code is alleged to have been violated. If the allegation(s) cannot be supported, or if there is insufficient evidence to proceed with an inquiry, the matter is dropped. If the allegation(s) can be supported, and if sufficient evidence exists to warrant an inquiry, the Office of the Dean of the Graduate School notifies the appropriate Associate Dean (either the Associate Dean of the Graduate School at Storrs or the Associate Dean of the Graduate School at the Health Center). The Office also notifies the accused by Certified Mail of the charge(s). A copy of this Code is sent with the letter of notification to inform the accused of his or her rights and of the hearing and appeals procedures to be followed. The Office also notifies the Dean of the school or college in which the alleged misconduct occurred of the charges.
D. GRADUATE HEARING COMMITTEE

The Graduate Hearing Committee is composed of three voting members (two members of the graduate faculty and one graduate student). The Executive Committee of the Graduate Faculty Council selects them with advice from appropriate Deans. The appropriate Associate Dean of the Graduate School (Storrs or Health Center) conducts the hearing as a non-voting member. A member of the Hearing Committee cannot have a direct involvement in the case under consideration. The accused will be notified in writing of the composition of the hearing committee and will have the right to object to the appointment of any committee member on the grounds that the member’s participation would jeopardize the party’s right to a fair hearing. The Associate Dean conducting the hearing will determine whether any objections have merit and will judge whether a panel member will be seated.

The proceeding, although formal, is not a court proceeding and the Hearing Committee will not be bound by the procedures and rules of evidence of a court of law. The Committee’s decision is to be made by majority vote and is to be based on clear and convincing evidence submitted at the hearing, including evidence regarding intent.

The Associate Dean will conduct the hearing, ordinarily in private unless the accused student and accuser agree to an open hearing, using the following steps:

1. Identification of the accused student, the person bringing the allegation, any representative of the accused, and the hearing panel.
2. The accused student may make an opening statement.
3. The presentation of evidence by the person alleging the misconduct. Evidence includes written statements, testimony of the person alleging the misconduct, oral testimony of witnesses, physical exhibits, and evidence of intent.
4. Questioning of witnesses and accuser, and rebuttal of evidence.
5. Presentation of evidence by the accused student. Evidence includes written statements, testimony of the accused student, oral testimony of witnesses, physical exhibits, and evidence of intent.
6. Questioning of the accused student and witnesses, and rebuttal of evidence.
7. Recall of any hearing participants.
8. Summation statements by the person alleging the misconduct and by the accused student.

During the hearing the accused student:

1. May decline to make statements. Refusal to answer questions shall not be interpreted as evidence of guilt.
2. May decline to appear at the hearing. Refusal to appear shall not be interpreted as evidence of guilt. The hearing panel will consider the evidence in the absence of the accused student.
3. May be advised for consultation purposes during the hearing. The student’s consultant may not address the hearing panel or others at the hearing unless permitted by the Associate Dean conducting the hearing.

The hearing panel’s decision is to be forwarded to the student, the person alleging the misconduct, the Dean of the school or college in which the alleged misconduct occurred, and to the Dean of the Graduate School within two weeks from the date of the hearing.

If the student is found not to be responsible for graduate academic misconduct, then no academic consequence may be imposed and the case is considered officially closed, and all records associated with the hearing are removed from the student’s permanent academic file.

In the event that the student is found responsible for graduate academic misconduct, the panel may recommend to the Dean of the Graduate School academic and/or university sanctions. The Dean will examine the record of the hearing and will weigh the severity of the recommended sanction(s) against the seriousness of the student’s misconduct. The Dean then will meet with the student before making a final judgment about sanctions. The Dean may impose any academic sanctions and may recommend to the Dean of Students any university sanctions to be imposed.

Decisions of the Dean of the Graduate School can be appealed to the Provost for University Affairs by the student. An appeal is not a new hearing. It is a review of the record of the original hearing. The accused student and a consultant of his or her choice have the right to review the accused student’s file and other records of the hearing. An appeal may be sought on two grounds:

1. On a claim of error in the hearing procedure. Appeals on such grounds must be presented, specifically described, in writing within five days (excluding weekends and holidays) of the announcement of the decision.
2. On a claim of new evidence or information material to the case that was not available at the time of the hearing. Appeals on such grounds must be presented, specifically described, in writing within five days (excluding weekends and holidays) of the new evidence having been discovered.

The Provost for University Affairs shall have the authority to dismiss an appeal not sought on proper grounds.

If an appeal is upheld, the Dean of the Graduate School shall refer the case with procedural specifications back to the hearing panel.

NOTE: A graduate student is defined as any individual who holds admission to the Graduate School to pursue either a graduate certificate or a graduate degree, as well as any other individual enrolled in a graduate-level course who is not strictly an undergraduate degree or an undergraduate certificate student.

Approved by the Board of Trustees on November 10, 1998.
GRADUATE SCHOOL
COMPLAINT RESOLUTION
PROCEDURE

The University of Connecticut is a community of scholars and researchers committed to integrity, freedom of inquiry and intellectual pursuit, respect for individuals and the rights of others, and tolerance for both individual differences and differing points of view. Accordingly, a fundamental responsibility of the Graduate School is to foster durable, harmonious, and productive working relationships among graduate students, post-doctoral fellows, faculty members, and administrators. For the purposes of this document, a graduate student is defined as any individual who holds admission to the Graduate School to pursue either a graduate certificate or a graduate degree, as well as any other individual enrolled in a graduate-level course. A postdoctoral fellow is defined as a person who (1) holds a research or other doctoral degree and is not pursuing a graduate degree, and (2) is working in a temporary position with a focus on further training in research and scholarship. A faculty member is defined as a person holding an academic appointment in one or more academic units at the assistant professor level or higher. An administrator is defined as a person functioning in an administrative role and having contact and interaction with graduate students, postdoctoral fellows, and faculty, whether holding a faculty position concurrently or not.

Occasionally, difficult situations may arise. This document establishes a process by which graduate students, postdoctoral fellows, and faculty can pursue fair and timely resolution of complaints resulting from their interactions with faculty, administrators, academic programs or departments, or other graduate students or post-doctoral fellows. Many of these situations involve matters of personal sensitivity and need to be resolved amicably and with a minimum of legalistic maneuvering. The procedures outlined here are intended as means to resolve the issue through mediation, if the attempt to resolve the issue through mediation is unsuccessful, the complainant may seek a formal hearing determination.

Step Three: Formal Hearing

The Graduate Hearing Committee is composed of three voting members (two members of the Graduate Faculty and one non-faculty person—either a graduate student or a postdoctoral fellow, respectively). The Associate Dean of the Graduate School will select the members of the Committee. Any person who served as a mediator for the complaint shall not serve as a member of the Committee. The Associate Dean of the Graduate School (Storrs or Health Center) shall preside over the hearing as a non-voting member. A member of the Hearing Committee cannot have a direct involvement in the matter being contested. The complainant will be notified in writing of the composition of the Hearing Committee and may object to the appointment of any voting member on the grounds that the member’s participation would jeopardize his/her right to a fair hearing. The Associate Dean presiding over the hearing will determine whether such objections have merit and may, when necessary, appoint substitute voting member(s).

The Hearing Committee shall not be bound by the procedures and rules of evidence of a court of law. Both the complainant(s) and the party (or parties) who are the object of the complaint may be accompanied by no more than one (1) support person for consultation purposes during the hearing. This support person shall not address the Hearing Committee or others at the hearing unless permitted by the presiding Associate Dean. The hearing shall consist of the following steps:

1) Identification of the principal parties involved in the case, the support persons (if any), and the members of the Hearing Committee.

2) The complainant may make a succinct opening statement and then present the substance of his/her complaint via statements, witnesses, documents and/or other evidence. This presentation is at the discretion of the presiding Associate Dean, who may exclude irrelevant, repetitive or inherently unreliable evidence.

3) The person(s) who is (are) the object(s) of the complaint may then make an opening statement and present the evidence supporting his/her efforts and responses to the complainant(s) via statements, witnesses, documents and/or other evidence. This presentation is at the discretion of the presiding Associate Dean, who may exclude irrelevant, repetitive or inherently unreliable evidence.

4) Members of the Hearing Committee may question the parties involved in the hearing.

5) At the discretion of the presiding Associate Dean, the parties may make succinct summations.

All hearings will be recorded and the University will maintain the audio recordings as required by Connecticut state law and are the property of the University. Participants are prohibited from making their own recordings. Upon written request, an accused person or complainant may review the audio recording and make appropriate arrangements for it to be transcribed at the University. Arrangements and all associated costs involved in the transcription will be the responsibility of the requesting individual.

Following the hearing, the Hearing Committee shall deliberate in private and determine by majority vote of its voting members whether the complaint has merit, and if so, any recommended remedy or sanction. Within ten (10) business days of the hearing, the Associate Dean who presided over the hearing will communicate the Committee’s findings and any recommended remedy or sanction to: (i) the complainant(s); (ii) the participating individuals involved in the issue; (iii) the local official; and (iv) the school or college dean(s) of the parties involved.

Step Four: Appeals

The complainant(s) may file an appeal of the Hearing Committee’s decision with the Dean of the Graduate School. The appeal itself shall be a review of the record of the hearing, not a new hearing. The appeal may be based on one or more of the following grounds:

1) a claim of error in the hearing procedure that substantially affected the decision.

2) a claim of new evidence or information material to the issue that was not available at the time of the hearing and that may be sufficient to alter the decision of the Hearing Committee.

3) a claim of unfair conduct by a Hearing Committee member or presiding officer.
Amendments and Revisions to the Document

This document may be reviewed and amended on an ongoing basis as needed. Suggested modifications shall be submitted to the Associate Dean, who shall submit them to the Executive Committee of the Graduate Faculty Council for consideration and action, with advice from the Graduate Student Senate.

Adopted by the Graduate Faculty Council on October 17, 2007.

Modified on May 23, 2008.
<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology (Storrs)</td>
<td>35, 154-157</td>
<td></td>
</tr>
<tr>
<td>Certificate Programs, Graduate</td>
<td>5, 27, 37</td>
<td></td>
</tr>
<tr>
<td>Biomedical Science Research Experience</td>
<td>27, 37</td>
<td></td>
</tr>
<tr>
<td>Culture, Health, and Human Development</td>
<td>27, 37, 130</td>
<td></td>
</tr>
<tr>
<td>Geographic Information Systems</td>
<td>27, 37, 122</td>
<td></td>
</tr>
<tr>
<td>Global Governance Studies</td>
<td>27, 37</td>
<td></td>
</tr>
<tr>
<td>Health Psychology</td>
<td>27, 37</td>
<td></td>
</tr>
<tr>
<td>Human Rights</td>
<td>27, 37, 132</td>
<td></td>
</tr>
<tr>
<td>International Studies</td>
<td>27, 37</td>
<td></td>
</tr>
<tr>
<td>Graduate Performer's Certificate (Music)</td>
<td>27, 37, 158</td>
<td></td>
</tr>
<tr>
<td>Nonprofit Management</td>
<td>27, 37</td>
<td></td>
</tr>
<tr>
<td>Nursing Practice</td>
<td>27, 37</td>
<td></td>
</tr>
<tr>
<td>Occupational Health Psychology</td>
<td>27, 37</td>
<td></td>
</tr>
<tr>
<td>Public Financial Management</td>
<td>27, 37</td>
<td></td>
</tr>
<tr>
<td>Quantitative Research Methods</td>
<td>27, 37</td>
<td></td>
</tr>
<tr>
<td>Sixth-Year Certificate Programs in Education</td>
<td>27, 37, 98, 103, 107</td>
<td></td>
</tr>
<tr>
<td>Women's Studies</td>
<td>27, 215</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>35, 71-73</td>
<td></td>
</tr>
<tr>
<td>Chemistry (see also Biochemistry, Chemical Engineering, Materials Science, and Pharmaceutical Science)</td>
<td>35, 73-75</td>
<td></td>
</tr>
</tbody>
</table>
Ecology, 35, 92-95
Ecology and Evolutionary Biology, 92-95
Economics, 35, 95-97
Education, Neag School of, 35, 36, 37, 98-111, 136-137, 172-176
Educational Administration, 35, 103-107
Educational Leadership, 35, 103-107
Educational Psychology, 35, 107-111
Educational Technology, 35, 107-111
Electrical Engineering, 36, 112-116
Electronics, Photonics, and Biophotonics, 36, 112-116
Elementary Education, 35, 98-103
Elias Memorial Scholarship, The Annie and Wilma, 18
Emeritus Faculty and Staff, 232-236
Endocrinology, 36, 179-180
Energy and Thermal Sciences, 36, 146-150
Engineering, 35, 36, 38, 119-121 (see also Biomedical, mechanical Engineering, Materials Science, and Metallurgy and Materials Engineering)
Engineering, Master of, 36, 116
English, 36, 117-119
Entomology, 36, 92-95
Environmental engineering, 36, 38, 76, 119-121
European Studies, 36, 61, 133-134
Evans Scholarship, The Edward, 18

Examinations
Course Credit by, 29, 30, 31
D.M.A.
Final, 31
General, 30
Language, 30, 32
Exploratory, 28, 30, 31
For Admission, 5-6
International English Language Testing System (IELTS), 5, 6
Master's Final, 29
Ph.D.
Final, 34
General, 33
Language, 32
TOEFL (Test of English as a Foreign Language), 5, 6
TSE (Test of Spoken English), 6
TWE (Test of Written English), 6

Exceptions to Policy, 4
Executive Committee of the Graduate Faculty Council, 4
Executive M.B.A. Program, 60
Exercise Science, 36, 136-137

Expenses (see Fees and Expenses)

F
Faculty
Adjunct Graduate, 231
Course Work Limitation, 25
Emeritus, 232-236
Graduate, 216-230
Research, 230
Retired, serving as Major Advisor, 7
Tenured (ineligible for degree), 6

Family Studies, Human Development and, 36,
Oceanography, 36, 139-140
Operations and Information Management, 35, 59-71
Oral Biology, 35, 37, 53-59
Out-of-State Tuition, 8, 9, 11
Outstanding Scholars Program, 14

Public Health, 37, 193-196
Public Health, Master of (see Degree Programs)
Public Policy, 196-198
Puppetry, 35, 90-92

Parking Fee, 11
Regulations, 23
Pass/Fail, 26
Paterson Graduate Fellowship in the History of U.S. Foreign Relations, The Thomas G., 17
Pathobiology, 36, 167-168
Pathology, 36, 167-168
Speech, 80-84
Penner Fund, The Lawrence R., 16
Performance (Music), 36, 158-159
Performance/Production (Dramatic Arts), 35, 90-92
Performer’s Certificate, Graduate (Music), 27, 37, 158
Personality (Psychology), 37, 188-192
Pharmaceutical Science, 36, 168-170
Pharmaceutics, 36, 168-170
Pharmacology (Health Center), Cellular and Molecular, 35, 37, 53-59
Pharmacology and Toxicology (Storrs), 36, 168-170
Phi Alpha Alpha Fellowship, 19
Philosophy, 36, 171-172
Philosophy, Doctor of (see Degree Programs)
Physical Education (see Kinesiology)
Physically Disabled Students; Services for, 22
Physical Therapy, 5, 36, 172-176
Physical Therapy, Doctor of, 5, 36, 172-176
Physics, 36, 177-179
Physiology and Neurobiology, 36, 179-180
Physiology of Reproduction, 35, 43-44
Plan of Study
Master’s Degree, 28-29
D.M.A. Degree, 29-30
Ph.D. Degree, 31-32
Plant Breeding, 37, 180-181
Plant Cell and Molecular Biology, 35, 38, 92-95, 154-157
Plant Environment, 37, 180-181
Plant Physiology, 35, 38, 92-95, 154-157
Plant Science, 37, 180-181
Poellein Scholarship, The John, 18
Policy Practice (Social Work), 204
Political Science, 36, 181-183
Polymer Science, 36, 38, 184
Portuguese, 153
Predoctoral Fellowships, 13
Professional Studies, Master of, 28, 36, 184-187
Proposal, Dissertation
D.M.A., 30
Ph.D., 33
Provisional Graduate Status, 5
Prudence Crandall Graduate School Fellowship, 14
Psychology, 37, 188-192
Public Administration, 37, 196-198
Public Administration, Master of (see Degree Programs)
Public Financial Management, Graduate Certificate Program in, 27, 37
R
Rafael Cordero Graduate School Fellowship, 14
Real Estate, 19, 35, 59-71
Real Estate and Urban Economics, Center for, 19
Research (Social Work), 207
Refunds and Cancellations of Charges, 10-11
Regional Student Program, 6, 8, 9
Registration, 24-25
Deadline, 24
Late Fee, 10, 11
Procedures, 24-25
Reinstatement Fee, 10, 11
Related Area (Ph.D.), 32
Research Professors, 230
Research Scientists, 230
Residence Hall Fee and Room Deposit, (see also Housing) 10, 11
Residence Requirement
D.M.A., 29
Ph.D., 31
Ribicoff Fellowship, The Governor Abraham, 19
Ribicoff Graduate Fellowship for the Study of Economic Policy, The Abraham, 16
Richardson-Vicks/A. Francis Summa Memorial Award, 19
Rohner Center for the Study of Parental Acceptance-Rejection, The Ronald and Nancy, 130
Romance Languages, 153
Romo-Arregui Memorial Scholarship, The Josefina, 18
S
Salemo-Sonnenberg Scholarship, The Nadja, 18
Satisfactory/Unsatisfactory Grading, 26, 32, 39
Scholarships, 12-20
Scholastic Standards, 26-27
School Counselor Education and Counseling Psychology, 36, 106-110
School Psychology, 35, 107-111
Schor Memorial Scholarship, The Valerie M., 15
Science, Master of (see Degree Programs)
Scottron Scholarship, The Jan Keiley, 16
Secondary Education, 35, 98-103
Seniors Taking Graduate Courses, 24
Shaw Scholarship, The Stephanie H., 19
Shivers Memorial Award in the Arts, The Rhoda, 16
Sixth-Year Diploma in Professional Education, 5, 27, 37, 98, 103, 107
Slater Fund, The James A., 16
Social (Psychology), 37, 188-192
Social Science and Health Care, 35, 37, 38, 44-46, 210-213
Social Welfare (Social Work), 207-209
Social Work, 37, 198-210
Social Work Electives, 205-209