Graduate Course Descriptions

The following directory lists the graduate courses which the University expects to offer, although the University in no way guarantees that all such courses will be offered in any given academic year, and reserves the right to alter the list if conditions warrant. Click on the links below for a list of courses in that subject area. You may then click “View Classes” to see scheduled classes for individual courses.

6141. Neural Networks for Classification and Optimization

3.00 credits

Prerequisites: None.

Grading Basis: Graded

This course provides students with an understanding of the mathematical underpinnings of classification techniques as applied to optimization and engineering decision-making, as well as their implementation and testing in software. Particular attention is paid to neural networks and related architectures. The topics include: Statistical Interference and Probabilty Density Estimation, Single and Multi-layer Perceptions, Radial Basis Functions, Unsupervised Learning, Preprocessing and Feature Extraction, Learning and Generalization, Decision Trees and Instance-based Classifiers, Graphical Models for Machine Learning, Neuro-Dynamic Programming.

No classes found.